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Abstract—Current data mining techniques have been developed
with great success on homogeneous data. However, few techniques
exist for heterogeneous data without further manipulation or con-
sideration of dependencies among the different types of attributes.
This paper presents a fusion of C4.5 Decision Tree and Gaussian
Mixture Model (GMM) techniques for mixed-attribute data sets. The
proposed fusion technique is used to detect anomalies in computer
network data. Evaluation experiments were performed on the popular
KDDCup 1999 data set using C4.5 Decision Tree, GMM and fusions
of C4.5 and GMM. Experimental results showed a better performance
for the proposed fusion technique compared to the individual tech-
niques.

Keywords—Fusion technique, C4.5 Decision Tree, Gaussian Mix-
ture Model, Heterogeneous Data, Mixed-Attribute Data, Anomaly
Detection, KDDCup 1999.

I. INTRODUCTION

Real-world data sets are normally heterogeneous. For example,
network data collected from connections to a computer have
a range of symbolic and numeric attributes. In general, data
sets have a range of attribute types that must be accounted
for and detectors should be flexible enough to adapt to them.
Determining a higher meaning to sets of attributes can reduce
processing or provide more relevant information to a classifier
[1], [2], [3]. However, automated data analysis is usually
preferred using methods such as feature selection [4] or
principal component analysis [5]. The relationship between
the attributes of the data is often overlooked, usually because
of the complexity or high dimensionality of the data. In this
study, some basic combinations of different data attributes are
used to determine if the fusion of the classifiers can make
better predictions than using them individually.

Anomaly detection is an important task that has many appli-
cations, but current developed methods are usually focused on
homogeneous data sets or on converting heterogeneous data to
homogeneous data[6], [7], [8]. The mixture of attribute types
in network databases causes difficulties when detecting anoma-
lous entries (or “attacks”) in these databases. Unsupported
attribute types could simply be ignored but this usually results
in information being lost from the discarded data. In most of
the developed and popular methods, numeric data is converted
to symbolic data by means of categorization, or symbolic
data is simply enumerated [9]. This data transformation can
cause loss of information and may change the meaning of

the data. Enumerating data incorrectly gives meaning to the
distance between two symbolic data points, and categorisation
of data causes information loss of possible data distributions
and changes the meaning of the numeric data by assuming
groupings that may not exist. Nevertheless, data manipulation
often occurs as it simplifies the problem, but it also places
assumptions on the data that must be carefully checked [9].

In this paper, we present a fusion technique of C4.5 Decision
Tree for symbolic attributes and Gaussian Mixture Model
(GMM) for numeric attributes in network data. Evaluation
experiments were performed on the popular KDDCup 1999
data set using C4.5 Decision Tree, GMM and the fusion of
these two techniques. Experimental results for the individual
models and the fusion model showed a better performance for
the proposed fusion technique.

The remainder of the paper is organised as follows. Related
work is discussed in Section II. A brief discussion on these
algorithms is presented in Section III. A description of the
proposed fusion model is then given in Section IV, evalua-
tion experiments in Section V, and results are presented in
Section VI. Concluding remarks end the paper in Section VII.

II. RELATED WORK

Anomaly detection from mixed-attribute data sets is one of
the many challenges of the field, where the focus has been
largely on homogenizing the data. However, it is now becom-
ing a primary focus of research for anomaly detection [9].
A close look at anomaly detection using mixed-attribute data
is given in [9], where the authors used a distance measure
for each of the symbolic and numeric attribute. They also
used the KDDCup 1999 data sets in their experiments. For
symbolic data, the values define the distance between two
records and for numeric data, a covariance matrix is used
to analyse how two records are related. An anomaly score
is then assigned to each record based on the distance analysis
and then classified. Their technique was aimed at a distributed
setting, where highly favorable execution times and detection
rate were observed.

The work of [9] extends the LOADED and subsequently
RELOADED algorithms by [10]. The algorithms focused on
finding links between the mixed-attribute data records by
assigning anomaly scores to symbolic and numeric attributes
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based on the frequency of symbolic values and a correlation
matrix for discretized numeric attributes. The LOADED and
RELOADED algorithms also looked at the KDDCup 1999
data set. The algorithms looked at giving scores to each record
based on its links with the other records. Improved perfor-
mance was observed with more lattice levels built from the
links. The emphasis of the paper is mainly on the dependencies
between the data types and how to find links between two data
records based on a similarity measure.

This approach of determining the anomaly score from an
analysis of the symbolic and numeric attributes is also seen
in the research by [11], where the authors compared their
technique to [9]. The symbolic score is based on the frequency
of the value in the data set, and the numeric score is based on
a cosine function that defines the cosine similarity of numeric
attributes. Their technique showed an improvement over [9]
in the same KDDCup 1999 data sets for most of the different
attack types.

The anomaly detection research above is some of the work
that directly addresses mixed-attribute data sets and aims
to handle them differently. All the research above have a
similar theme of calculating anomalous scores for symbolic
and numeric data separately and then classifying those scores
based on a defined threshold. The research above also dealt
with the KDDCup 1999 data set, but in this study, we aim at
improving detection rates of all attacks instead of looking at
the performance of each attack type as seen above. The use
of anomalous scores in this study came in part from the work
mentioned and others, but we determine anomaly scores using
classifiers rather than from the data attribute types.

III. DECISION TREE AND GAUSSIAN MIXTURE MODEL

A. Decision Tree Model

Decision trees in the context of machine learning and data
mining are predictive models that classify an item based on
its characteristics. Specifically, a decision tree is built from a
training data set that results in a mapping from the independent
variables to a dependent variable. In the context of network
intrusion detection, a connection is classified as an attack or
normal connection based on the properties (or attributes) of
the connection. Decision trees are often used because they are
simple to understand and they reflect natural human decision
making processes. Decision trees are rules summarized into a
tree structure, where based on the conditions defined by the
rules, following from the root of the tree to the leaves of the
tree determines which label the data record should receive.

Decision trees apply naturally to symbolic attributes, but
for numeric attributes, some form of discretizing the values is
needed. To find the best or most interesting patterns in the data,
the topic of Information Gain from Information Theory has
become popular for use with decision trees. Information Gain
is used in the C4.5 algorithm, where it is simple and highly
effective in generating decision trees. In this paper, the C4.5
Decision Tree algorithm, a popular and powerful classifier
developed by Ross Quinlan [12] was used to generate decision
rules based on different sets of attributes. The accuracy of the

rules generated by C4.5 for the training records is used in the
anomaly score of the fusion classifier.

B. Gaussian Mixture Models

Gaussian Mixture Models (GMMs) are used in speech and
speaker recognition because of their ability to achieve high
accuracy in prediction with the models generated [4]. GMMs
are limited to numeric data types so enumeration of symbolic
attributes is usually performed. GMMs have also been used
in anomaly detection, where [13] surveyed a variety of GMM
and probabilistic techniques used for anomaly detection.

GMMs assume that the data points cluster in many places
with the center of those clusters called components [14].
Each component has an associated mean vector, where they
generate data from a Gaussian with the same mean vector
and a covariance matrix. The number of Gaussians is spec-
ified to match the number of components, but the number
of components is usually not known and so the number
of Gaussians specified is usually an estimate. The GMM
parameters are iteratively estimated such that they maximize
the log-likelihood of the training data using the Expectation-
Maximalization (EM) technique [14]. A likelihood score is
generated (and used in the fusion as detailed below) for each
record of the testing data set and a threshold is specified to
determine the anomalous and normal records.

The equations used in this implementation come from [14],
but the theoretical basis and much broader descriptions of
GMMs can be found in many papers, books and on the
Internet. The reader is encouraged to pursue other resources for
the theoretical basis of C4.5 and GMMs as the theory cannot
be summarized effectively here because of space restrictions.

IV. FUSION MODEL

The idea of fusion models or more generally known as en-
semble models, is to use more than one model for classifying
new data on the basis that more models should improve the
accuracy as more information is available. In this paper, a
weighted linear sum of the scores from the decision tree C4.5
and Gaussian mixture models is used to determine the anomaly
score of a data record:

S = w1 ∗ C4.5 Score + w2 ∗ GMM Score (1)

where w1 + w2 = 1, C4.5 Score 6 1, GMM Score 6 1
and thus the combined score S 6 1. The C4.5 score is the
accuracy of the rule in the training data set as given by the C4.5
rule generator. The GMM score is the posterior probability
of the data record belonging to the training data set with
“normal” labels. The best GMM threshold was determined
beforehand (by interval testing) and fixed for the experiments.
The initialization of the GMM’s posterior probability matrix
was with random numbers on every set of results. Many
repeated execution of the implementation showed identical sets
of results, despite the different resulting GMM weights, means
and covariance matrix from training the GMM. That is, all
results presented here were identical on multiple runs of the
GMM algorithm. This odd observation is likely because of
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the narrow range of values in each attribute of the data set.
Since the GMM was trained only on the normal connections,
we expect that values do not deviate much in the data records
of normal connections.

A threshold θ is used to determine how high the combined
score S of a record x must be to be classified as a normal
connection. If S < θ then x is intrusive else x is normal.
So, the greater the scores are, the greater the chance that
the connection is normal. The best threshold observed for the
GMM model and fusion model was 0.023, which gives the
results presented here.

Some initial experiments with higher and lower weights
(that are not severely biased) to each of the classifier scores
did not show any interesting changes, where usually only a
change in the threshold is needed to show similar results. So,
the weights were fixed to be equal (i.e. w1 = w2 = 0.5 in
Equation 1) in this study for simplicity. The weights were
introduced with the intention of adding boosting to the fusion
model in future experiments.

The fusion model is based on the assumption that the
C4.5 and GMM detectors will not always have the same
opinions. Using the different information from each classifier,
anomalous data could potentially be better distinguished.

V. DATA SET AND METHODOLOGY

A. Data Set Description and Result Presentation Description

The KDDCup 1999 data set was used to evaluate the
proposed fusion model [15]. This is a popular data set for
developing and evaluating anomaly detection techniques for
network traffic. The data set consists of 41 attributes: 7
symbolic and 34 numeric with 4,898,431 record entries for
the training data set and 311,029 record entries for the testing
data set. The labels of the connections were relabeled in to
two classes of “normal” or “attack” connections because of
the focus on detecting anomalies.

By using only binary classification, a simple evaluation of
the predictive accuracy of the classifiers can be used. The
outcome for a binary classification task is usually labeled as
positive or negative, where positive labels refer to attacks and
negative labels to normal connections. The common method
used to evaluate the predictive accuracies of anomaly detectors
is through the use of a confusion matrix (or an error matrix),
where the predicted label of a record are compared to the
actual label.

The focus of intrusion detection is on the True Positive Rate
also known as the Detection Rate (DR), the False Positive
Rate (FPR) and the overall Accuracy (ACC) of the classifiers.
However, it is also useful to look at the Positive Predictive
Value (PPV) and the Negative Predictive Value (NPV) because
they give an indication of how well the classifier is recognizing
attack and normal connections, respectively. These are defined
by the following equations from [16]: (# means ‘number of’)

DR = #TP
#TP+#FN * 100% FPR = #FP

#FP+#TN * 100%

ACC = #TP+#TN
#P+#N * 100%

PPV = #TP
#TP+#FP * 100% NPV = #TN

#TN+#FN * 100%

where P is the total positive observations and N is the
total negative observations. These measures are common in
evaluating anomaly detectors, where [17] discusses the usage
of these equations in anomaly detection.

These measures are a method of determining the perfor-
mance of anomaly detector, which is simple and shows the
three important features of a good anomaly detector: high
detection rate, low false positive rate, and high accuracy. The
error matrix and the accompanying performance measures are
summarized in Table I.

TABLE I
ERROR MATRIX WITH PERFORMANCE MEASURES

Actual Class Predicted Class PerformanceAttack Normal
Attack #TP #FN DR
Normal #FP #TN FPR

Performance PPV NPV ACC

B. Evaluation Methodology

In our experiments, a C4.5 Decision Tree was built using
symbolic attributes and numeric attributes that constitutes
basic TCP features as defined in [15], which gives 9 symbolic
attributes and 5 numeric attributes. We chose this set of
features as it shows a mix of attributes that has a defined
meaning of TCP features. We did not choose all or more
numeric attributes as the C4.5 algorithm takes a considerably
long time to build a tree and the associated rules that we use for
the fusion. In contrast, the algorithm did not take longer with
more symbolic attributes, so we used all symbolic attributes.

The GMMs were built with all the numeric attributes of
the data set. We also trained GMMs on subsets of numeric
attributes, but no favorable results were observed; these results
are not presented, again because of space. A range of Gaus-
sians (for the components) were tested to determine if adding
more Gaussians can improve performance as the features of
the data can be better distinguished, as suggested by theory.
The number of iterations when training the GMMs was fixed at
10 iterations because little to no improvement in performance
was observed for a higher number of iterations. This may be
due to the high number of dimensions, which causes a faster
convergence because of the sparseness of the data. [18] also
observed that higher dimensions also reduced the number of
iterations, but different data sets were investigated.

The fusion model investigated is named DTtcpGMM, which
was a combination of the C4.5 Decision Tree model DTtcp
with the GMMs. The scores from each model were combined
as detailed in Section IV.
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The C4.5 classifier was trained on all (4,898,431) records
and GMMs was only trained on all the normal (approximately
1,000,000) labeled records from the training data set. The
classifiers were then applied to a separate testing set consisting
of approximately 250,000 attack connections and 60,000 nor-
mal connections. These two classifiers were trained differently
because C4.5 required at least two classes to build an effective
decision tree. This gives two very different detectors, where
the decision tree model is built using supervised learning and
GMM is built using semi-supervised learning. Any improve-
ments would be seen through the different measures presented.

VI. RESULTS AND DISCUSSION

A. C4.5 Decision Tree Model

Table II shows the decision tree classifier applied to the
symbolic attributes and the numeric attributes that are basic
TCP features (DTtcp) of a connection.

TABLE II
RESULTS OF THE C4.5 DECISION TREE CLASSIFIER: DTTCP

Actual Class Predicted Class PerformanceAttack Normal
Attack 235102 15334 93.88%
Normal 5585 55008 9.22%

Performance 97.68% 78.20% 93.27%

DTtcp shows a favorable detection rate of 93.88%, but
the false positive rate is high at 9.22%. So, using DTtcp
shows that a high number of attacks are identified, but a
high portion of normal connections were incorrectly identified.
Looking at the positive and negative predictive values, fewer
attacks are recognized, but a lot more normal connections are
recognized correctly. These results suggest that relaxing the
security measure can result in a higher accuracy and more
normal connections correctly classified.

B. Gaussian Mixture Model

Table III shows the performance of the GMM detector
with different number of Gaussians, trained on all 34 nu-
meric attributes and the entire training data set. The different
number of Gaussians has a small effect on the performance
of the classifier with changes less than 1% in the same
fields. The classifier is consistent with high detection rates
(around 92%), low false positive rate (around 4.9%) and high
accuracy (around 92.75%). Similarly high positive predictive
value (around 98.7%) and fairly high negative predictive value
(around 75%) are also observed. This shows the attack con-
nections are being recognized better than normal connections.

The performance of the GMM detector looks to be, at times,
better and worse than DTtcp, where less attacks and more
normal connections were correctly classified. So, the GMM
detector looks to have comparable performance to decision
trees depending on the level of security. Increasing the number
of Gaussians does not show a significant improvement in the
performance measures as suggested by theory.

TABLE III
RESULTS OF THE GMM CLASSIFIER

Gaussians Actual Class Predicted Class PerformanceAttack Normal

4
Attack 230259 20177 91.94%
Normal 3017 57576 4.98%

Performance 98.71% 74.05% 92.54%

8
Attack 231302 19134 92.36%
Normal 2976 57617 4.91%

Performance 98.73% 75.07% 92.89%

12
Attack 231485 18951 92.43%
Normal 2964 57629 4.89%

Performance 98.74% 75.25% 92.95%

16
Attack 230947 19489 92.22%
Normal 2921 57672 4.82%

Performance 98.75% 74.74% 92.79%

Overall, the performance of the GMM detector is compa-
rable to the decision tree classifier, where they were trained
on different sets of attributes. This shows the effects of
using different sets of attributes and classifiers, which can
dramatically change the performance of detecting attacks or
anomalies in the database.

C. Fusion Model
This section will present a fusion of the decision tree

and GMM detector: DTtcp and GMM. The fusion model
was built based on the description given in Section IV. The
thresholds of the fusion models were determined similarly to
the GMM detector, where the results were optimal after a
certain threshold.

TABLE IV
RESULTS OF THE FUSION CLASSIFIER: DTTCPGMM

Gaussians Actual Class Predicted Class PerformanceAttack Normal

4
Attack 235066 15370 93.86%
Normal 1456 59137 2.40%

Performance 99.38% 79.37% 94.59%

8
Attack 235071 15365 93.86%
Normal 1454 59139 2.40%

Performance 99.39% 79.38% 94.59%

12
Attack 235074 15362 93.86%
Normal 1454 59139 2.40%

Performance 99.39% 79.38% 94.59%

16
Attack 235076 15360 93.87%
Normal 1550 59043 2.56%

Performance 99.34% 79.36% 94.56%

Table IV shows the results of the fusion of DTtcp and
GMM. The results of DTtcpGMM show good performance
measures on all Gaussians measured. Significant improve-
ments are observed in the detection rate of over 1.5% com-
pared to GMM in most cases, and a much lower false positive
rate of over 2.5% in most cases. Consequently, this resulted
in an accuracy that is higher than all the other classifiers by
at least 1.5%. Similarly, the positive and negative predictive
values for the DTtcpGMM are also very high, suggesting
DTtcpGMM is correctly recognizing more normal and attack
connections.
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To determine that the differences between the GMM clas-
sifier and its fusion are significant, a (two-tailed) paired t-test
is presented. An extremely statistically significant p-value of
0.0003 is obtained for the set accuracy of DTtcpGMM shown
in Table IV and set of accuracy of GMM in Table III. A (two-
tailed) paired t-test between the accuracy of DTtcpGMM and
DTtcp gives a p-value of 0.0001, which is also extremely sta-
tistically significant. (Recall that the algorithms were executed
multiple times with the same results.)

So, the performance of DTtcpGMM is statistically better
than its individual parts. The small overfitting observed from
DTtcp may have helped in distinguishing normal and attack
connections when combined with the GMM detector. The
dependencies of the attributes to each other look to be very
complex as the introduction of some numeric attributes to the
decision tree showed signs of overfitting, but when combined
with another classifier like the GMM, improvements greater
than both those classifiers are seen.

Overall, the fusion of DTtcp and GMM shows a greater
improvement than their individual classifiers. The fusion also
shows that there is little to no improvements in performance
with higher Gaussians, so fewer Gaussians could be used to
reduce the training time. The small overfitting of the decision
tree classifier (i.e. high FPR) does not poorly influence the
classifier as expected, but better performance is observed when
combined with GMM.

VII. CONCLUSION AND FUTURE RESEARCH

This paper investigated a fusion of the C4.5 Decision
Tree classifier and Gaussian Mixture Models for anomaly
detection on a mixed-attribute data set, the KDDCup 1999
data set. The C4.5 Decision Tree algorithm was evaluated
on symbolic and numeric attributes that constitutes a TCP
connection, and the Gaussian Mixture Model was trained on
the numeric attributes only. We focused on applying these
two techniques to heterogeneous data without manipulating the
data to suit one particular technique. A new fusion technique
was proposed and evaluated with a series of experiments
that showed statistically significant improvements in detection
performance compared to the two individual techniques.

From this study, there are many other possible investigation
paths, but automatic feature selection [4] may likely prove
to be beneficial to choosing the best sets of attributes for the
different classifiers. Other data sets also need to be considered
because of the age and problems with the KDDCup 1999 data
set as strongly criticized by [19], but we are not aware of
alternatives at this time. Using more classifiers in the fusion
may also show additional benefits because “in reality there are
many different types of intrusions, and different detectors are
needed to detect them.” [20]
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