
Rigid Formation Construction from Non-rigid Components

Yun Hou, Changbin Yu

Abstract— This paper discusses the construction of rigid
formation from arbitrary non-rigid components in two-
dimensional space. Specifically, we focus on developing strate-
gies for the construction sequences under the premise of
building minimum number of links between the non-rigid
components. Three operations, namely spindle splitting, rigid
component shrink and edge floating, are proposed. The sce-
narios of acquiring a rigid formation from different kinds of
non-rigid components are discussed respectively. It is proved
that our strategy will guarantee the rigidity of the obtained
formation with minimum number of inserted links, and will
cover all the possible solutions during the construction process.

I. INTRODUCTION

Formation control has been a hotspot in the research of
multi-agent systems, and many solutions have been proposed
by different predecessors.A common strategy adopted by
many formation control solutions is to extract topology
from the sensing or communication networks among agents
as well as designing appropriate control laws. By saying
topology, we mean to omit all the detailed physical inter-
connections, transmitting speeds or signal types, and to con-
centrate only on the interconnection edges between agents.
Especially in distance-based control, formation can be kept
only when all the constraints of distance are maintained
throughout. A formation is defined as rigid if the distance
of each pair of agents remain constant all the time. If a
formation can be kept by maintaining a least number of
interconnection links, it is then mentioned as minimally rigid
formation. Minimal rigidity can certainly reduce the cost of
communication or observation thus is a basic requirement in
practical applications.

Minimally rigid formations can be obtained by the well-
known Henneberg Sequence, and lots of relevant works
have been done to preserve minimal rigidity under differ-
ent situations. In [4], a reversed Henneberg Sequence was
proposed to regain minimal rigidity if some links or agents
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are removed from a minimally rigid formation. Closing ranks
problem was studied in [2] and [3] and different self-repair
approaches were proposed to regain rigidity for non-rigid
formations.

Besides the Hennerberg sequence, the construction of rigid
formation from rigid components were well studied. The
merging of rigid formations was discussed in both two and
three dimensional space in [5], where minimum number of
links were inserted to regain minimal rigidity. In [7], three
principles were proposed in the scenario of rigid formation
merging to cover all the possible solutions, such that any
scenario of rigid formation merging can be processed. Three
basic solutions were proposed in [6] to obtain a rigid
formation from two rigid ones in two-dimensional space.
However, how to construct a rigid formation from non-rigid
components is not discovered yet.

One motivation is that under some cases the rigidity of
a given formation can not be repaired by approaches such
as minimal cover and closing rank. A trivial example is
presented in Fig. 1, where the rigidity of one formation can
not be restored unless is connected with a rigid formation F .
This scenario motivates us to develop a construction strategy
to obtain rigid formation from non-rigid components, which
can be employed in applications like obtaining a larger rigid
formation by connecting two or more non-rigid ones, which
is capable to deal with tasks that requires more agents.

Fig. 1. An example showing that the rigidity of formation can not
be restored by building new links within formation, because the distance
of agent i and k exceeds the communication range R. In this case by
connecting i and k to another formation, the rigidity will be restored.

The construction of rigid formation with non-rigid com-
ponents is far more complicated comparing with the afore-
mentioned three basic solutions proposed in [6]. In the non-
rigid component case, some agents must be connected, while
other agents can be left alone. Therefore the solutions are
uniquely determined by the actual topologies of non-rigid
components. One can of course argue that this is trivial
since one can connect every two agents from the two non-
rigid components to obtain a rigid one, but what makes
the question nontrivial is how to pick up a minimum set
of links in the process of construction. Note that all the
inserted edges will be deployed only between the two non-
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rigid components, not within any of them. This problem may
not seem to be feasible since a direct approach similar to
rigid component case is implicit. But it is proved that with
appropriate operations and sequences employed, this problem
can indeed be solved.

In this paper, we present a construction strategy of building
rigid formation from non-rigid ones in two-dimensional
space. The proposed strategy is developed based on three
operations, namely, spindle splitting, rigid component shrink
and edge floating. It is proved that the proposed strategy will
guarantee the rigidity of obtained formation with minimum
number of new links. We will also prove that the proposed
construction sequence will cover all the possible cases.

II. PRELIMINARIES

The structure maintenance of a multi-agent formation F is
achieved by preserving certain distances between designated
pairs of agents. And a undirected graph G = {V,E} can be
employed to represent the composition of F , where V and
E denote the vertex and edge set of G respectively. Each
agent within F is represented by a vertex from V , while
each distance constraint between a pair of agents of F will
be depicted as an edge from E.

The operations and construction strategy proposed in the
following will focus on the underlying graph of the multi-
agent formation, and the inserted edges mentioned stands for
the behavior of building new links between corresponding
pairs of agents within formation.

A. Basic notions

For an undirected graph G, a walk of length r from vertex
i to j is a sequence of r + 1 adjacent vertices from i to j.
If i = j, with no other vertex appears more than once, this
walk is called a cycle. If there’s a walk between any two
vertices, G is then mentioned as connected, and G is called
a tree if G contains no cycles. If there are m vertices in the
neighbor set of i, then vertex i is mentioned as a vertex with
degree-m. A circle graph G = {V,E} satisfy that |V | ≥ 4
and |V | = |E|, while all of the vertices are of degree-2. A
chain is obtained by removing one edge from a circle.

For vertex i, Ni denotes its neighbor set, and eij denotes
the edge connecting i and j. EL stands for the minimum
inserted edge set in the process of construction.

B. Graph rigidity

Theorem 2.1: (Laman [8]) A graph G = {V,E} is rigid in
two-dimensional space if and only if there exists a subgraph
G

′
= {V,E′ ⊂ E} of G such that |E′ | = 2|V | − 3, and

for any non-void vertex set V
′ ⊂ V with edge set E

′′ ⊂ E
incident to V

′
, there will be |E′′ | ≤ 2|V ′ | − 3 .

An arbitrary formation F is mentioned as rigid if the
underlying graph G = {V,E} is rigid.

Definition 2.1: For a non-rigid graph G
′{V ′

, E
′}, a rigid

component is a maximal rigid subgraph of G
′

[1].

C. Problem statement

The main goal of this paper is to find strategies for ob-
taining rigid formation by connecting non-rigid components.
The objectives of pursued strategies are listed as follow:

1. The proposed construction sequence will preserve the
initial topology of non-rigid components, which means the
process contains no removal of edges.

2. The construction sequence will guarantee the rigidity
of obtained formation.

3. Minimum number of new links will be inserted during
the construction process.

Throughout this paper, the only requirement for non-rigid
component formation F

′
is that the underlying graph G

′
is

connected. Even if G
′

is not connected, that is F
′

contains
several separated sub-formations, the proposed construction
sequence is still applicable. Thus here we assume that G

′
is

connected only for simplicity of statement.
For two arbitrary non-rigid formations F

′
and F

′′
, the

problem of constructing rigid formation from this two non-
rigid components can be formulated as finding the minimum
inserted edge set between their underlying graph G

′
and G

′′
:

Problem 2.1: Given two arbitrary connected but non-rigid
graphs G

′
and G

′′
, design a strategy of discovering the

minimum inserted edge set EL, where ∀ekm ∈ EL, there
will be k ∈ G

′
,m ∈ G

′′
, and the obtained graph {G′ ∪G

′′ ∪
EL} is rigid, while {G′ ∪G

′′ ∪ EL \ ekm} is not.

III. OPERATIONS OF RIGID FORMATION CONSTRUCTION

To recover the rigidity of graph from non-rigid compo-
nents, one need to choose a correct collection of vertices on
which the inserted edges will be attached. To begin with, a
special kind of vertex need to be defined.

For a vertex i within a undirected graph G{V,E}, if one
of the following conditions holds for this G and i, then i
will be mentioned as a spindle agent, as shown in Fig.2:

1: Vertex i is from a rigid component Gr{Vr, Er} of
G, and there exists a vertex j ∈ Ni that satisfies eij /∈
Er and eij ∈ E.

2: There is no rigid component contained in G, for a cycle
Cn(n > 3) within G satisfying ∀j, k ∈ Cn, ejk /∈ E, vertex
i ∈ Cn satisfies that ∃l ∈ Ni, eil /∈ Cn and eil ∈ E.

3: G is a tree graph, and there is a vertex i ∈ G that
satisfies |Ni| > 2.

Fig. 2. The dotted vertices within the three graphs are the examples of
spindle agents corresponding to condition 1, 2 and 3 respectively.

Actually the existence of spindle agent is the indicator of
non-rigidity, one can easily figure out that for an arbitrary
connected by non-rigid graph, there will be at least one
spindle agent contained.
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Here we propose our first operation that will be employed
in the merging sequence:

Definition 3.1: Consider a non-rigid graph G
′

containing
some spindle agents i, j, k, l, the operation spindle splitting
denotes that by dividing these vertices into several pieces, G

′

will be separated into m unconnected subgraphs G
′

1...G
′

m,
where each of the subgraphs contains one piece of spindle
agents generated from the splitting, while no spindle agents
are contained in any of the obtained subgraphs, see Fig. 3.

Fig. 3. Spindle splitting within non-rigid graph, the spindle agents i, j, k, l
are spilt such that the obtained subgraphs contains no spindle agents

Proposition 3.1: The operation of spindle splitting can
always separate an arbitrary non-rigid graph into subgraphs
containing only the three basic graphs of chain, circle and
rigid components.

Proof: For an arbitrary non-rigid graph G
′
, if G

′

contains no cycles, then G
′

will be a tree graph, and it
is obviously all the subgraphs will be chain after spindle
splitting. If G

′
contains cycles, start a walk from some vertex

m of degree-1, until the first vertex k which is within a
cycle, then this vertex k must be a spindle agent. By spindle
splitting a chain graph will be obtained from vertex m to k1.

If the non-rigid graph G
′

contains no vertices of degree-
1, by definition all the spindle agents will hide among the
shared edges between rigid components and circles. One
can firstly figure out all the spindle agents contained in
rigid components, and spilt these agents to obtain rigid
components. The next step is to identify spindle agents
within circles, and the splitting operation will leads to either
circles or chains. If no rigid components are contained in
G

′
, then the splitting operation can start from a circle.
Note that the topology of obtained subgraphs are not

unique, which are determined by the sequence of spindle
splitting operations.

Proposition 3.2: To obtain a minimally rigid graph by
adding a single agent l to a chain graph consisting of m
vertex, m edges need to be inserted, while when adding to a
circle containing m vertexes with l, m−1 edges is required.

Proof: To obtain a rigid graph from a chain graph and
a single agent l, if m edges are inserted, then there will
be one edge attached on each of the vertices. Without loss
of generality, denote one of the degree-1 vertex of chain v1,
then by inserting one extra edge to its neighbor v2, the graph
{l∪v1∪v2} is minimally rigid. Sequentially all the neighbors
of v2 can be considered as vertex addition operations by
inserting edges between vi−1 and l, thus the obtained graph
will be minimally rigid. Similarly we can prove that with
m− 1 edges inserted between circle and single agent l, the
new graph is minimally rigid.

If more than one circles are included in a non-rigid

graph, the solutions of EL will be complicated comparing
with Proposition 3.2. In order to reduce the complexity of
construction, we present the second operation:

Definition 3.2: For a non-rigid graph G
′

containing a rigid
component G∗, the term shrink denotes the operation of
replacing G∗ with vertex pair Gr(Vr, Er), where Vr =
{i ∪ j}, i, j ∈ G∗, Er = {eij}, as shown in Fig.4.

Fig. 4. Rigid component shrink will merge spindle agents together.

It is clear if a circle shares some edges with a rigid
component, there will be at most two spindle agents existing
at the same time, thus the operation of rigid component
shrink can always be applied when there are no more than
two spindle agents contained. In the next session we will
show that in the reconstruction process, the operation of rigid
component shrink can always be applied.

Lemma 3.1: To generate a rigid graph from a non-rigid
graph G

′
and a single agent l, if G

′
contains rigid component

G∗, shrink G∗ to obtain G
′

s = {G′ \G∗ ∪Gr}. Then for an
inserted edge set EL, if {G′

s ∪ EL ∪ l} is minimally rigid
then {G′ ∪EL ∪ l} is rigid or minimally rigid, as shown in
Fig.5.

Fig. 5. Rigid component shrink in non-rigid graph will not change the
requirement of inserted edge set EL.

Proof: Referring to the basic operation of vertex
addition of Henneberg sequence, at least two vertices from
G∗ should be connected with l by inserted edges in order to
obtain a rigid graph from G∗ and l. Thus the operation of
rigid component shrink is equivalent to choosing two vertices
from G∗ such that the single agent l can be connected to G∗.
The process of inserting l with other agents can be viewed
as sequential vertex addition operations thus the obtained
graph {Gs ∪ EL ∪ l} is minimally rigid. Specially, if G∗ is
redundantly rigid, then {G′ ∪EL ∪ l} will only be rigid.

This operation may seem to be trivial, but will greatly
simplify the topology of non-rigid graph discussed in the
later session. In fact this is the basis of the construction
sequence mentioned in the next session.

It is known that vertex addition operation in Henneberg
sequence to a rigid graph will preserve the rigidity. Similarly,
the operation of edge floating can be developed:
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Definition 3.3: For a rigid graph, edge floating denotes
the operation of removing one edge eik for some vertex i of
degree 2, and adding a new edge eil, where k, l ∈ V .
This operation can be intuitively depicted as one of the edge
of vertex i is floating over the rigid graph, of which an
example can be found in Fig.6.

Fig. 6. Edge floating operation when adding a vertex to a rigid graph.

IV. CONSTRUCTION SEQUENCE OF RIGID FORMATION
FROM NON-RIGID COMPONENTS

There are two causes that will deprive a rigid graph of
its rigidity, that is, breaking of edges, or loss of agents. In
the rest of this section, we will deal with arbitrary non-
rigid graphs distributed in two-dimensional space, without
clarifying the cause of the non-rigidity.

After the introduction of spindle splitting and rigid com-
ponent shrink in previous session, as well as the technics of
obtaining a rigid graph from a basic non-rigid component and
a single agent, we now present our construction sequence.
The construction sequence will be presented step by step,
starting from constructing a rigid graph from an arbitrary
non-rigid graph and a single agent.

A. generating rigid graph from non-rigid component and
single agent

This is the simplest condition of rigid graph construction
with non-rigid components, which can be applied into the
scenario of controlling a non-rigid formation of autonomous
agents with a leader. The inserted edges can be understood
as how to pick up some agents within formation to establish
interaction links with the leader.

With Lemma 3.1 and Definition 3.1, we present the
following construction sequence to obtain a rigid graph from
non-rigid graph G

′
and a single agent l:

Construction step i: For an arbitrary non-rigid graph G
′
=

{V ′
, E

′}, perform the operation of spindle splitting to each
of the spindle agents contained in G

′
, until G

′
is separated

into isolated subgraphs G
′

1...G
′

n, and any of these subgraphs
are one of the three basic graphs, as shown in Fig.7(a).

Construction step ii: Since G
′

contains cycles, then there
will be at least one circle in the n separated subgraphs, with-
out loss of generality, let G

′

1 be a circle. Apply Proposition
3.2 such that GL

1 = {V ′

1 ∪ l, E
′

1 ∪EL
1 } is rigid, see Fig.7(b).

Construction step iii: Test the rigidity of restored graph
{GL

1 ∪ G
′

2}. If it is not rigid, shrink GL
1 into vertex pair

Gr1 containing l, where l is not a spindle agent in the new
subgraph {Gr1 ∪G

′

2}, then apply Proposition 3.2 to obtain
EL

2 , see Fig.7(c).
Construction step iv: Repeat step iii, until all the edge sets

EL
1 ...E

L
n are obtained, then the desired minimum inserted

edge set EL will be EL = {EL
1 ∪ ... ∪ EL

n }, as shown in
Fig.7(d).

Fig. 7. Generating a rigid graph from non-rigid graph and single agent

For an arbitrary non-rigid graph, we have the following
theorem:

Theorem 4.1: The proposed construction sequence will
generate a minimally rigid graph from a non-rigid component
and a single agent with minimum number of inserted edges.

Proof: Consider the operation in step ii. By Proposition
3.2 it is clear that the obtained graph is minimally rigid if
G

′

1 is a circle, while the inserted set EL
1 contains minimum

number of edges. Then assume the obtained graph GL
m−1

being minimally rigid and EL
m−1 being a minimum edge

set, we will prove that the obtained graph GL
m is minimally

rigid, and EL
m is a minimum edge set as well.

Since GL
m−1 is minimally rigid, it can then be regarded

as a rigid component in restored subgraph {GL
m−1 ∪ G

′

m},
then by the shrink operation, a vertex pair {l ∪ vi} will be
obtained, where vi ∈ GL

m−1. Then for G
′

m, vi will be the
spindle agent connecting G

′

m and l. Since a vertex pair is
attached on G

′

m, it will be one of the three basic graphs
thus Proposition 3.2 can be applied, which means that the
obtained graph GL

m is minimally rigid, and EL
m is a minimum

edge set.
Thus the final edge set EL = {EL

1 ∪ ... ∪ EL
n } contains

minimum number of edges and will guarantee the rigidity of
obtained graph.

Remark 4.1: Note that in the shrink operation in step iii,
the other vertex other than l in each vertex pair Gri is chosen
randomly from each rigid component GL

i . Then by choosing
different vertex pair in each shrink operation, Theorem 4.1
will cover all the possible solutions of merging process.

B. generating rigid graph from non-rigid component and
rigid graph

Similar to the construction process with non-rigid graph
and single agent, we start with a basic proposition:

Proposition 4.1: To obtain a rigid graph from a basic non-
rigid graph, such as chain or circle graph G

′
= {V ′

, E
′}, and

a minimally rigid graph G = {V,E}, the following approach
can be applied:

1. Pick up a vertex i from G, and apply Proposition 3.2
to obtain a rigid component Ḡ

′
= {V ′ ∪ i, E

′ ∪ EL
i }.
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2. ∀j ∈ V, ∀k ∈ V
′
, add another edge ekj .

Then the obtained graph GL = {G′∪G∪EL} is minimally
rigid, where EL = {EL

i ∪ekj} is the minimum inserted edge
set, as shown in Fig.8.

Proof: Adding i to G
′

is the same as vertex addition to
a non-rigid graph thus EL

i is a minimum inserted edge set. In
the second step, i is a spindle agent. So if we take the shrink
operation on G

′
and G, a three vertex chain graph {k, i} ∪

{i, j} will be obtained, where k and j is randomly chosen
from V

′
and V . According to Lemma 3.1, by inserting ekj ,

the obtained graph GL = {G′ ∪G∪EL} will be minimally
rigid, and EL will be a minimum edge set.

Fig. 8. Generating rigid graph from basic graphs of chain and circle

Lemma 4.1: For a rigid graph generated by merging a
circle or chain with rigid graph, if one performs the operation
of edge floating on any of the inserted edge under the
following conditions:

1. Not all the inserted edges start from or sink at a same
vertex.

2. No reduplicative edges are introduced.
Then the obtained graph is still rigid.

Proof: By Proposition 4.1 the initial graph is rigid,
and the operation of edge floating on any of the inserted
edge does not change the total number of edges, as shown
in Fig.9.

Fig. 9. Edge floating will not change the rigidity of given graph.

If we remove edge emt, then the obtained graph can be
viewed as adding a single agent m to a non-rigid graph Gm.
By the aforementioned construction sequence of adding a
single agent to non-rigid graph, the inserted edge emj will
recover the rigidity, where j can be any vertex from rigid
graph G. Specially, if |EL − 1| edges start from or sink
at the same vertex p, p will become the spindle agent when
inserting the next edge, so it is clear that emp can not recover
the rigidity, which means the inserted edge can not start from
or ends at a same vertex.

Remark 4.2: Lemma 4.1 covers all the possible solution
set EL when constructing a rigid graph from a basic non-
rigid graphs and a rigid graph.

With Proposition 4.1 and lemma 4.1, we present the fol-
lowing sequence of merging non-rigid graph G

′
= {V ′

, E
′}

with rigid graph G = {V,E}:

Construction step i: For an arbitrary non-rigid graph
G

′{V ′
, E

′}, perform the operation of spindle splitting to
each of the spindle agents contained in G

′
, thus G

′
is

separated into isolated subgraphs G
′

1...G
′

n, and any of these
subgraphs are one of the three basic graphs, see Fig.10(a).

Construction step ii: Since G
′

contains cycles, then there
will be at least one circle in the n separated subgraphs. With-
out loss of generality, let G

′

1 be a circle. Apply Proposition
4.1 to G

′

1 and G such that GL
1 = {V ′

1 ∪ G,E
′

1 ∪ EL
1 } is

minimally rigid, see Fig.10(b).
Construction step iii: Test the rigidity of restored graph

{GL
1 ∪G

′

2}. If it is not rigid, shrink GL
1 into agent pair Gr1

containing any one vertex from V , then for the new subgraph
{Gr1 ∪ G

′

2}, apply Proposition 4.1 to obtain GL
2 and EL

2 ,
see Fig.10(c).

Construction step iv: Repeat step iii, until all the edge sets
EL

1 ...E
L
n are obtained, then the desired minimum inserted

edge set EL will be EL = {EL
1 ∪ ... ∪ EL

n }, as shown in
Fig.10(d).

Fig. 10. Generating a rigid graph from non-rigid and rigid component.

Theorem 4.2: The proposed construction sequence will
generate a minimally rigid graph from a non-rigid component
and a rigid graph with minimum number of inserted edges.

The proof is similar to Theorem 4.1 and is omitted.
Remark 4.3: Theorem 4.2 covers all the possible solution

of merging non-rigid and rigid graph, if Lemma 4.1 is applied
in the step ii and iii of the proposed construction process.

C. generating rigid graph from non-rigid components

Here the construction sequence of two arbitrary non-rigid
graphs is proposed as our main result, starting with a basic
proposition:

Proposition 4.2: To obtain a rigid graph from two chain
or circle graphs G

′

1 and G
′

2, the following approach can be
applied,:

1. Apply Proposition 3.2 to G
′

1 and i ∈ G
′

2 to obtain a
inserted edge set EL

i . Then ∀k ∈ G
′

1 and ∀j ∈ Ni, insert
another edge ekj , such that the obtained graph GL

1 = {G′

1 ∪
i ∪ j ∪ EL

i ∪ ekj} is minimally rigid.
2. Shrink GL

1 into vertex pair containing one agent from
G

′

1 and apply Proposition 3.2 again.
Then the obtained graph is minimally rigid, see Fig.11.
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Proof: The first part is a vertex addition operation to
a non-rigid graph, while the insertion of edge ekj can be
viewed as a vertex addition operation of vertex j.

The second part can be viewed as generating a rigid graph
from a basic non-rigid graph and a rigid graph, thus the proof
is clear with reference to the proof of Proposition 4.1.

Fig. 11. Generating a rigid graph from two basic non-rigid components

Similar to Lemma 4.1, we have the following result:
Lemma 4.2: Take the operation of edge floating to the

graph obtained by Proposition 4.2, under the following
conditions:

1. Not all the inserted edges start from or sink at a same
vertex.

2. No reduplicative edges are introduced.
Then the obtained graph is still rigid.

The proof is similar to Lemma 4.1 and is omitted.
With Proposition 4.2 and lemma 4.2, we present the

sequence of non-rigid graph merging.
Construction step i: For two arbitrary non-rigid graph

G
′

and G
′′

in Fig.12(a), perform the operation of spindle
splitting to each of the spindle agents contained in this
two graph, such that G′ and G

′′
are separated into isolated

subgraphs G
′

1...G
′

n, G
′′

1 ...G
′′

m, and any of these subgraphs
are one of the three basic graphs, as shown in Fig.12(b).

Construction step ii: Since G
′

and G
′′

both contains
cycles, let G

′

1 be a circle. Apply Proposition 4.2 to obtain a
rigid subgraph GL

11 from G
′

1 and G
′′

1 , then apply Proposition
4.1 to GL

11 and the rest of subgraphs generated from G
′′

until
all these subgraphs are neutralized to obtain a minimally rigid
graph GL

1 , see Fig.12(c).
Construction step iii: Test the rigidity of restored graph

{GL
1 ∪G

′

2}. If it is not rigid, shrink GL
1 into agent pair Gr1

containing one vertex from V
′

2 , then for the new subgraph
Gr1 ∪G

′

2, apply Proposition 4.1 to obtain a minimally rigid
graph, repeat this step again until all the separated subgraphs
generated from G

′
are neutralized, see Fig.12(d).

Theorem 4.3: The proposed construction sequence will
generate a minimally rigid graph from two non-rigid com-
ponents with minimum number of inserted edges.

This process can be viewed as a sequential merging of a
rigid graph with non-rigid ones, thus the proof is omitted.

Remark 4.4: Theorem 4.3 covers all the possible con-
struction solutions with two non-rigid graph, if Lemma 4.1
and 4.2 are applied in the construction process.

Corollary 4.1: If redundantly rigid components are con-
tained in the initial non-rigid graph G

′
, then the obtained

graph will only be rigid.

Fig. 12. Generating a rigid graph from two arbitrary non-rigid graphs

V. APPLICATIONS AND CONCLUSION

In this paper, the construction of rigid formation with non-
rigid components are discussed in two dimensional space,
with three new operations introduced to guarantee the rigidity
of obtained formation with minimum number of inserted
links. Different scenarios of rigid formation constructions can
be applied to recovering a larger rigid formation from non-
rigid formations for sophisticated tasks. These approaches
can be realized in multi-agent cooperation tasks as a backup
solution in the case of agent loss and interaction link broken.

Currently this paper focuses on the rigid formation con-
struction in two-dimensional space. The future work may
include the construction operations with multi non-rigid
components, in both two and three dimensions.
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