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We study wave transmission through one-dimensional random nonlinear structures and predict a novel

effect resulting from an interplay of nonlinearity and disorder. We reveal that, while weak nonlinearity

does not change the typical exponentially small transmission in the regime of the Anderson localization, it

affects dramatically the disorder-induced localized states excited inside the medium leading to bistable

and nonreciprocal resonant transmission. Our numerical modeling shows an excellent agreement with

theoretical predictions based on the concept of a high-Q resonator associated with each localized state.

This offers a new way for all-optical light control employing statistically homogeneous random media

without regular cavities.
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The localization of waves in disordered media, also
known as Anderson localization, is a universal phenome-
non predicted and observed in a variety of classical and
quantum wave systems [1]. Recent renewed interest in this
phenomenon is driven by a series of experimental demon-
strations in optics [2] and Bose-Einstein condensates [3].
One of the important issues that has arisen in these studies
is that the disordered systems can be inherently nonlinear,
so that an intriguing interplay of nonlinearity and disorder
could be studied experimentally.

Nonlinear interaction between the propagating waves
and disorder can significantly change the interference ef-
fects, thus fundamentally affecting localization [4,5].
However, most of the studies of the localization in random
nonlinear media deal with the ensemble-averaged charac-
teristics of the field, such as the mean field and intensity,
correlation functions, etc. These quantities describe the
averaged, typical behavior of the field, but they do not
contain information about individual localized modes
(resonances), which exist in the localized regime in each
realization of the random sample [6–9]. These modes are
randomly located in both real space and frequency domain
and are associated with the exponential concentration of
energy and resonant tunneling. In contrast to regular reso-
nant cavities, the Anderson modes occur in a statistically
homogeneous media because of the interference of the
multiply scattered random fields. Although the disorder-
induced resonances in linear random samples have been
the subject of studies for decades, the resonant properties
of nonlinear disordered media have not been explored thus
far.

In this Letter we study the effect of nonlinearity on the
Anderson localized states in a one-dimensional random
medium. As a result of interplay of nonlinearity and dis-
order, bistability and nonreciprocity appear upon resonant

wave tunneling and excitation of disorder-induced local-
ized modes in a manner similar to that for regular cavity
modes. At the same time, weak nonlinearity has practically
no affect on the averaged localization background.
First, we consider a stationary problem of the trans-

mission of a monochromatic wave through a one-
dimensional random medium with Kerr nonlinearity. The
problem can be reduced to the equation

d2c

dx2
þ k2½n2 � �jc j2�c ¼ 0; (1)

where c is wave field, x is coordinate, k is wave number in
the vacuum, n ¼ nðxÞ is the refractive index of the me-
dium, and �� is the Kerr coefficient.
In the linear regime, �jc j2 ¼ 0, the multiple scattering

of the wave on the random inhomogeneity n2ðxÞ brings
about Anderson localization. The main signature of the
localization is an exponential decay of the wave intensity,
I ¼ jc j2, deep into the sample and, thus, an exponentially

small transmission [1,10]: IðtypÞout � Iin expð�2L=llocÞ � 1.
Here L is the length of the sample and lloc is the localiza-
tion length which is the only spatial scale of Anderson
localization. Along with the typical wave transmission,
there is an anomalous, resonant transmission, which ac-
companies excitation of the Anderson localized states in-
side the sample and occurs at random resonant wave
numbers k ¼ kres0 [6–9]. In this case, the intensity distri-
bution in the sample is characterized by an exponentially
localized high-intensity peak inside the sample, Ipeak �
Iin, and a transmittance much higher than the typical one:

IðresÞout � I
ðtypÞ
out (see Fig. 1).

Excitation of each localized mode inside the random
sample can be associated with an effective resonator cavity
located in the area of field localization and characterized

PRL 104, 123902 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

26 MARCH 2010

0031-9007=10=104(12)=123902(4) 123902-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.104.123902


by high quality factor Q � 1 [11]. According to this
model, the transmittance spectrum TðkÞ in the vicinity of
a resonant wavelength, jk� kres0j � kres0, is given by the
Lorentzian dependence [7,12]:

TðkÞ ¼ Tres

1þ ½2Qðk=kres0 � 1Þ�2 ; (2)

where Tres ¼ Tðkres0Þ.
Let us account now for the effect of weak nonlinearity:

j�c 2j � 1. The nonlinearity becomes noticeable, first of
all, at the resonant intensity peaks Ipeak inside the sample. It

is physically clear that the Kerr term in Eq. (1) changes the
effective refractive index of the medium leading to the
intensity-dependent shift of the resonant wave number:
kres0 ! kresðIpeakÞ. Since the values of Ipeak and Iout are

unambiguously connected, the resonant wave number is a
function of the output intensity, which in the case of weak
nonlinearity takes the form

kresðIoutÞ ’ kres0 þ dkres
dIout

�
�
�
�
�
�
�
�Iout¼0

Iout: (3)

Substituting Eq. (3) into Eq. (2) yields

Tðk; IoutÞ � Iout
Iin

¼ Tres

1þ ½A�Iout þ ��2 : (4)

Here we introduced two dimensionless parameters A and
�, which characterize, respectively, the strength of the
nonlinear feedback and the detuning from the resonant
wave number:

A ¼ 2Q

�

d lnkres
dIout

�
�
�
�
�
�
�
�Iout¼0

; � ¼ 2Q

�

1� k

kres0

�

: (5)

Equation (4) establishes a relation between the input and
output wave intensities, which is cubic with respect to Iout.
It has a universal form typical for nonlinear resonators
possessing optical bistability [13]. From Eq. (5) it follows
that in the region of parameters,

A� < 0; �2 > 3; j�jIin > 8

3
ffiffiffi

3
p 1

jAjTres

; (6)

the dependence IoutðIinÞ is of the S type and the stationary
transmission spectrum TðkÞ is a three-valued function. In
most cases, one of the solutions is unstable, whereas the
other two form a hysteresis loop in the IoutðIinÞ dependence
(see Figs. 2 and 3).
It is important to emphasize two features of Eqs. (4) and

(5), describing the nonlinear resonant transmission through
a localized state. First, they have been derived without any
approximations apart from the natural smallness of the
nonlinearity and Lorentzian shape of the spectral line.
Second, although the resonant transmission, the effect of
nonlinearity, and bistability owe their origin to the excita-
tion of the Anderson localized mode inside the sample,
Eqs. (4) and (5) contain only quantities which can be found
via outside measurements. Indeed, Tres, kres0, and Q are
determined from the transmission spectrum in the linear
regime, Eq. (2), while the derivative d lnkres=dIoutjIout¼0 can

be retrieved from the shift of the spectral line when the
intensity is changed. This enables one to obtain the whole
dependence IoutðIin; kÞ for any given resonance performing
external measurements of TðkÞ at only two different in-
tensities of the incident wave.
To verify theoretical predictions, we numerically model

the transmission of light incident from x ¼ 0 through a
random sample consisting of N ¼ 19 alternating layers
with dielectric constants n21 ¼ 1 and n22 ¼ 10 and random
widths uniformly distributed in the range ð0:12; 1:08Þ �m;
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FIG. 1 (color online). Excitation of localized modes in the
linear regime: (a) normalized intensity of the field, I=Iin (log
scale), versus the wavelength and position in the sample and
(b) the transmission spectrum.

FIG. 2 (color online). Nonlinear deformations of the trans-
mission spectra of the resonances 1 and 2 from Fig. 1 at different
intensities of the incident wave: numerical simulations of Eq. (1)
(curves) and theoretical Eq. (4) (symbols). Light gray stripes
indicate three-valued regions for the high-intensity curves, where
only two of them (corresponding to the lower and upper
branches) are stable.
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Fig. 1. This corresponds to lloc ¼ 3:53 �m. Figure 2 shows
nonlinear deformations of the resonant transmission spec-
tra TðkÞ for different values of �Iin > 0, which exhibit
transitions to bistability. The analytical dependence TðkÞ
given by Eqs. (4) and (5) with the parameters Tres,Q, and A
found from the numerical experiments are in excellent
agreement with the direct numerical solutions of Eq. (1).
In numerical simulations of stationary regime we used the
standard 4th order Runge-Kutta method. We note that the
incident field amplitude is a single-valued function of the
transmitted field. Thus, we solve the second-order ordinary
differential equation [Eq. (1)] using transmitted field as the
initial condition for the equation.

The dimensionless parameters Tres, and Q from Eqs. (4)
and (5), can also be estimated from a simple resonator
model of the Anderson localized states [7,8,11]:

Tres ¼ 4T1T2

ðT1 þ T2Þ2
; Q�1 � T1 þ T2

4kres0lloc
; (7)

where

T1 � exp½�2xres=lloc�; T2 � exp½�2ðL� xresÞ=lloc�
(8)

are the transmission coefficients of the two barriers that
form the effective resonator, xres is the coordinate of the
center of the area of field localization, lloc is the localiza-
tion length, and L is the length of the sample.

Introducing a weak Kerr nonlinearity into the resonator
model, one can also estimate the nonlinear feedback pa-

rameter A,

A�Q=T2 �n
2; (9)

where �n2 is the mean value of n2ðxÞ.
It is important to note that each disorder-induced reso-

nance is associated with its own effective cavity, so that the
disordered sample can be considered as a chain of ran-
domly located coupled resonators [14].
Equations (7)–(9) enable one to estimate the values of

the parameters describing the nonlinear resonant wave
tunneling in Eqs. (4) and (5) by knowing only the basic
parameters of the localization—the localization coordinate
and the localization length. In particular, substituting
Eqs. (7)–(9) into Eq. (6) and taking into account that the
most pronounced transmission peaks correspond to the
localized states with x ’ L=2 and T1 � T2, we estimate
the incident power needed for bistability of localized
states:

j�jIin * expð�2L=llocÞ
kres0lloc

: (10)

For the parameters used in our simulations this gives a
quite reasonable value j�jIin * 10�5. If we increase the
length of the sample, the Q factors of the resonances grow,
and the incident power needed to observe bistability be-
comes smaller.
To demonstrate temporal dynamics upon the bistable

resonant tunneling, we implemented an explicit iterative
nonlinear finite-difference time-domain (FDTD) scheme
for modeling pulse propagation through the disordered
nonlinear sample. For precise modeling of the spectra of
narrow high-Q resonances, we employed a fourth-order
accurate algorithm, both in space and in time [15], as well
as the Mur boundary conditions to simulate open bounda-
ries and total-field–scattered-field technique for exciting
the incident wave. Sufficient accuracy was achieved by
creating a dense spatial mesh of 300 points per wavelength
(dx ¼ �=300). To assure stability of the method in a non-
linear regime, we used the time step of dt ¼ dx=3c, and
each simulation ran for N ¼ 2� 108 time steps. To com-
pare the results of the FDTD simulations with the steady-
state theory, we consider transmission of long Gaussian
pulses with central frequencies and amplitudes satisfying
conditions (10); see Fig. 3(d). With an appropriate choice
of the signal frequencies, we observe hysteresis loops in
the IoutðIinÞ dependences, which are in excellent agreement
with stationary calculations, as shown in Figs. 3(a)–3(c).
Transitional oscillations typical for bistable nonlinear
structure accompany jumps between two stable branches
[16], and strong reshaping of the transmitted pulse eviden-
ces switching between the two regimes of transmission,
Fig. 3(d). The period of the transitional oscillations is
defined by mismatch between external wave frequency
and nonlinear eigenfrequency, whereas the decay rate is
defined by the Q factor. We note that a different choice of
the signal frequencies near the resonance can lead to
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FIG. 3 (color online). Stationary and FDTD simulations show-
ing hysteresis loops in the output versus input power dependence
for resonances 1,2, and 3 in Fig. 1. Panel (d) shows deformation
of the transmitted Gaussian pulse corresponding to the hysteresis
switching on the resonance 2.
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various other behaviors of output versus input curves, with
transmission either increasing, when nonlinear resonance
frequency shifts towards the signal frequency, or decreas-
ing in the opposite case.

In addition to bistability, the resonant wave tunneling
through a nonlinear disordered structure is nonreciproci-
cal. As is known for regular systems, nonsymmetric and
nonlinear systems may possess nonreciprocal transmission
properties, resembling the operation of a diode. An all-
optical diode is a device that allows unidirectional propa-
gation of a signal at a given wavelength, which may
become useful for many applications [16,17]. A disordered
structure is naturally asymmetric in the generic case, and
one may expect a nonreciprocal resonant transmission in
the nonlinear case. To demonstrate this, we modeled propa-
gation of an electromagnetic pulse impinging the same
sample from different sides and monitored the transmis-
sion characteristics. One case of such nonreciprocical
resonant transmission is shown in Fig. 4. We observe
considerably different transmission properties in opposite
directions with the maximal intensity contrast between two
directions 7:5:1. Moreover, the threshold of bistability is
also significantly different for two directions: there is a
range of incident powers, for which the wave incident from
one side of the sample is bistable, while there is no sign of
bistability for the incidence from the other side. Figure 4(b)
shows the pulse reshaping for incidence from opposite
sides of the structure.

To conclude, we have studied the wave transmission
through a weakly nonlinear statistically homogeneous
one-dimensional random medium and demonstrated novel
manifestations of the interplay between nonlinearity and
disorder. We have shown that even weak nonlinearity
dramatically affects the resonant transmission associated
with the excitation of the Anderson localized states leading
to bistability and nonreciprocity. Despite the random char-
acter of the appearance of Anderson modes, their behavior
and evolution are rather deterministic, and, therefore, these
modes can be used for efficient control of light similar to
regular cavity modes. Numerical modeling shows an ex-

cellent agreement with theoretical analysis based on the
concept of a high-Q resonator associated with each local-
ized state. Our results demonstrate that, unlike infinite
systems, the Anderson localization in finite samples is
not destroyed by weak nonlinearity—instead it exhibits
new intriguing features typical for resonant nonlinear
systems.
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FIG. 4 (color online). (a) Nonreciprocal transmission through
the nonlinear disordered structure, showing different output
powers for identical waves incident from different directions.
(b) Corresponding shape of the incident pulse, and pulses trans-
mitted in different directions.
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