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Abstract— We extend the idea of Fuzzy Signature to Fuzzy
Rough Signature (FRS). The proposed Fuzzy Rough Signature
is capable of handling most kind of uncertainty: epistemic and
random uncertainty, vagueness due to indiscernibility, and lin-
guistic vagueness that exists in both large as well as small sample
data sets. Additionally, this system is capable of hierarchical
organization of inputs and use of flexible aggregation selection
will simplify the combinations of inputs from different sources.

Index Terms—Fuzzy Signatures, Rough sets, Mathematical
Theory of Evidence, Polymorphic Fuzzy Signatures (PFS),
Rough Fuzzy Signatures, Aggregation Operators, generalized
Weighted Relevance Aggregation Operator (WRAO), possibil-
ity, probability, probability of fuzzy events, fuzzy probability.

I. INTRODUCTION

In Computational Intelligence, there are many methods
to find a synthesis or coherent view to a complex set of
available information. In medical diagnosis, this presents as
a decision problem where practitioners may need to ascertain
possible diseases with only partially available information
needed for a proper diagnosis and use knowledge of the
uncertainty about the symptoms of the disease. In economics,
this presents as a prediction of a new trend without many
samples and possibly many inconsistencies in that data. In
document classification in an urgent setting such as security
investigation, systems need to deal with small sample data
which is imprecise and contains incomplete data. Also, in
our experience of HCI applications, highly inconsistent data
can be found from user to user because of problems of the
available technologies for data acquisition and the diversity
of humans [1]. In petroleum and mining engineering, we find
small sample data due to high cost of data collection [2], [3],
[4], [5]. Some existing solutions, such as Dempster-Shafer
model [6], transferable belief model (TBM) [7], Choquet
Integral [8], belief revision [9], and subjective logic [10]
consider all possible combinations from the power set of the
input space and are thus extremely computationally complex
and usually infeasible to implement practically. And most of
the other solutions are mainly good at only for specific task,
such as fuzzy rule base systems, neural networks, etc. Addi-
tionally, none of them try to capture the uncertainty caused
by vagueness and ambiguity of insufficient, incomplete, and
small sample information at the same time as trying to be
computationally efficient.

We propose, the concept of fuzzy rough signatures (FRS)
to handle the imprecise and insufficient information in real
world systems in a way natural to humans, and reduce the
computational complexity using a hierarchical structure as
much as possible. In order to develop hierarchical mathe-
matical model for knowledge representation and reasoning.

We will combine the methods of uncertainty calculations in
mathematical theory of evidence [6] with fuzzy signature
concept. However, in practice, people often experience that
both the nature of a real world event and the evidence of the
event are uncertain (eg. ”About 5 tall people attacked the bus
driver” has uncertain information in the evidence of the event
”about 5”, and uncertainty in the nature of the event ”tall”
is how many cm exactly?). In order to reason about such
a scenario precisely, we will further extend the methods of
uncertainty calculations in mathematical theory of evidence
[6] with advantages of uncertainty and vagueness modeling
of generalized fuzzy rough sets [11], [12], [13] and fuzzy
probability [14], [15], [16].

The theory of rough sets [17] is an extension to classical
set theory that models the vagueness due to indiscernibility
of objects in insufficient and incomplete information. On
the other hand fuzzy sets theory and possibility theory
mathematically model the partial belonging-ness of elements
in a set, and the distribution of uncertainty which exists in
such belonging-ness [18] respectively. In the literature [11],
it has shown that rough sets and fuzzy sets can be combined
and such a generalization [11], [12], [19], [13] would treat
the ambiguity which exists in both the input and the nature
of the input, and the vagueness of available information due
to incomplete and inconsistent data. Hence, our aim is to
modify the fundamentals of fuzzy signatures to be able to
use rough fuzzy events [20], [12], [19].

In [21], Mendis has shown that the hierarchical organi-
zation of subgroups of data simplifies the approximation
of aggregation functions to achieve the underlying global
preference relation of a problem. That is, a hierarchically
structured decision making system using a set of usually non-
homogeneous hierarchically organized aggregation functions
(local aggregation functions) easily and precisely approxi-
mates the desired global preference relation of the system.
Thus the proposed method extends hierarchically structured
polymorphic fuzzy signature to acquire these advantages.
The polymorphic fuzzy signature (PFS) [21] concept has
been introduced as a generalization to the fuzzy signature
concept [22], [23]. Fuzzy signatures can be expressed as a
fuzzy hierarchical multi aggregative descriptor of an object
[21]. Simply, a polymorphic fuzzy signature represents sets
of fuzzy signatures, which belong to same granule, and it
replaces the atomic events in leaf nodes of fuzzy signatures
from fuzzy events.

II. FUZZY SIGNATURE CONCEPT

Fuzzy signatures [22] can describe, compare and classify
objects with complex structures and interdependent features.
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The hierarchical organizations of fuzzy signatures express
the structural complexity of a problem.

A. Fuzzy Signatures

Fuzzy signatures are fuzzy descriptors of real world
objects. The syntactic and semantic of an object will be
represented using the hierarchical structure, usually non-
homogenous set of weighted aggregation functions, and
quantities as a possibility of a linguistic category. Thus, fuzzy
signatures are capable of handling problems that are complex
and inherently hierarchical.

Initially, the fuzzy signature concept was proposed as a
good solution to the rule explosion problem in fuzzy logic
[24], as fuzzy signatures are hierarchically structured and
inherently sparse.

Definition 1: Fuzzy Signature is a recursive vector valued
fuzzy set (VVFS), where each vector component either
embeds another VVFS (branch) or a atomic possibilistic
value (leaf), and denoted by,

A : X → [ai]
k
i=1

(
≡

k∏
i=1

ai

)
. (1)

where ai =
{

[aij ]
ki
j=1 ; if branch (ki > 1)

[0, 1] ; if leaf

and Π denotes the Cartesian product.

B. Polymorphic Fuzzy Signature (PFS) Concept

The basic idea of Hierarchical Fuzzy Signatures is to
identify a single Fuzzy Signature for each object or data
point. In real world decision-making applications, people
may not be interested or able to invest a large amount
of time or funding in achieving the best possible solution.
Instead, they may only consider simpler solutions, which
are sufficiently efficient and more comprehensible to apply.
This part introduces the concept of Polymorphic Fuzzy
Signatures that was developed via extended experiments with
the application of the Fuzzy Signature concept.

We observe that in some situations we may be able to find
a single Hierarchical Fuzzy Signature for a set of individual
data points (objects), by reducing the number of Fuzzy
Signatures required to implement a model. We call such a
Fuzzy Signature a Polymorphic Fuzzy Signature for the set
of data points (objects) it represents. We discuss the results
of our experiments in [25] as a form of evidence that the
Polymorphic Fuzzy Signature concept is practical.

Below, we formulate the concept of Polymorphic Fuzzy
Signature as an optimization problem, which is a conclusion
of our experiment work in [25].

Definition 2: Let A = {S1, S2, . . . , Sn} be a collec-
tion of fuzzy signatures for a certain problem and let
{d1, d2, . . . , dn} be the collection of data points1 they repre-
sent respectively. Now, let Si be the corresponding fuzzy
signature of the data point di. Further, let Si(di) be the

1In fuzzy signature concept, a data point means a collection of data which
represent an event, e.g. in medical applications, patient’s data record of a
whole day can be considered as a data point [23].

degree2 of match of the data point di with fuzzy signature
Si. Then S said to be the polymorphic fuzzy signature of
the set A if

n∑
i=1

|S(di)− Si(di)| ≤ δ (2)

where δ is a small number close to zero and S must satisfy
the following conditions

(i)
n⋃
i=1

V (Si) ⊆ V (S)

(ii)
n⋃
i=1

L(Si) = L(S)

where V (S), and L(S) denote sets of vertices, and leaf
vertices (fuzzy sets) of fuzzy signature S respectively.

The major difference between PFS and fuzzy signatures
is that PFS uses fuzzy sets as the leaf nodes and in fuzzy
signatures they are atomic values (possibilities). Figure 1,
shows a PFS for a real world problem called SARS patient
classification. Medical practitioners SARS PFS is constructed
based on domain expert knowledge. Each symptom check
has been divided into a number of doctors diagnosis levels,
such as slight, moderate, and high for body temperature
(fever), low, normal, and high for both measurements of
blood pressure, slight, medium, and high for nausea, and
slight, and high for abdominal pain. The notations aij , @ij ,
and Wij represent the fuzzified input value (possibility),
aggregation function, and weight for the branch ij of the
SARS PFS in Figure 1.
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Fig. 1: SARS Patient Classification Fuzzy Signature

III. FUZZY ROUGH SIGNATURES

Traditional probabilistic decision analysis techniques as
applied to the evaluation of random events (such as gam-
bling) have difficulty in modeling the epistemic uncertainty
associated with medical diagnosis, economic diagnosis, anal-
ysis of terrorists acts, intelligent document analysis, human
computer interaction, etc. The specificity of the theory of
evidence is its capability to capture epistemic as well as

2Degree of match is the final result of the input data point di aggregating
using the fuzzy signature Si
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random uncertainty [26]. At the same time, in the literature it
has been shown that rough sets are excellent to model vague-
ness [27], [17], and fuzzy sets and possibility theory perform
the mathematical modeling of linguistic ambiguity of infor-
mation [18]. Consequently, the generalized fuzzy rough set
concept [12], [19], [13] is an excellent mathematical tool
to model both vagueness caused by the indiscernibility of
objects, and linguistic uncertainties such as the ”About 5 tall
people” example. Finally, hierarchical organization of Fuzzy
Rough Signatures will help reduce the computational com-
plexity and also help simplify the aggregation approximation
and aid better adoption [21]. Following subsections explain
major theories which are the building blocks of the concept
of Fuzzy Rough Signatures (FRS).

A. Mathematical Theory of Evidence
Shafer’s seminal work on the subject is [6], which is an

expansion of Dempster’s idea of interval value probability
[28]. In a discrete case, the theory of evidence can be
interpreted as a generalization of probability theory, where
probabilities are assigned to mutually exclusive sets. In
conventional probability theory, evidence is associated with
only one possible event. Unlike in conventional probability
theory, in the theory of evidence atomic evidence can be asso-
ciated with a set overlapping events. Therefore, the theory of
evidence models the representation of uncertainty of system
inputs where an imprecise input can be characterized by a set
or an interval and the resulting output is a set or an interval.
The most important features of the theory of evidence is
the capability of modeling ignorance. The basic probability
assignment (bpa) [6] is the fundamental building block of the
theory of evidence. Basic probability assignment, represented
by m, defines a mapping of the power set of the frame of
discernment to [0, 1],

m : 2θ → [0, 1] (3)
m(Ø) = 0 (4)∑

A∈2θ

m(A) = 1 (5)

θ is called the frame of discernment. The value of the bpa
for a given set A, denoted m(A), expresses the degree of
support of available evidence that supports the claim that an
element of θ is in the set A but not in any particular subsets
of A [29]. Now, using the bpa, the upper and lower bounds
of an interval A can be calculated. This interval contains the
basic probability of a set of interest (in the classical sense)
and is bounded by two non-additive measures called Belief
and Plausibility.

Bel(A) =
∑

B|B⊆A

m(B) (6)

Pl(A) =
∑

B|B∩A6=Ø

m(B) (7)

With belief and plausibility distributions, a random vari-
able X has an expected value interval [E∗(X), E∗(X)] given
by:

E∗(X) =
∑
∀Ai⊆X

inf(Ai) ∗m(Ai) (8)

E∗(X) =
∑
∀Ai⊆X

sup(Ai) ∗m(Ai) (9)

In the following example ([26]) in figure 2, consider X =
{a, b, c} as the frame of discernment and body of evidence
given in the figure 2 for belief and plausibility calculations.
The existing body of evidence in figure 2 are: m(a) = 0.2,
m(a, b) = 0.7, and m(b, c) = 0.1. Using the above equations
(6) and (7), Bel and Pl can be evaluated for any element in
Pow(X),as an eg. Bel(a, b) = 0.2 + 0 + 0.7 and Pl(a, b) =
0.2 + 0 + 0.7 + 0.1.

Fig. 2: Example Body of Evidence

In Shafer’s theory crisp events are used to categorize
real world events and thus such systems could not model
the ambiguity existing in scenarios similar to the ”About 5
tall people” example. Several attempts have been made to
generalize the theory of evidence to use fuzzy events, e.g.
[30]. In Fuzzy Rough Signatures, the crisp events of the body
of evidence will be replaced with fuzzy events. In such a
situation, the element b in figure 2 belongs to fuzzy evidence
event {b, c} only to a degree of µ{b,c}(b). Thus events are
weighted, m(b, c) = m(b) × µ{b,c}(b) + m(c) × µ{b,c}(c)
[16]. This means that in fuzzy rough signatures the fuzzy
information granulation is considered. As explained in the
”About 5 tall people” example, in most situations m(b) and
µ{b,c}(b) are not explicitly available. Thus, we will further
expand m(b) and µ{b,c}(b), so that m(b) will be approxi-
mated using a possibility-probability distribution [14], [15],
[16] of b in the corresponding fuzzy event, and µ{b,c}(b) will
be approximated using upper and lower approximations of
rough fuzzy sets.

B. Generalized Fuzzy Rough Sets
Only employing fuzzy evidence of events is not enough

to model most real world situations. One persons’ linguistic
expression of tallness may be different to a second persons’
linguistic expression of tallness. Therefore, in this study we
consider the concept of rough fuzzy events (later generalized
fuzzy rough sets) [11], [12], [13] to express combining
measures such as different peoples’ tallness into one event.
Using rough fuzzy events the new theory will be capable of
providing upper and lower approximations to fuzzy evidence
of a tall event. Accordingly, we need to modify the calcula-
tion of expected value of these upper and lower rough fuzzy
events, to cope with information from fuzzy evidence events.
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TABLE I: Example Information Table

x a b c d e
0 1 0 2 2 0
1 0 1 1 1 2
2 2 0 0 1 1
3 1 1 0 2 2
4 1 0 2 0 1
5 2 2 0 1 1
6 2 1 1 1 2
7 0 1 1 0 1

Rough set [17] assumes that with every object of the
universe of discourse we associate some information (data,
knowledge). E.g., if objects are patients suffering from a cer-
tain disease, symptoms of the disease form information about
patients. Objects characterized by the same information are
indiscernible (similar) from the view of available information
about them. The indiscernibility relation generated in this
way is the mathematical basis of rough set theory.

Formally (briefly), any subset P of A determines a binary
relation I(P ) on U , called an indiscernibility relation, and
can be defined as follows [12]: xI(P )y if and only if
a(x) = a(y) for every a ∈ P , where a(x) denotes the
value of attribute a for object x. Let U (universe) be a set
of finite objects, and I(P ) be an equivalence relation on U .
Let U/I(P ) denote the quotient set of equivalence classes,
which form a partition in U . Let S be a subset of U . The main
question addressed by rough sets [17] is how to represent S
by means of the equivalence relation U/I(P ). A rough set
is a pair of subsets P ∗(S) and P∗(S) that approach as close
as possible to S from outside and inside respectively.

P ∗(S) = {x | [x]p ∩ S 6= ∅, x ∈ U} (10)
P∗(S) = {x | [x]p ⊆, x ∈ U} (11)

P ∗(S) and P∗(S) are called the upper and lower approxi-
mations of S with respect to P . If P ∗(S) 6= P∗(S), it means
that due to the indiscernibility of elements in U , S cannot
be described using crisp sets but only using a rough set. Let
P and Q be equivalence relations over U , then the positive,
negative, and boundary regions can be defined as [12]:

POSP (Q) =
⋃

X∈U/Q

PX (12)

NEGP (Q) = U −
⋃

X∈U/Q

PX (13)

BNDP (Q) =
⋃

X∈U/Q

PX −
⋃

X∈U/Q

PX (14)

The information in table I can be partitioned accord-
ing to P = {b, c} and Q = {e} as follows [12]:
U/I(P ) = {{2}, {0, 4}, {3}, {1, 6, 7}, {5}} and U/I(Q) =
{{0}, {1, 3, 6}, {2, 4, 5, 7}}. Now, using above informa-
tion table POS, NEG, and BND can be calculated as,
POSP (Q) =

⋃
{∅, {2, 5}, {3}} = {2, 3, 5}, NEGP (Q) =

U −
⋃
{{0, 4}, {2, 0, 4, 1, 6, 7, 5}, {3, 1, 6, 7}} = ∅, and

BNDP (Q) = U − {2, 3, 5} = {0, 1, 4, 6, 7} .
This original idea of rough sets can be extended into rough

fuzzy sets and fuzzy rough sets [20], [11], [13].

C. Basic Probability Assessment of Rough Fuzzy Events

In this part of the new theory, we will extend the basic
probability calculation (ie. m (b)) of evidential events into
a fuzzy probability distribution [16], [31]. This will enhance
the acquisition of quantitative evidence, such as ”About 5”,
in the form of humans would like to express rather than they
forcibly categorize into crisp event.

1) Possibility Measures: We first aim to provide some
basic notions used in the possibility theory [32]. Let x be
an unknown variable, taking its values from the variable X ,
attached to some attribute or entity. A possibility distribution
πx, is a mapping from X to [0, 1]. Here, πx characterizes the
set of values u of X in agreement with the variable x. That
is, πx(u1) = 0 means that it is practically impossible that
x takes a value u1. While πx(u1) = 1 means that u1 is
a completely possible value, not necessarily unique, for the
variable x. A possibility distribution πx such that πx(u) <
1|∀u; which means that there is no value u of the X , which
is in full agreement with x.
A possibility measure Πx can also be generated through the
possibility distribution πx as follows:

Πx(A) = max
u∈A|A⊆X

πx(u) (15)

Note that Πx is a mapping from the 2X to [0, 1]. A dual
measure of a possibility Πx is called a necessity measure
Nx characterizing the impossibility of the contrary event,

Nx(A) = 1−Πx(A) (16)

2) Fuzzy Probability Calculations: Now, we define the
fuzzy probability (possible probability) as a possibility dis-
tribution of a probability of a fuzzy event.

Let (Rn, ϕ, P ) be a probability space, let ϕ is the σ-field
of Borel sets in Rn, and P is a probability measure over Rn.
Let X be a variable which takes values from Rn. Further,
take A as a fuzzy subset of Rn. Now, the possibility that the
probability of ”X is A” takes a value p be πA(p), and can
be written as,

ΠΩ,P = {πA(p) | P (XisA) = p} (17)

This form is called the possibility probability distribution
of ”X is A”. This can also be written in the following form,

FProb{XisA} = {πA(p) | P (XisA) = p} (18)

As an example, one can find a fuzzy probability distribution
for an expression: what is the possibility of the probability of
tall students are high”. Huang [15], and Huang and Gedeon
[16] have developed methods to calculate fuzzy probabilities,
especially when only small samples of data are available.

D. Hierarchical Structure of Fuzzy Rough Signatures:

The implementation of Dempster’s rule is sometimes im-
practical because of its computational complexity but in [33],
Shafer argues that this is not the case for hierarchical evi-
dence. We propose the following mathematical guidelines for
organizing hierarchical structure of Fuzzy Rough Signatures.
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Hierarchical structure can be expressed as a triple
(N,X

′
,�), where

(i) N = {1, . . . , n} is the set of atomic evidences,
(ii) X

′
is the Cartesian product, X

′
= X

′

1×X
′

2× . . .×X
′

r,
where r ≤ 2n and each event of evidence X

′

i ∈ ρ(X),
such that X = X1 × . . .×Xi,

(iii) � is a preference relation on X
′
.

Now let x
′

= (x
′

1, . . . , x
′

k) ∈ X
′
, where k ≤ 2n and

x = (x1, . . . , xn) ∈ X .
(a) Uv0 is global preference function such that Uv0 : X

′ → L.
(b) Mv

0 is an aggregation function such that Mv
0 : Lk → L.

(c) {ui} be the belief or plausibility at a particular time.
Such that, Ūv0 (x) := Mv

0 [u
′

1(x
′

1), . . . , u
′

k(x
′

k)]

where u
′

j(x
′

j) =

{
ui(xi) ; if x

′

j ∈ x
Uvj (x

′

j) ; else
Note that, Uvj (x

′

j) recursively follows this definition to define
the next hierarchy, if necessary.

Here, i ∈ N , k ≤ 2n, j ∈ [1 . . . k], and v is a monotonic
measure.

1) Aggregation of Fuzzy Rough Signatures: The gener-
alized Weighted Relevance Aggregation Operator (WRAO)
(Mendis, 2008) would be a good choice for aggregation
Fuzzy Rough Signatures in the first instance. WRAO out-
performed OWA and fuzzy integrals for classification and
decision making [21], [34], [35]. WRAO is monotonic with
respect to preferential ordering, and is an aggregation func-
tion which can be defined in the following way.
The generalized Weighted Relevance Aggregation Operator
(WRAO) of an arbitrary branch aq...i with n subbranches,
aq...i1, aq...i2, . . . , aq...in ∈ [0, 1], and weighted relevancies,
wq...i1, wq...i2, . . . , wq...in ∈ [0, 1], for a hierarchical struc-
ture is a function g : [0, 1]2n → [0, 1] such that,

aq...i =

 1
n

n∑
j=1

(aq...ijwq...ij)
pq...i

 1
pq...i

(19)

The WRAO must satisfy the following three properties,
1) wq...ij ∈ [0, 1]
2) ∨nj=1 wq...ij ≤ 1
3) pq...i 6= 0

IV. CONCLUSIONS

The proposed Fuzzy Rough Signature will embed mathe-
matical guidelines for organizing a hierarchical structure for
reasoning as well as it unifies the advantages of four best
existing mathematical tools for decision making and classi-
fication: mathematical theory of evidence, rough sets, and
fuzzy probability. We shown the way of combining the best
features in above models, thus Fuzzy Rough Signatures are
advantageous compared to today’s methods and applications
that are mostly based on one or two of the above methods.
Also, in this new theory probability and possibility will be
treated as complementary to each other, thus it is capable of
handling large as well as small sample data. Additionally,
Fuzzy Rough Signatures inherits high transparency from

fuzzy systems due to use of rough fuzzy sets at the data
acquisition level.
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