
Progressive Skyline Query Processing in Wireless
Sensor Networks

Baichen Chen Weifa Liang
Department of Computer Science

Australian National University
Canberra, ACT 0200, Australia

Abstract—With the further development of sensor techniques
in wireless sensor networks (WSNs), it is becoming urgent
that they should be able to support complicated queries like
skyline query for multi-preference and decision making. In
this paper, we consider skyline query evaluation in WSNs by
devising evaluation algorithms for finding skyline points on
a dataset progressively. The core techniques adopted are to
partition the dataset into several disjoint subsets and output the
skyline points by examining each subsequent subset progressively,
using some of the skyline points obtained so far to filter out
those unlikely skyline points in the current processing subset
from transmission. We finally conduct extensive experiments
by simulations to evaluate the performance of the proposed
algorithms on synthetic and real datasets. The experimental
results show that the proposed algorithms outperform existing
algorithms significantly in network lifetime prolongation.
Keywords: wireless sensor network, progressive algorithms, skyline
query, query optimization, energy conservation

I. INTRODUCTION

To support data query processing in wireless sensor net-
works (WSNs), several DB systems like TinyDB [13] and
DB Cougar [25] have been developed in the past years.
These DB systems enable supporting some basic operators
including SUM , MIN , AV G, etc, due to the miniature
hardware constraints imposed on sensors such as limited
storages, powered by energy-limited batteries, slow process-
ing capabilities, small communication bandwidths. With the
further development of hardware techniques in sensors and
WSNs applications, it is becoming urgent that WSNs are also
able to support more complicated queries like self-join [26],
top-k [19] and skylines [24]. In this paper we focus on skyline
query processing in WSNs, which is a popular one in modern
databases for multi-criteria decision making that has been
received much attention recently by the database community.
It can be formally defined as follows. For two d-dimensional
data points p and q, point p is dominated by point q, denoted
by q ≺ p, if q is no worse than p on all d dimensions and
q is strictly better than p on at least one dimension. Given a
set S of d dimensional data points, a point p in S is a skyline
point of S if p is not dominated by any other points in S. The
skyline query on S retrieves all the skyline points in S.

Skyline queries in WSNs can be used to monitor the
extreme sensing data under multiple criteria. For example,
scientists can deploy a WSN to monitor air pollution of a
region of interest, where the sensors sense the concentration
of poisonous gases like CO and SO2. The places with high

concentration of either CO or SO2 are regarded to suffer the
serious air pollution. A skyline query on the WSN can identify
such places for environmental monitoring and improvement
purpose. Another example is using WSNs to monitor bushfires,
where a sensor in the WSN can sense temperature, humidity
and smoke density about its vicinity. In bushfire, the fieri-
est fire will cause a place with extreme high temperature,
low humidity and high smoke density. The places with low
temperatures but high smoke densities are also dangerous.
To extinguish bushfire, fire fighters issue a skyline query to
identify such places.

A. Related Work

Most previous studies on skyline query focused on the
centralized databases by assuming that the data is stored in
a centralized database [2], [3], [8], [9], [16], [20]. The other
work dealt with various skyline queries under other com-
putational environments, including skyline processing over
data streaming [10], top-k skyline with the maximum number
of dominated points [11], spatial skyline [12], skyline with
partially ordered domains [5], and probabilistic skyline on
a set of uncertain data points [17]. Beyond the studies on
centralized databases, skyline query has also been exploited in
decentralized databases such as the World Wide-Web [1], CAN
P2P network [21], BATON P2P network [6] and P2P systems
with different topological structures [22].

Although extensive studies on skyline query in traditional
databases have been conducted in recent years, these existing
algorithms are not applicable to WSNs due to the following
unique constraints imposed on WSNs. First, the centralized
data structures like R−tree employed in centralized databases
for skyline query processing no longer exist in WSN envi-
ronments so that the algorithms based on these centralized
data structures are inapplicable to WSNs. Second, sensors
have limited storages and processing capabilities in compar-
ison with powerful computers, there is no such a powerful
centralized sensor in WSNs that is able to communicate with
the other sensors as that in a traditional distributed system.
Finally, unlike known algorithms in centralized and distributed
databases focusing on optimizing query response time, space
and the number of packets, the optimization objective of
skyline processing in sensor networks is the energy consump-
tion of answering the query, while wireless communication
is the dominant part of all types of energy consumptions of
sensors [13], [18].

2009 Fifth International Conference on Mobile Ad-hoc and Sensor Networks

978-0-7695-3935-5/09 $26.00 © 2009 IEEE

DOI 10.1109/MSN.2009.43

17

Skyline query evaluation on WSNs has also been ex-
ploited [7], [23], [24] recently. For example, Huang et al. [7]
dealt with a constrained skyline query problem on MANETs
by devising a single point filter-based evaluation algorithm that
is easily extended to WSNs. Xin et al [24] studied the problem
by devising two filter-based algorithms. One is the single point
filter-based algorithm TF and another is the grid filter-based
algorithm GI. Algorithm TF chooses the point that dominates
the maximum number of points as the filter, assuming that the
data distribution density is given beforehand, while algorithm
GI exploits the grid partition of data space and generates a
grid filter. Liang et al. [23] recently proposed a new filter-
based algorithm which consists of multiple rather than single
point as the filter, in which each sensor sends part of its local
skyline points by a greedy algorithm to its parent and the root
broadcasts the received points as the global certificate obtained
through in-network aggregation. The points that cannot pass
through the certificate will be filtered out from transmission.
However, the existing algorithms for skyline queries in WSNs
have their own limitations. For example, the filter in [7] is
only determined by the local rather than global information,
which leads to inefficiency of the filter. The authors in [24]
assume that the density function of data is known beforehand,
which may be too restrictive in the real world. Moreover,
existing algorithms for skyline query in WSNs mainly fo-
cus on the optimization of the total energy consumption
by ignoring the maximum energy consumption among the
sensors. However, the maximum energy consumption among
the sensors is another important optimization parameter which
plays the key role in determining the network lifetime [14].
Notice that in sensor networks, the sensors near to the base
station exhaust their batteries first, which renders the rest of
sensors disconnected from the base station. Consequently, the
base station cannot receive the data from the rest of sensors.
Therefore, a desired algorithm for skyline query evaluation
should not only optimize the total energy consumption but also
the maximum energy consumption among the sensors. Above
all, the design of energy-efficient algorithms for skyline query
in WSNs poses great challenges.

B. Contributions

Our major contributions in this paper are as follows. Two
algorithms for evaluating skyline query are devised, which
find the skyline points progressively. The novel techniques
behind are to partition the dataset into disjoint subsets, fol-
lowed by returning the skyline points through examining each
subsequent subset progressively, using some found skyline
points so far as a filter to filter out those unlikely skyline
points in the currently processing subset from transmission.
We finally conduct extensive experiments by simulations on
both synthetic and real datasets. The experimental results show
that the proposed algorithms significantly outperform existing
algorithms in terms of various performance metrics.

The remainder of the paper is organized as follows. Section
2 introduces the wireless sensor network model and problem
definition, followed by giving an important observation that
is the cornerstone of the proposed algorithms. Sections 3 and
4 propose two algorithms for progressively evaluating skyline

queries. Extensive experiments are conducted to evaluate the
performance of the proposed algorithms in Section 5, and the
conclusions are given in Section 6.

II. PRELIMINARIES

A. System Model

We consider a wireless sensor network consisting of n
stationary sensors randomly deployed in a region of interest,
and each sensor measures d attribute values. There is a base
station with unlimited energy supply serving as the gateway
between the sensor network and the users. All sensors can
communicate with the base station via one or multi-hop relay,
and a sensor can communicate with the sensors located within
its transmission range. We further assume that the transmission
range of each sensor is identical. The battery-powered sensors
can not only sense and collect data from their vicinities but
also process and transmit the data to their neighbors. To
transmit a message containing k bytes of data from one sensor
to another, the amounts of transmission energy consumed at
the sender are ρt +R∗k, and the amounts of reception energy
consumed at the receiver are ρr + re ∗ k, where ρt and ρr are
the sum of energy overhead on handshaking and transmitting
and receiving header part of the message, R and re are the
amounts of transmission and reception energy per byte [23].
Every d-dimensional data point is represented by 4 ∗ d bytes
in this paper. In our cost model, the computational energy
consumption at each sensor is ignored, because the energy
consumption of local computation is at least several orders of
magnitude less than the energy consumption on radio com-
munication, which can be witnessed by [13], one bit of data
transmitted by the radio takes as much energy as executing
1000 CPU instructions. Therefore, unless otherwise specified,
we only consider the communication energy consumption in
the performance evaluation section.

B. Problem Definition

Given a wireless sensor network G(V, E) with base sta-
tion r, where V is the set of sensors and E is the set of
links. Assume that each sensor v in V contains a set of
d-dimensional points P (v) generated during a given time
interval, and P = ∪u∈V P (v) forms the entire dataset. The
skyline query on the snapshot set P is to find a subset
of P , SK(P), in which the points cannot be dominated
by any other points in P . Without loss of generality, we
assume that the value range of each dimension of a point
is within [0, +∞) and the whole d-dimensional data space
DS = {[0, +∞), [0, +∞), ..., [0, +∞)} is the union of sub-
spaces distributed at the |V | sensors. If a data space contains
the points with negative values, it is easy to transform the
points in this space to another data space DS which contains
the points with non-negative values through the coordinate
transformation, and then transform the query results under the
data space DS back to the query results under the original
data space. In different contexts, the term “better” can be
interpreted as either the “ smaller” or the ”larger”. Without loss
of generality, we say that “the better” means “the smaller”.

18

Energy-efficient skyline query evaluation in sensor net-
works can be implemented through in-network processing
paradigm [14], [25], that is a routing tree T rooted at the base
station r and spanning all sensors is employed for skyline
query evaluation. The query evaluation on T consists of
distribution stage, to push the query down to each sensor
along the paths of tree; and collection stage, to collect the
sensed data from children to parent and eventually to the base
station through multiple-hop relay. Unless otherwise specified,
in the rest of this paper, we assume that such a tree exists and
the tree will be used for query evaluation.

A well-known algorithm for skyline query evaluation is
algorithm Skyline Merge which proceeds as follows. If
sensor v is a leaf sensor, it sends the skyline of local points to
its parent; otherwise, sensor v computes the skyline on the set
of the points at v which includes the points generated at v and
the points forwarded from its children, and v then transmits the
new skyline to its parent. Finally, the base station r calculates
the skyline of the received points that is the skyline on the set
of all the points in P .

The following important observation is the cornerstone of
all proposed algorithms in the rest of the paper.

Definition 1: [8], [16] Suppose p = (p1, p2, ..., pd) is a
d-dimensional point, the radius of p R(p) is defined as the
Euclidean distance between p and the origin o, i.e.,R(p) =√

Σd
i=1p

2
i .

Observation 1: [16] Let R(p) and R(q) be the radii of
points p and q. If R(p) ≤ R(q), point p cannot be dominated
by point q.

III. FIXED PARTITION ALGORITHM

In this section, an evaluation algorithm is proposed, which
partitions the dataset into k disjoint subsets and proceeds in
a number of iterations k. The value of k is given beforehand.
In each iteration, the proposed algorithm returns the skyline
points progressively and chooses some of the found skyline
points so far for the global filter to filter out the unlikely
skyline points in the rest of non-examined subsets from
transmission. In the following we describe how to partition
the dataset through partition radius.

A. Fixed Dataset Partition

Given a d-dimensional dataset P consisting of all the points
in the network, denote by R(P)max = max{R(p) | p ∈ P}
and R(P)min = min{R(p) | p ∈ P} the maximum and
minimum radii of dataset P . The basic idea behind the
proposed algorithm is to partition the dataset P into k disjoint
subsets, P1,P2,...,Pk, such that R(Pi)max < R(Pi+1)min for
all 1 ≤ i < k, where k (≥ 1) is a given integer. In the ith
iteration, the proposed algorithm examines the points in Pi

and finds the new skyline SKi in which each point is not
dominated by the found skyline points so far. The skyline on
set P is the union of the set of newly found skyline in each
iteration, i.e., SK(P) = ∪k

i=1SKi.
The algorithm proceeds to obtain R(P)min and R(P)max

on dataset P , using in-network aggregation. Having R(P)min

and R(P)max, it first generates a series of k ascending radii

R(Pi)max for all 1 ≤ i ≤ k, which is an arithmetic or geo-
metric sequence. To generate an arithmetic sequence, suppose
R(P)max − R(P)min = a + 2a + . . . + ka and the approx-
imate value of a = 2(R(P)max−R(P)min)

k(k+1) . Thus, R(Pi)max =
R(P)min + i ∗ a and R(P0)max = R(P)min. To generate
a geometric sequence, suppose R(P)max − R(P)min =
q1 + q2 + . . . + qk. Thus, R(Pi)max = R(P)min + qi and
R(P0)max = R(P)min, 1 ≤ i ≤ k. According to the
arithmetic or geometric series of R(Pi)max, the dataset P can
be partitioned into k disjoint subsets P1,P2,...,Pk and the radii
of the points in set Pi are within [R(Pi−1)max, R(Pi)max),
where R(Pi)max is the partition radius of subset Pi of P ,
1 ≤ i ≤ k.

It then proceeds with k iterations. Denote by SK(S) the
skyline on set S. Denote by LSK(v)i the skyline of the
points at sensor v and the points received from the children
of v and LF (v)i the local filter of sensor v in the ith
iteration that consists of several points. Initially, LF (v)1 = ∅
and LSK(v)1 = SK(P (v)) if v is a leaf sensor, where
P (v) is the set of points generated at sensor v. We refer
to the algorithms that partition the dataset using the arith-
metic or geometric series as algorithm a-FDP or g-FDP
(Fixed Dataset Partition), respectively. In the ith iteration
each of the algorithms proceeds as follows.

Every sensor v first filters out the points at its own that
are dominated by the local filter LF (v)i. If v is a leaf
sensor, it sends the points in LSK(v)i whose radii are no
greater than R(Pi)max to its parent. Otherwise, sensor v
calculate LSK(v)i of the points at sensor v and the points
received from its children and transmits the points in LSK(v)i

whose radii are no greater than R(Pi)max to its parent. In
the end, the base station r calculates the skyline LSK(r)i

on all the received points. Recall that SKi = {p | p ∈
LSK(r)i, q
≺ p, q ∈ ∪i−1

j=1SKj} as the newly found skyline
points in the ith iteration. SK(∪i

j=1Pj) = ∪i−1
j=1SKj ∪ SKi.

Finally, some points in SKi are chosen and broadcast to the
sensors in the sensor network for filtering purpose. Denote by
GSFi the set of skyline points broadcast in the ith iteration.
Every sensor then updates its local filter with GSFi, i.e.,
LF (v)i+1 = LF (v)i ∪GSFi. Having performed k iterations,
the skyline on dataset P is ∪k

i=1SKi.
In the following we detail which points in SKi to be chosen

in each iteration for algorithm a-FDP or g-FDP.

B. Choosing Skyline Points for Global Filter

Broadcasting some of the newly found skyline points as a
global filter aims to filter out those unlikely skyline points in
the rest of unprocessed subsets from transmission in future
iterations. In the real world, it is impossible to figure out the
exact number of points filtered out by the chosen skyline points
before these chosen skyline points are broadcast, because
there is not any knowledge of data distribution at sensors.
Instead, the volume of dominance region of a point can be
used to represent its filtering “gain” - the number of points is
dominated by the point. The dominance region of a point p
is the region in which any point is dominated by p. Having
obtained SKi at the base station r, a simple way to update

19

its local filter of a sensor v is to broadcast all newly found
global skyline points to each sensor. However, this naive
approach will incur much more energy overhead than needed,
due to the fact that the dominance regions of most found
skyline points are overlapping with each other, and only a
few of them dominate most of the whole dominance region.
On the other hand, if the newly found global skyline points
are not broadcast, the local filter of each sensor will become
inefficient due to lack of the updated global information.
Consequently, the local filter of each sensor cannot filter out
as many unlikely skyline points as possible, and the sensor
will incur excessive energy overhead on unlikely skyline points
transmission. We thus propose a method to tradeoff the energy
consumption between the filter points broadcasting and the
unlikely skyline points transmission without filtering, based
on the volume of the efficient dominance region of each point.
The efficient dominance region of a point p is the subspace
of the dominance region of p, which is not covered by the
dominance regions of the previous found skyline points and
all the points inside are not examined yet.

The intuition of choosing which skyline points in SKi is
that efficient dominance regions of skyline points obtained in
the current iteration are in the margin space of the dominance
regions of found skyline points in previous iterations, which is
illustrated by Fig. 1. Suppose that there are two skyline points
p0 and p1 obtained in the first iteration and Region D is the
union of dominance regions of p0 and p1. Points p2 and p3

are the found skyline points in SK2 and r2 = R(P2)max.
Following algorithm a-FDP or g-FDP, after performing the
second iteration, the dominance region within the fan region
S(Or2r

′
2) will be useless for filtering purpose, since all

the points in the region have already been examined. The
efficient dominance regions of p2 (Region ADGH) and p3

(Region BCEFH) are actually located in the margin space
of region D (between region D and X axis), because most
of the dominance regions of p2 and p3 have been covered by
Region D and Region S. From Fig. 1 we can observe that
Region BCEFH of p3 covers most of Region ADGH of
p2 except Region ABC, which implies that only broadcasting
p3 will lead to the same filtering gain as broadcasting both p2

and p3. In higher dimensional datasets, it is more complicated
to calculate the volume of the efficient dominance regions of
points. We extend our analysis to a more general case by
developing a greedy approach, which is detailed as follows.

Denote by EDR(p)j an approximate volume of the effi-
cient dominance region of point p at the jth dimension. Let
GSFi be the set of chosen skyline points to be broadcast
after the ith iteration. Given a set P of d dimensional
points, the maximum point MAX = (max1, . . . , maxd)
is a virtual point, where maxj is the maximum value at
the jth dimension of the points in P and the minimum
skyline point MinSK(i) = (minSK(i)1, . . . , minSK(i)d)
is another virtual point, where minSK(i)j is the minimum
value at the jth dimension of all found skyline points in the
first i iterations. Let margin(p)j = minSK(i−1)j−pj rep-
resents how far point p from the dominance regions of found
skyline points in previous iterations at the jth dimension.
The approximate volume of the efficient dominance region

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

p0

1r

O x.max

y.m
in

x.min

F

H

Y

X

G
S

D
p1

p
2

p
3

C
D

E

A B

r2

’ ’r r1 2

y.m
ax

Fig. 1. An Example of Margin-Coverage

.

of point p = (p1, p2, ..., pd) in SKi at the jth dimension
is EDR(p)j = margin(p)j ∗ (

∏d
k=1,k �=j(maxk − pk) −

∏d
k=1,k �=j(R(Pi)max−pk)), where R(Pi)max is the partition

radius of subset Pi of P . For each dimension j, the point p
in SKi with the maximum value of EDR(p)j is chosen and
added to GSFi if p
∈ GSFi and EDR(p)j > 0. Finally,
at most d skyline points (at most one point chosen in each
dimension) are chosen and broadcast into the sensor network
for local filter updating after the ith iteration. The virtual point
MAX can be obtained using in-network processing within
the first iteration, and the points with the minimum value
at each dimension are added to GSF1. The following is the
pseudocode of determining the global filter in the ith iteration.

Algorithm 1 GSF(i, SKi)

begin
GSFi = ∅;
if i = 1 then

foreach dimension j (1 ≤ j ≤ d) do
if (pj = min{qj | q ∈ SKi}) and (p
∈ GSFi)
then GSFi ← GSFi ∪ {p};

end
else

foreach dimension j (1 ≤ j ≤ d) do
if (EDR(p)j = max{EDR(q)j | q ∈ SKi})
and (EDR(p)j > 0) and (p
∈ GSFi) then

GSFi ← GSFi ∪ {p};
end

update the virtual point MinSK(i) and broadcast GSFi;
end

C. Correctness of Fixed Partition Algorithm

The rest is to show the correctness of algorithms a-FDP and
g-FDP, i.e., we show that SK(P) obtained after k iterations
is the skyline on set P by the following theorem.

Theorem 1: For a dataset P , the skyline P , SK(P) =
∪k

i=1SKi, where SKi is the new skyline points delivered by
algorithm a-FDP or g-FDP in the ith iteration, 1 ≤ i ≤ k.

Proof: Assume that there is a point p with R(p) ∈
(R(Pi−1)max, R(Pi)max]. We prove the claim through prov-
ing that if p
∈ SKi, p must be dominated by other points;
otherwise, p cannot be dominated by any other points in P .

20

Clearly, only the points whose radii are in the range between
R(Pi−1)max and R(Pi)max are possible to be added to SKi,
which implies that the subset Pi of P contains the points with
radii in the range from R(Pi−1)max to R(Pi)max.

It is obvious that point p
∈ SKi is dominated by other
points. Otherwise, it will be relayed to the base station and
added to SKi.

For a point p ∈ SKi, we prove that point p is not dominated
by the other points by the following three cases.

Case 1. p is not dominated by any point in ∪i−1
j=1Pj . If there

is a point a ∈ ∪i−1
j=1Pj dominating point p, there must be a

point q ∈ ∪i−1
j=1SKj that q ≺ a and q ≺ p, or q = a, which

contradicts the fact that SKi = {p | p ∈ LSK(r)i, q
≺ p, q ∈
∪i−1

j=1SKj}.
Case 2. p is not dominated by any point in Pi. Assume that

point p is relayed to sensor v in the ith iteration. If there is
a point q at sensor v with q ∈ Pi and q ≺ p, p is impossible
to be added to LSK(v)i and transmitted to the parent of v,
which contradicts the fact that p ∈ SKi.

Case 3. p is not dominated by any point in ∪k
j=i+1Pj . The

range of radii of the points in subset Pi is from R(Pi−1)max

to R(Pi)max, the points in ∪k
j=i+1Pj thus have larger radii

than point p. From Observation 1, it is obvious that p cannot
be dominated by any point in ∪k

j=i+1Pj .
In summary, point p ∈ SKi is not dominated by any point

in P . Therefore, SK(P) = ∪k
i=1SKi delivered by algorithm

a-FDP or g-FDP contains all the skyline points in P .
The following is the detailed description of algorithm

a-FDP (algorithm g-FDP).

Algorithm 2 Algorithm a-FDP (g-FDP) (k, P, V, E)

begin
generate arithmetic (geometric) series R(Pi)max,
i ∈ [1, k];
broadcast the series R(P)max, i ∈ [1, k] to the network;
for i=1 to k do

foreach sensor v in the ith iteration do
filter out the points at v using LF (v)i;
if v is a leaf sensor then

calculate LSK(v)i;
send the points {p | p ∈ LSK(v)i,
R(p) ≤ R(Pi)max} to its parent;

else
receive the points from the children;
calculate LSK(v)i;
send the points {p | p ∈ LSK(v)i,
R(p) ≤ R(Pi)max} to its parent;

end
the base station r calculates LSK(r)i;
SKi = {p | p ∈ LSK(r)i, ∀q ∈ ∪i−1

j=1SKj, q
≺ p};
Call algorithm GSF(i, SKi);
foreach sensor v do

LF (v)i+1 = LF (v)i ∪GSFi;
end

end
Return SK(P) = ∪k

i=1SKi;
end

IV. DYNAMICAL DATASET PARTITION ALGORITHM

Although the performance of algorithms a-FDP and
g-FDP improve a lot, in comparison with that of algorithm
Skyline Merge in terms of the total energy consumption
and the maximum energy consumption among the sensors,
they do suffer the following shortcomings.

For example, they take one extra preprocessing iteration
on the routing tree to obtain the maximum and minimum
radii of the points in P without any skyline points delivered
in that iteration. Also, the proposed arithmetic or geometric
sequence of partition radius aims to filter out as many unlikely
skyline points as possible from transmission in each iteration.
However, in some datasets with skewed data distribution it
is unavoidable that a disjoint subset may contain none of
points. One such a scenario is, if the chosen value of k is
too large, P is partitioned into many small disjoint subsets.
Even if Pi = ∅, algorithm a-FDP or g-FDP still executes
the ith iteration, which consumes energy without any gain.
Furthermore, choosing an appropriate value of k is difficult
because the performance of algorithms a-FDP and g-FDP
varies with different values of k on different datasets, which
will be shown in the later performance evaluation section. To
overcome these mentioned shortcomings, in the following we
propose an algorithm α-DDP (Dynamic Dataset Partition)
which partitions the dataset dynamically.

A. Dynamical Dataset Partition

The number of iterations and the partition radius in algo-
rithm DDP are determined dynamically by the data distribution
of the dataset. The detail of algorithm DDP is depicted in the
following.

Let UR(v)i be the upper bound of the transmission radius
of sensor v in the ith iteration. If sensor v is a leaf sensor,
UR(v)i is the maximum radius of all points forwarded by
v. Otherwise, UR(v)i is calculated as follows. Assume that
sensor v has dv children, u1,. . . ,udv , and each child uj sends
Send(uj)i to sensor v, where Send(uj)i is the set of points
transmitted by sensor uj in the ith iteration, 1 ≤ j ≤ dv.
Sensor v calculates LSK(v)i that is the skyline of the points
at sensor v and the points received from its children. Then,
UR(v)i is the minimum among the dv + 1 maximum radii of
the points sent by its children and the points in LSK(v)i, i.e.,
UR(v)i = min{R(LSK(v)i)max, R(Send(uj)i)max, 1 ≤
j ≤ dv}, where R(LSK(v)i)max and R(Send(uj)i)max are
the maximum radii of the points in LSK(v)i and Send(uj)i,
respectively. Obviously, UR(v)i ≤ UR(u)i when u is a
descendant sensor of v, and UR(r)i ≤ UR(v)i of any sensor
v in the sensor network, where r is the base station. UR(r)i

is also the partition radius of the ith partitioned subset Pi,
i.e., the radii of all the points in Pi are no greater than
UR(r)i. Therefore, the dataset is dynamically partitioned by
UR(r)i. Suppose that the points in each sensor v are sorted in
increasing order of their radii. Assuming that algorithm DDP
performed the first (i−1)th iterations already, it now proceeds
the ith iteration.

If sensor v is a leaf sensor, it transmits all the points in
LSK(v)i to its parent. Otherwise, sensor v first calculates

21

LSK(v)i that is the skyline of the points at v and the points
received from its children, and then calculates upper bound of
the transmission radius of sensor v, UR(v)i. Sensor v finally
transmits the points in LSK(v)i whose radii are no greater
than UR(v)i to its parent.

Having received the points from all of its children, the
base station r calculates LSK(r)i and UR(r)i. The newly
found skyline points in the ith iteration is SKi = {p | p ∈
LSK(r)i, R(p) ≤ UR(r)i, ∀q ∈ ∪i−1

j=1SKj , q
≺ p, }. Several
points in SKi will be chosen for broadcast as the global filter
to update the local filter at each sensor v, i.e., LF (v)i+1 =
LF (v)i ∪ GSFi, where GSFi is the set of broadcast points
in the ith iteration.

Clearly, the maximum number of iterations k is the height
of the routing tree, because all the leaf sensors will transmit
their points to their parents in the first iteration. However,
transmitting all points at leaf sensors will incur the excessive
energy consumption. Consider an extreme case, assume that
all the points at a leaf sensor v are only dominated by a
point at sensor u. Let the base station r be the least common
ancestor of sensors v and u. This implies that all the points
at sensor v will not be filtered out until they are relayed to
the base station, which consumes much unnecessary energy.
To this end, parameter α is to limit the number of points
transmitted by the leaf sensors in each iteration. For a leaf
sensor v, it only transmits the first (α ∗ |LSK(v)1|)� points
in LSK(v)i to its parent in the ith iteration, where the points
are sorted in increasing order of their radii, α is a constant with
0 < α ≤ 1. If α = 1, all the skyline points at the leaf sensors
are transmitted. The algorithm partitioning the dataset dynam-
ically with parameter α is referred to as algorithm α-DDP.
The use of parameter α can reduce the upper bound of the
transmission radius of the leaf sensors, which also reduces the
partition radius of each subset, thereby increasing the number
of iterations k. The more subsets are partitioned, the more
unlikely skyline points will be filtered out by the global filter
broadcast in previous subsets. Compared to its special case
algorithm 1-DDP where α = 1, although algorithm α-DDP
takes more iterations, it reduces energy consumption from
transmission, which will be shown in performance evaluation.

In case SKi is empty, the algorithm Skyline Merge will
be applied in a final iteration for finding the remaining skyline
points. Algorithm α-DDP terminates after the final iteration
and the number of iterations k is then determined. The skyline
of set P is SK(P) = ∪k

i=1SKi.

B. Correctness of Dynamical Dataset Partition Algorithm

The rest is to prove that the set SK(P) delivered by
algorithm α-DDP is the skyline on set P in the network.

Theorem 2: For a dataset P , the skyline P , SK(P) =
∪k

i=1SKi, where SKi is the new skyline points delivered by
algorithm α-DDP in the ith iteration.

Proof: Only the points with radii ranged from UR(r)i−1

to UR(r)i are likely to be in SKi, which implies that
the subset Pi of P contains the points with radii between
UR(r)i−1 and UR(r)i.

Once SKi = ∅, this shows that there is not any skyline point
with radii in the range between UR(r)i−1 and UR(r)i. Then,

algorithm Skyline Merge is applied to return the skyline
points with radii in the range between UR(r)i and R(P)max,
where R(P)max is the maximum of the radii of the points in
P . Algorithm α-DDP partitions the set P into k subsets and
the range of the radii of the points in each subset Pi within
(UR(r)i−1, UR(r)i] when 1 ≤ i ≤ k − 1. The radii of the
points in subset Pk ranges from UR(r)k−1 to R(P)max. The
rest of argument is similar to the one in Theorem 1, omitted.
We conduct that SK(P) = ∪k

i=1SKi is the skyline on P .
The following is the pseudocode of algorithm α-DDP.

Algorithm 3 Algorithm α-DDP(α, P, V, E)

begin
i← 1;
repeat

foreach sensor v in the ith iteration do
filter out the points at v, using LF (v)i;
if v is a leaf sensor then

calculate LSK(v)i;
send the first (α ∗ |LSK(v)1|)� points in
LSK(v)i to its parent;

else
receive the points from the children;
calculate LSK(v)i and UR(v)i;
send the points {p | p ∈ LSK(v)i,
R(P) ≤ UR(v)i} to its parent;

end
the base station r calculates LSK(r)i;
SKi = {p | p ∈ LSK(r)i, R(p) ≤ UR(r)i,
∀q ∈ ∪i−1

j=1SKj, q
≺ p};
Call algorithm GSF(i, SKi);
foreach sensor v do

LF (v)i+1 = LF (v)i ∪GSFi;
end
i = i + 1;

until SKi = ∅ ;
obtain SKi+1 by applying algorithm Skyline Merge
on the set of unexamined points;
Return SK(P) = ∪i+1

j=1SKj ;
end

V. PERFORMANCE EVALUATION

In this section we evaluate the performance of the proposed
algorithms against existing algorithms in terms of the total
energy consumption and the maximum energy consumption
among the sensors.

A. Experimental Setting

We assume that the sensor network is used to monitor
a 100m × 100m region of interest. Within the region, 500
sensors are randomly deployed by the NS-2 simulator [15]
and the base station is located at the square center. There is a
communication channel between two sensors if they are within
the transmission range of each other. We further assume that
all sensors have the same transmission range (10 meters in this
paper). As mentioned, the energy overhead on communication
dominates the various energy consumption of a sensor and

22

we only consider the energy consumption on wireless com-
munication in our experiments. Each d-dimensional point is
represented by 4 ∗ d bytes. It is supposed that the energy
overhead on transmitting and receiving a header and the
handshaking are ρt = 0.4608 mJ and ρr = 0.1152 mJ . The
energy consumption of transmitting and receiving one byte are
R = 0.0144 mJ and re = 0.00576 mJ , respectively, follow-
ing the parameters given in a commercial sensor MICA2 [4].
In our experiments, we use the synthetic datasets with random
and anti-correlated distributions. In each dataset 106 points
are generated following the distribution and each sensor is
assigned 2000 points randomly. We also use the real sensing
dataset obtained by the Intel Lab at UC Berkeley [27], which
is a data collection of 54 sensors. To assign the data to a
network of 500 sensors in our setting, we partition the sensing
sequence generated by each sensor into 10 consecutive seg-
ments and assign each segment to a sensor in our experiments.
The data consists of temperature, humidity, light and voltage
traces together as the 4-dimensional dataset. We use any 2 or
3 dimensional combinations of this 4-dimensional dataset to
generate 2 and 3 dimensional datasets.

B. The Choice of Parameters

We first evaluate the performance of algorithms a-FDP,
g-FDP and α-DDP with different values of k and α, on
random datasets with dimensionality from 2 to 4.

Fig. 2(a) shows the curves of the ratios of the total energy
consumption by algorithms a-FDP and g-FDP to that by
algorithm Skyline Merge with k from 2 to 6, while
the ratios of the maximum energy consumption among the
sensors by algorithms a-FDP and g-FDP to that by algorithm
Skyline Merge are illustrated in Fig. 2(b). It can be
seen that algorithm g-FDP outperforms algorithm a-FDP
in terms of the total energy consumption and the maximum
energy consumption among the sensors except the total energy
consumption on 2-dimensional random datasets with k > 4.
Fig. 2(a)-(b) also shows that the performance of algorithms
a-FDP and g-FDP varies with different values k. For exam-
ple, the ratio of the maximum energy consumption among the
sensors by algorithm g-FDP to that by algorithm Skyline
Merge ranges from 0.85 to 1.4. This implies that the choice of
ks greatly affects the performance of the proposed algorithms
and it is not easy to determine an appropriate k for all datasets.

Fig. 2(c)-(d) plots the curves of the ratios of the total energy
consumption and the maximum energy consumption among
the sensors by algorithm α-DDP to those by algorithm 1-DDP
(α = 1). It can be shown that algorithm α-DDP exhibits
better performance than algorithm 1-DDP in terms of the
both metrics, which implies that the setting α < 1 results in
the energy saving from transmission. The performance curves
on different datasets all increases gently with the increase of
α, which means that the impact of different αs is minor to
the performance of algorithm α-DDP. It is concluded that we
can choose appropriate α for different datasets. we set k = 3
in algorithm g-FDP and α = 0.05 in algorithm α-DDP in
the following experiments because the performance of these
values of parameters plays relatively better than other choices.

C. Performance Analysis of Various Algorithms

We then investigate the performance of the proposed al-
gorithms g-FDP and α-DDP against existing algorithms by
varying the dimensionality d from 2 to 4. We refer to the
dynamic filter algorithm by Huang et al [7] as algorithm DF,
the single point filter algorithm and grid index filter algorithm
by Xin et al [24] as algorithm TF and algorithm GI, the
certificate filter algorithm by Liang et al [23] as algorithm
Cerf, respectively.

Fig. 3(a)-(c) illustrate the curves of the ratios of the total
energy consumption by various algorithms to that by algorithm
Skyline Merge on synthetic datasets with random and
anti-correlated distributions and real datasets with dimen-
sionality from 2 to 4, while the ratios of the maximum
energy consumption by various algorithms to that by algorithm
Skyline Merge are illustrated in Fig. 3(d)-(f). It can be
seen that although algorithm Cerf is the best among the
existing algorithms, algorithms α-DDP outperforms the other
algorithms overall in different datasets especially in high di-
mensional datasets. For example, the total energy consumption
and the maximum energy consumption among the sensors
by algorithm α-DDP on 4-dimensional random datasets are
36% and 53% of those by algorithm Skyline Merge, while
the total energy consumption and the maximum energy con-
sumption among the sensors of algorithm Cerf are 54% and
73% of those by algorithm Skyline Merge. On different 4
dimensional datasets, algorithm g-FDP also performs better
than algorithm Cerf. Through the performance analysis of
various evaluation algorithms, clearly algorithm α-DDP can
prolong the network lifetime significantly.

VI. CONCLUSIONS

In this paper, we have studied the problem of skyline query
processing in WSNs. We devised two algorithms for evaluating
skyline query, which find the skyline points progressively. The
novel techniques behind are to partition the dataset into dis-
joint subsets, followed by returning the skyline points on each
subsequent subset progressively, using some found skyline
points so far as a filter to filter out those unlikely skyline
points in the currently processing subset from transmission.
We finally conduct extensive experiments by simulations on
both synthetic and real datasets. The experimental results show
that the proposed algorithms outperform existing algorithms
significantly in network lifetime prolongation.

Acknowledgment. It is acknowledged that the work by the
authors is fully funded by a research grant No:DP0449431 by
Australian Research Council under its Discovery Schemes.

REFERENCES

[1] W.T. Bakle, U. Güntzer, J.X. Zheng. Efficient distributed skylining for
web information systems. Proc of EDBT, pp.256–273, 2004.

[2] S.Börzsönyi, D.Kossmann, K.Stocker. The skyline operator. Proc of
ICDE, IEEE, pp.421–430, 2001.

[3] J. Chomicki, P. Godfrey, J. Gryz, D. Liang. Skyline with presorting.
Proc of ICDE, IEEE, pp.717–719, 2003.

[4] Crossbow Inc. “MPR-Mote Processor Radio Board Users Manual”.
[5] C. Y. Chan, P. K. Eng, K. L. Tan. Stratified computation of skylines with

partial-ordered domains. Proc of SIGMOD, ACM, pp.203–214, 2005.
[6] L. Chen, B. Cui, H. Lu, L. Xu, Q. Xu. iSky:Efficient and progressive

skyline computing in a structured P2P network. Proc of ICDCS, 2008.

23

2 3 4 5 6
k

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

R
at

io
 o

f
T

ot
al

 E
ne

rg
y

C
on

su
m

pt
io

n a-FDP (2D)
a-FDP (3D)
a-FDP (4D)
g-FDP (2D)
g-FDP (3D)
g-FDP (4D)

(a) Ratio of total energy consumption
with different k

2 3 4 5 6
k

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

R
at

io
 o

f
M

ax
im

um
 E

ne
rg

y
C

on
su

m
pt

io
n

a-FDP (2D)
a-FDP (3D)
a-FDP (4D)
g-FDP (2D)
g-FDP (3D)
g-FDP (4D)

(b) Ratio of maximum energy consump-
tion with different k

0.01 0.05 0.1 0.2 0.3 0.4 0.5

α

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

R
at

io
 o

f T
ot

al
 E

ne
rg

y
C

on
su

m
pt

io
n α−DDP (2D)

α−DDP (3D)
α−DDP (4D)

(c) Ratio of total energy consumption
with different α

0.01 0.05 0.1 0.2 0.3 0.4 0.5

α

0.2

0.4

0.6

0.8

1

1.2

1.4

R
at

io
 o

f M
ax

im
um

 E
ne

rg
y

C
on

su
m

pt
io

n

α-DDP (2D)
α-DDP (3D)
α-DDP (4D)

(d) Ratio of maximum energy consump-
tion with different α

Fig. 2. The performance of the proposed algorithms with different value of parameters on random datasets

2 3 4

Number of Dimensions

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

R
at

io
 o

f T
ot

al
 E

ne
rg

y
C

on
su

m
pt

io
n g-FDP

α−DDP
Cerf
DF
TF
GI

(a) Ratio of the total energy consumption on random
datasets

2 3 4

Number of Dimensions

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

R
at

io
 o

f T
ot

al
 E

ne
rg

y
C

on
su

m
pt

io
n g-FDP

α−DDP
Cerf
DF
TF
GI

(b) Ratio of the total energy consumption on anti-
correlated datasets

2 3 4

Number of Dimensions

0

0.2

0.4

0.6

0.8

1

1.2

R
at

io
 o

f T
ot

al
 E

ne
rg

y
C

on
su

m
pt

io
n g-FDP

α−DDP
Cerf
DF
TF
GI

(c) Ratio of the total energy consumption on real
datasets

2 3 4

Number of Dimensions

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

R
at

io
 o

f M
ax

im
um

 E
ne

rg
y

C
on

su
m

pt
io

n

g-FDP
α−DDP
Cerf
DF
TF
GI

(d) Ratio of the maximum energy consumption on
random datasets

2 3 4

Number of Dimensions

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

R
at

io
 o

f M
ax

im
um

 E
ne

rg
y

C
on

su
m

pt
io

n

g-FDP
α−DDP
Cerf
DF
TF
GI

(e) Ratio of the maximum energy consumption on
anti-correlated datasets

2 3 4

Number of Dimensions

0

0.2

0.4

0.6

0.8

1

1.2

R
at

io
 o

f M
ax

im
um

 E
ne

rg
y

C
on

su
m

pt
io

n

g-FDP
α−DDP
Cerf
DF
TF
GI

(f) Ratio of the maximum energy consumption on
real datasets

Fig. 3. The performance of various algorithms on real sensing datasets

[7] Z. Huang, C. S. Jansen, H. Lu, B. C. Ooi. Skyline queries against mobile
lightweight devices in MANETs. Proc of ICDE, IEEE, pp.66-76, 2006.

[8] D. Kossmann, F. Ramask, S. Rost. Shooting stars in the sky: an online
algorithm for skyline queries. Proc of VLDB, pp.275–286, 2002.

[9] K.C. Lee, B. Zheng, H. Lu, W-C. Lee. Approaching the skyline in Z
order. Proc of VLDB, pp.279–290, 2007.

[10] X. Lin, Y. Yuan, W. Wang, H. Lu. Stabbing the sky:efficient skyline
computation over sliding windows. Proc of ICDE, IEEE, 2005.

[11] X. Lin, Y. Yuan, Q. Zhang, Y. Zhang. Selecting stars:The k most
representative skyline operator. Proc of ICDE, IEEE, pp.86–95, 2007.

[12] C. Li, A. K. H. Tung, W. Jin, M. Ester. On dominating your
neighborhood profitably. Proc of VLDB, pp.818–829, 2007.

[13] S. Madden, M. J. Franklin, J. M. Hellerstein, W. Hong. The design of
an acquisitional query processor for sensor networks. Proc of SIGMOD,
ACM, pp.491–502, 2003.

[14] S. Madden, M. J. Franklin, J. M. Hellerstein, W. Hong. TAG: a
tiny aggregation service for ad hoc sensor networks. ACM SIGOPS
Operating Systems Review, Vol. 36, pp.131–146, 2002.

[15] The Network Simulator-ns2. http://www.isi.edu/nsnam/ns.
[16] D. Papadias, Y. Tao, G. Fu, B. Seeger. An optimal and progressive

algorithm for skyline queries. Proc of SIGMOD, ACM, 2003.
[17] J. Pei, B. Jiang, X. Lin, Y. Yuan. Probabilistic skylines on uncertain

data. Proc of VLDB, pp.15–26, 2007.
[18] G. J. Pottie, W. J. Kaiser Wireless Integrated Network Sensors.

Communication of the ACM, vol 43 No 5, pp.51–58, 2000.

[19] M. Wu, J. Xu, X. Tang, W-C. Lee. Top-k monitoring in wireless sensor
networks. IEEE Trans. Knowledge and Data Engineering, Vol.19, No.7,
July, pp.962–976, 2007.

[20] K.L. Tan, P.K. Eng, B.C. Ooi. Efficient progressive skyline computation.
Proc of VLDB, pp.301–310, 2001.

[21] P. Wu, C. Zhang, Y. Feng, B.Y. Zhao, D.Agrawal, A.E.Abbadi. Paral-
lelizing skyline queries for scalable distribution. Proc of EDBT, pp.112–
130, 2006.

[22] S. Wang, Q. Vu, B. C. Ooi, Anthony K. H. Tung, L. Xu. Skyframe:
a framework for skyline query processing in peer-to-peer systems. The
VLDB Journal, Vol 18, pp.345–362, 2009.

[23] W. Liang, B. Chen, Jeffrey X. Yu. Energy-efficient skyline query
processing and maintenance in sensor networks. Proc of CIKM, pp.
1471-1472, 2008.

[24] J. Xin, G. Wang, L. Chen, X. Zhang, Z. Wang. Continuously maintaining
sliding window skyline in a sensor network. Proc of DASFAA, Lecture
Notes in Computer Science, Vol.4443, pp.509–521, 2007.

[25] Y. Yao, J. Gehrke. The cougar approach to in-network query processing
in sensor networks. ACM SIGMOD Record, Vol. 31, pp.9–18, 2002.

[26] X. Yang, H. B. Lim, M. T. Ozsu, K-L. Tan. In-network execution of
monitoring queries in sensor networks. Proc of SIGMOD, ACM, pp.521–
532, 2007.

[27] http://db.csail.mit.edu/labdata/labdata.html, 2004.

24

