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‘Interpreting probability’ is a commonly used buisheading characterization
of a worthy enterprise. The so-called ‘interpretasi of probability’ would be
better called ‘analyses of various concepts of abdity’, and ‘interpreting
probability’ is the task of providing such analys@s perhaps better still, if our
goal is to transform inexact concepts of probabfhimiliar to ordinary folk

into exact ones suitable for philosophical andrddie theorizing, then the task
may be one of ‘explication’ in the sense of Car(Eqb0). Normally, we speak
of interpretinga formal systenthat is, attaching familiar meanings to the
primitive terms in its axioms and theorems, usuadith an eye to turning them
into true statements about some subject of intelrfEsiever, there is no single
formal system that is ‘probability’, but rather ash of such systems. To be
sure, Kolmogorov's axiomatization, which we wilepent shortly, has
achieved the status of orthodoxy, and it is typycahat philosophers have in
mind when they think of ‘probability theory’. Nevkeless, several of the
leading ‘interpretations of probability’ fail to #sfy all of Kolmogorov's
axioms, yet they have not lost their title for tHdbreover, various other
guantities that have nothing to do with probabititysatisfy Kolmogorov's
axioms, and thus are interpretations of it in ecsgense: normalized mass,
length, area, volume, and other quantities thaufader the scope of measure
theory, the abstract mathematical theory that gdizess such quantities.
Nobody seriously considers these to be ‘interpi@tatof probability’,
however, because they do not play the right roleuinconceptual apparatus.
Instead, we will be concerned here with variousbphlity-like concepts that
purportedly do. Be all that as it may, we will fml common usage and drop
the cringing scare quotes in our survey of whalosbphers have taken to be
the chief interpretations of probability.

Whatever we call it, the project of finding suckeirpretations is an important
one. Probability is virtually ubiquitous. It plagsrole in almost all the sciences.
It underpins much of the social sciences — witrikegrevalent use of
statistical testing, confidence intervals, regm@ssnethods, and so on. It finds
its way, moreover, into much of philosophy. In épmsology, the philosophy

of mind, and cognitive science, we see states ioi@pbeing modeled by
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subjective probability functions, and learning lgemodeled by the updating of
such functions. Since probability theory is centoadlecision theory and game
theory, it has ramifications for ethics and poétiphilosophy. It figures
prominently in such staples of metaphysics as ¢eusand laws of nature. It
appears again in the philosophy of science in tiadyais of confirmation of
theories, scientific explanation, and in the plolasy of specific scientific
theories, such as quantum mechanics, statisticathamécs, and genetics. It can
even take center stage in the philosophy of Idbe philosophy of language,
and the philosophy of religion. Thus, problemshia toundations of

probability bear at least indirectly, and sometirdesctly, upon central
scientific, social scientific, and philosophicahcerns. The interpretation of
probability is one of the most important such foatnmhal problems.
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1. Kolmogorov's Probability Calculus

Probability theory was a relative latecomer in liettual history. It was
inspired by games of chance indentury France and inaugurated by the
Fermat-Pascal correspondence. However, its axiaatetn had to wait until
Kolmogorov's classi€oundations of the Theory of Probabil(t{©33). LetQ

be a non-empty set (‘the universal set’)fiéld (or algebrg onQ is a sef of
subsets of) that ha€2 as a member, and that is closed under complenmmntat
(with respect t&2) and union. LeP be a function fronk to the real numbers
obeying:

1. (Non-negativity)P(A) > 0, for allA € F.

2. (Normalization)P(Q) = 1.

3. (Finite additivity) P(A U B) = P(A) + P(B) for all A, B & F such thaiA
NB=2.



Call P aprobability function and (2, F, P) aprobability space

The assumption th&t is defined on a field guarantees that these axemas
non-vacuously instantiated, as are the variousréme® that follow from them.
The non-negativity and normalization axioms argeésr matters of
convention, although it is non-trivial that problaifunctions take at least the
two values 0 and 1, and that they have a maximakvanlike various other
measures, such as length, volume, and so on, ahrécinbounded). We will
return to finite additivity at a number of pointslbw. We may now apply the
theory to various familiar cases. For example, vag nepresent the results of
tossing a single die once by the €e{{1, 2, 3, 4, 5, 6}, and we could |&tbe
the set of all subsets ©&f. Under the natural assignment of probabilities to
members of, we obtain such welcome resultsR{§l}) = 1/6, P(even) =P
({2} U {4} U {6}) = 3/6, P(odd or less than 4) B(odd) +P(less than 4) P
(oddN less than 4) = 1/2 + 1/2 — 2/6 = 4/6, and so on.

We could instead attach probabilities to members @dllectionS of sentences
of a formal language, closed under (countablehtfunctional combinations,
with the following counterpart axiomatization:

I. P(A)>0 forallA e S
II. If Tis alogical truth (in classical logic), th&(T) = 1.
. P(AV B) =P(A) +P(B) for allA € SandB € Ssuch thaA andB are
logically incompatible.

The bearers of probabilities are sometimes aldec¢té&tvents” or “outcomes”,
but the underlying formalism remains the same.

Now let us strengthen our closure assumptions daggF, requiring it to be
closed under complementation aralintableunion; it is then called sigma

field (or sigma algebrapn Q. It is controversial whether we should strengthen
finite additivity, as Kolmogorov does:

3. (Countable additivity) I1A;, Ay, As ... is a countably infinite
sequence of (pairwise) disjoint sets, each of wis@dn element of
F, then

P(U A) = > P(A)
n=1 n=1

Kolmogorov comments that infinite probability spa@e idealized models of
real random processes, and that he limits himskifrarily to only those
models that satisfy countable additivity. This awits the cornerstone of the
assimilation of probability theory to measure tlyeor

The conditional probability of A giveniBthen given by the ratio of
unconditional probabilities:



P(A N B)

PAIB) = =5

, providedP(B) > 0.

This is often taken to be tlaefinition of conditional probability, although it
should be emphasized that this is a technical ushtie term that may not
align perfectly with a pretheoretical concept thatmight have (see Hajek,
2003). We recognize it in locutions such as “thabability that the die lands 1,
given that it lands odd, is 1/3”, or “the probatyilihat it will rain tomorrow,
given that there are dark clouds in the sky tomemmorning, is high”. It is the
concept of the probability of somethiggenorin the light ofsome piece of
evidence or information that may be acquired. Idgdeeme authors take
conditional probability to be the primitive noticand axiomatize it directly
(e.g. Popper 1959b, Renyi 1970, van Fraassen Bpahn 1986 and Roeper
and Leblanc 1999).

There are other axiomatizations that give up nazatbn; that give up
countable additivity, and even additivity; thata¥l probabilities to take
infinitesimal values (positive, but smaller tharegvpositive real number); that
allow probabilities to be imprecise (interval-vadii®r more generally
represented with sets of numerical values). For, immwever, when we speak
of ‘the probability calculus’, we will mean Kolmogwv/'s approach, as is
standard.

Given certain probabilities as inputs, the axiomd #heorems allow us to
compute various further probabilities. However,rafram the assignment of 1
to the universal set and 0O to the empty set, thegident regarding the initial
assignment of probabilitiéQ.For guidance with that, we need to turn to the
interpretations of probability. First, however, et list some criteria of
adequacy for such interpretations.

2. Criteria of adequacy for the interpretations of
probability

What criteria are appropriate for assessing thewogof a proposed
interpretation of probability? Of course, an intetation should be precise,
unambiguous, non-circular, and use well-undersgoditives. But those are
really prescriptions for good philosophizing getigravhat do we want from
our interpretationsf probability, specifically? We begin by following Salmon
(1966, 64), although we will raise some questidmsua his criteria, and
propose some others. He writes:

Admissibility.We say that an interpretation of a formal system i
admissible if the meanings assigned to the primiterms in the
interpretation transform the formal axioms, andssmjuently all the
theorems, into true statements. A fundamental rement for
probability concepts is to satisfy the mathematietdtions



specified by the calculus of probability...

Ascertainability.This criterion requires that there be some method
by which, in principle at least, we can ascertatugs of
probabilities. It merely expresses the fact thedbacept of

probability will be useless if it is impossible pninciple to find out
what the probabilities are...

Applicability. The force of this criterion is best expressed ishBp
Butler's famous aphorism, “Probability is the vgoyde of life.”...

It might seem that the criterion of admissibilityes without saying:
‘interpretations’ of the probability calculus tredsigned t® the interpretation
‘the number of hairs on the head of’ or ‘the pohdipersuasion of’ would
obviously not even be in the running, because tayld render the axioms
and theorems so obviously false. The word ‘intagiren’ is often used in
such a way that ‘admissible interpretation’ is egolasm. Yet it turns out that
the criterion is non-trivial, and indeed if takearisusly would rule out several
of the leading interpretations of probability! A wiill see, some of them fail
to satisfy countable additivity; for others (cent@iropensity interpretations) the
status of at least some of the axioms is uncleaveNheless, we regard them
as genuine candidates. It should be rememberedawver, that Kolmogorov's
IS just one of many possible axiomatizations, d@uld is not universal
agreement on which is ‘best’ (whatever that migkamn). Indeed, Salmon's
preferred axiomatization differs from KolmogoroW#sThus, there is no such
thing as admissibilityout court but rather admissibility with respect to this or
that axiomatization. It would be unfortunate ifyip&ps out of an
overdeveloped regard for history, one felt obligedeject any interpretation
that did not obey the letter of Kolmogorov's lawsl @hat was thus
‘inadmissible’. In any case, if we found an inadsifiée interpretation that did
a wonderful job of meeting the criteria of ascerddility and applicability,
then we should surely embrace it.

So let us turn to those criteria. It is a littleclear in the ascertainability
criterion just what “in principle” amounts to, thgluperhaps some latitude here
is all to the good. Understood charitably, andvoic trivializing it, it
presumably excludes omniscience. On the other hardgrstanding it in a

way acceptable to a strict empiricist or a vertiimaist may be too restrictive.
‘Probability’ is apparently, among other thingsnadalconcept, plausibly
outrunning that which actually occurs, let alonattivhich is actually

observed.

Most of the work will be done by the applicabiltyiterion. We must say more
(as Salmon indeed does) about wéat of a guide to life probability is
supposed to be. Mass, length, area and volumdlarge&ul concepts, and they



are ‘guides to life’ in various ways (think howtaral distance judgments can
be to survival); moreover, they are admissible asckrtainable, so presumably
it is the applicability criterion that will rule &m out. Perhaps it is best to think
of applicability as a cluster of criteria, eachadfich is supposed to capture
something of probability's distinctive conceptuzales; moreover, we should
not require that all of them be met by a givennmtetation. They include:

Non-triviality: an interpretation should make non-extreme
probabilities at least a conceptual possibilityr Example, suppose
that we interpretP’ as thetruth function: it assigns the value 1 to
all true sentences, and 0 to all false sentende=n Trivially, all the
axioms come out true, so this interpretation isiadiinle. We
would hardly count it as an adequateerpretation ofprobability,
however, and so we need to exclude it. It is esadntprobability
that, at least in principle, it can take#ermediatevalues. All of the
interpretations that we will present meet thisesrdn, so we will
discuss it no more.

Applicability to frequenciesan interpretation should render
perspicuous the relationship between probabildiss (long-run)
frequencies. Among other things, it should makarckehy, by and
large, more probable events occur more frequehdy tess
probable events.

Applicability to rational beliefan interpretation should clarify the
role that probabilities play in constraining theyoees of belief, or
credencesof rational agents. Among other things, knowingtt
one event is more probable than another, a rategeit will be
more confident about the occurrence of the formrene

Applicability to ampliative inferencen interpretation will score
bonus points if it iluminates the distinction betn ‘good’ and
‘bad’ ampliative inferences, while explicating whgth fall short of
deductive inferences.

The next criterion may be redundant, given ourdgstar, but including it will
do no harm:

Applicability to sciencean interpretation should illuminate
paradigmatic uses of probability in science (foaraple, in
guantum mechanics and statistical mechanics).

Perhaps there are furthmetaphysicatlesiderata that we might impose on the
interpretations. For example, there appear to baections between
probability andmodality.Events with positive probabilityan happen, even if
they don't. Some authors also insist on the coeveradition thabnly events
with positive probability can happen, although tkisnore controversial — see



our discussion of ‘regularity’ in Section 4. (Indeén uncountable probability
spaces this condition will require the employmennbnitesimals, and will

thus take us beyond the standard Kolmogorov theefgtandard’ both in the
sense of being the orthodoxy, and in its employrmeéstandard, as opposed to
‘non-standard’ real numbers. See Skyrms 1980.hincase, our list is already
long enough to help in our assessment of the lgadierpretations on the
market.

3. The Main Interpretations

Broadly speaking, there are arguably three maicets of probability:

1. A quasi-logical concept, which is meant to measinjective evidential
support relations. For example, “in light of théexant seismological and
geological data, it iprobablethat California will experience a major
earthquake this decade”.

2. The concept of an agent's degree of confidenceaaed belief. For
example, “I am not sure that it will rain in Cankzethis week, but it
probablywill.”

3. An objective concept that applies to various systanthe world,
independently of what anyone thinks. For exammepdrticular radium
atom will probablydecay within 10,000 years”.

Some philosophers will insist that not all of thesacepts are intelligible;
some will insist that one of them is basic, and tha others are reducible to it.
Be that as it may, it will be useful to keep thesacepts in mind. Sections 3.1
and 3.2 discuss analyses of conceptdlssicalandlogical probability; 3.3
discusses analyses of concept §2pjectiveprobability; 3.4, 3.5, and 3.6
discuss three kinds of analysis of conceptf(@guentistpropensity andbest-
systenintepretations.

3.1 Classical Probability

The classical interpretation owes its name toat$yeand august pedigree.
Championed by Laplace, and found even in the woflZascal, Bernoulli,
Huygens, and Leibniz, it assigns probabilitieshi@ absence of any evidence,
or in the presence of symmetrically balanced ewdeihe guiding idea is that
in such circumstances, probability is shared eguwationg all the possible
outcomes, so that the classical probability of wenéis simply the fraction of
the total number of possibilities in which the elveccurs. It seems especially
well suited to those games of chance that by trexiy design create such
circumstances — for example, the classical proliglaf a fair die landing

with an even number showing up is 3/6. It is ofpe@supposed (usually tacitly)
in textbook probability puzzles.

Here is a classic statement by Laplace:



The theory of chance consists in reducing all thenes of the same
kind to a certain number of cases equally possib#,is to say, to
such as we may be equally undecided about in régareeir
existence, and in determining the number of camexréble to the
event whose probability is sought. The ratio o thimber to that
of all the cases possible is the measure of tloisgiility, which is
thus simply a fraction whose numerator is the nunalbéavorable
cases and whose denominator is the number ofeattdbes
possible. (1814, 1951 6-7)

There are numerous questions to be asked abodbthslation. When are
events of the same kind? Intuitively, ‘heads’ atads’ are equally likely
outcomes of tossing a fair coin; but if their kisdways the coin could land’,
then ‘edge’ should presumably be counted alongsielm. The “certain
number of cases” and “that of all the cases passdke presumably finite
numbers. What, then, of probabilities in infinigases? Apparently, irrational-
valued probabilities such asV®/are automatically eliminated, and thus
theories such as quantum mechanics that posit ta@mot be accommodated.
(We will shortly see, however, that Laplace's tyduas been refined to handle
infinite spaces.)

Who are “we”, who “may be equally undecided”? Diéfet people may be
equally undecided about different things, whichgasgis that Laplace is
offering a subjectivist interpretation in which pabilities vary from person to
person depending on contingent differences in gnadence. This is not his
intention. He means to characterize the objectrebability assignment of a
rational agent in an epistemically neutral positiath respect to a set of
“equally possible” cases. But then the proposékrsounding empty: for what
is it for an agent tbe “equally undecided” about a set of cases, otham th
assigning them equal probability?

This brings us to one of the key objections to hapls account. The notion of
“equally possible” cases faces the charge of eltleérg a category mistake
(for ‘possibility’ does not come in degrees), arcaiar (for what is meant is
really ‘equally probable’). The notion is finesdaglthe so-called ‘principle of
indifference’, a coinage due to Keynes. It stalbes wwhenever there is no
evidence favoring one possibility over anotherythave the same probability.
Thus, it is claimed, there is no circularity in ttlassical definition after all.
However, this move may only postpone the problemtHere is still a threat of
circularity, albeit at a lower level. We have twases here: outcomes for which
we haveno evidence at glland outcomes for which we hassgmmetrically
balanced evidenc& here is no circularity in the first case unléss notion of
‘evidence’ is itself probabilistic; but artifici@xamples aside, it is doubtful that
the case ever arises. For example, we have a evabld fund of evidence on
coin tossing from the results of our own experimsgtiie testimony of others,
our knowledge of some of the relevant physics,sndn. In the second case,



the threat of circularity is more apparent, fosaems that some sort of
weighingof the evidence in favor of each outcome is regjiand it is not
obvious that this can be done without referengarédability. Indeed, the most
obvious characterization of symmetrically balaneeience is in terms of
equality of conditional probabilities: given evid&E and possible outcomes
O1, Oy, ..., On, the evidence is symmetrically balanced™{©: | E) = P(O2 | E)

= ... =P(On | E). Then it seems that probabilities reside at deelof the
interpretation after all. Still, it would be an abement if all probabilities
could be reduced to cases of equal probability.

As we have seen, Laplace's classical theory isgatet to finite spaces, one for
which there are only finitely many possible outcemé@hen the spaces are
countably infinite, the spirit of the classical ¢ting may be upheld by appealing
to the information-theoretic principle ofaximum entropya generalization of
the principle of indifference championed by Jay(i&68). Entropy is a
measure of the lack of ‘informativeness’ of a ptabty function. The more
concentrated is the function, the less is its gytrthe more diffuse it is, the
greater is its entropy. For a discrete assignmiptababilitiesP = (p1, p2, ...),
the entropy oP is defined as:

-Y i pilog p

The principle of maximum entropy enjoins us to sefeom the family of all
probability functions consistent with our backgrdumowledge the function
that maximizes this quantity. In the special casehoosing the most
uninformative prior over a finite set of possibl#@mes, this is just the
familiar ‘flat’ classical assignment discussed poergly. Things get more
complicated in the infinite case, since there caieoa flat assignment over
denumerably many outcomes, on pain of violatingstla@dard probability
calculus (with countable additivity). Rather, thessbwe can have are
sequences of progressively flatter assignments nbwhich is truly flat. We
must then impose sonfierther constraint that narrows the field to a smaller
family in which therds an assignment of maximum entrdfyThis constraint
has to be imposed from outside as background krigelebut there is no
general theory of which external constraint shdaddcapplied when.

Let us turn now to uncountably infinite spacess kasy — all too easy — to
assign equal probabilities to the points in suspace: each gets probability 0.
Non-trivial probabilities arise when uncountablymgaf the points are
clumped together in larger sets. If there aredigimany clumps, Laplace's
classical theory may be appealed to again: if theée@ce bears symmetrically
on these clumps, each gets the same share of jlitybab

Enter Bertrand's paradoxes. They all arise in untadale spaces and turn on
alternative parametrizations of a given problent #ia non-linearly related to
each other. Some presentations are needlesslyeateagth and area suffice to



make the point. The following example (adapted fi@n Fraassen 1989)
nicely illustrates how Bertrand-style paradoxeskwvér factory produces cubes
with side-length between 0 and 1 foot; what isgh@bability that a randomly
chosen cube has side-length between 0 and 1/22aTbe tempting answer is
1/2, as we imagine a process of production thahrmly distributed over
side-length. But the question could have been gareaquivalent restatement:
A factory produces cubes with face-area betweamdOlasquare-feet; what is
the probability that a randomly chosen cube has-taea between 0 and 1/4
square-feet? Now the tempting answer is 1/4, asnagine a process of
production that is uniformly distributed over faaea. This is already
disastrous, as we cannot allow the same eveniv® tino different
probabilities (especially if this interpretationtssbe admissible!). But there is
worse to come, for the problem could have beemtestequivalently again: A
factory produces cubes with volume between 0 aoabic feet; what is the
probability that a randomly chosen cube has volbeteveen 0 and 1/8 cubic-
feet? Now the tempting answer is 1/8, as we imagipeocess of production
that is uniformly distributed over volume. And so for all of the infinitely
many equivalent reformulations of the problem émts of the fourth, fifth, ...
power of the length, and indeed in terms of eveny-pero real-valued
exponent of the length). What, thenthe probability of the event in question?

The paradox arises because the principle of ingiffee can be used in
incompatible ways. We have no evidence that fatl@sside-length lying in
the interval [0, 1/2] over its lying in [1/2, 1]r @ice versa, so the principle
requires us to give probability 1/2 to each. Uniogtely, we also have no
evidence that favors the face-area lying in angheffour intervals [0, 1/4],
[1/4, 1/2], [1/2, 3/4], and [3/4, 1] over any oktbthers, so we must give
probability 1/4 to each. The event ‘the side-lengk in [0, 1/2]’, receives a
different probability when merely redescribed. Asait goes, for all the other
reformulations of the problem. We cannot meet aay @f these constraints
simultaneously, let alone all of them.

Jaynes attempts to save the principle of indiffeeeaind to extend the principle
of maximum entropy to the continuous case, withimariance conditionin
two problems where we have the same knowledgehael@ assign the same
probabilities. He regards this as a consistencyiremqent. For any problem,
we have a group of admissible transformations,églilbat change the problem
into an equivalent form. Various details are lefspecified in the problem;
equivalent formulations of it fill in the details different ways. Jaynes'
invariance condition bids us to assign equal proibials to equivalent
propositions, reformulations of one another thatarived at by such
admissible transformations of our problem. Any @iobty assignment that
meets this condition is called arvariant assignment. Ideally, our problem
will have a unique invariant assignment. To be stlmags will not always be
ideal; but sometimes they are, in which case th&irely progress on Bertrand
-style problems.



And in any case, for many garden-variety probleathgsechnical machinery
will not be needed. Suppose | tell you that a piszeehind one of three doors,
and you get to choose a door. This seems to beadigen case in which the
principle of indifference works well: the probabylithat you choose the right
door is 1/3. It seems implausible that we shouldryvabout some
reparametrization of the problem that would yieldifferent answer. To be
sure, Bertrand-style problems caution us that thezdimits to the principle of
indifference. But arguably we must just be carefutl to overstate its
applicability.

How does the classical theory of probability faiéhwespect to our criteria of
adequacy? Let us begin with admissibility. It igicled that (Laplacean)
classical probabilities are only finitely additi{s&ee, e.g., de Finetti 1974). It
would be more correct to say that classical prdhegsi are countably additive,
but trivially so. As we have seen, classical prolttéds are only defined on
finite spaces. The statemenio8 countable additivity, recall, is a conditional;
its antecedent, A} is a countably infinite collection of (pairwisd)sjoint
sets,” is never satisfied in such spaces. Thus;dhditional is vacuously true.
Clearly, classical probabilities obey the otheloaxs, so this interpretation is
admissible.

Classical probabilities are ascertainable, assumhiagthe space of possibilities
can be determined in principle. They bear a ratatip to the credences of
rational agents; the circularity concern, as we ahave, is that the
relationship is vacuous, and that rather tbamstrainingthe credences of a
rational agent in an epistemically neutral positiihrey merely record them.

Without supplementation, the classical theory mai@sontact with frequency
information. However the coin happens to land sequence of trials, the
possible outcomes remain the same. Indeed, evea lifave strong empirical
evidence that the coin is biased towards headsprithability, say, 0.6, it is
hard to see how the unadorned classical theornacemmmodate this fact —
for what now are the ten possibilities, six of whare favorable to heads?
Laplace does supplement the theory with his RulBumicession: “Thus we
find that an event having occurred successivelyramgber of times, the
probability that it will happen again the next tilseequal to this number
increased by unity divided by the same numberemsed by two

units.” (1951, 19) That is:

: . +1
Pr(success oi+1st trial [N consecutive successesﬁllf2

Thus, inductive learning is possible — though notlassical probabilitieper
se but rather thanks to this further rule. And masit whether such learning
can be captured once and for all by such a singpfaila, the same for all



domains and events. We will return to this questiven we discuss the
logical interpretation below.

Science apparently invokes at various points pritibab that look classical.
Bose-Einstein statistics, Fermi-Dirac statisticy] Maxwell-Boltzmann
statistics each arise by considering the ways ichvparticles can be assigned
to states, and then applying the principle of ifedldnce to different
subdivisions of the set of alternatives, Bertratydes The trouble is that Bose-
Einstein statistics apply to some patrticles (elgptpns) and not to others,
Fermi-Dirac statistics apply to different particlesg. electrons), and Maxwell-
Boltzmann statistics do not apply to any knownipkes. None of this can be
determineda priori, as the classical interpretation would have itrétwoer, the
classical theory purports to yield probability gssnents in the face of
ignorance. But as Fine (1973) writes:

If we are truly ignorant about a set of alternagiviben we are also
ignorant about combinations of alternatives andubabdivisions
of alternatives. However, the principle of indi#eice when applied
to alternatives, or their combinations, or thelbdiuisions, yields
different probability assignments (170).

This brings us to one of the chief points of coménsy regarding the classical
interpretation. Critics accuse the principle ofiffedence of extracting
information from ignorance. Proponents reply thaather codifies the way in
which such ignorance should be epistemically mathageor anything other
than an equal assignment of probabilities wouldesgnt the possession of
some knowledge. Critics counter-reply that in &estd complete ignorance, it
is better to assign imprecise probabilities (pesha@mging over the entire [0, 1]
interval), or to eschew the assignment of probigdylialtogether.

3.2 Logical probability

Logical theories of probability retain the classicaerpretation’s idea that
probabilities can be determined a priori by an exation of the space of
possibilities. However, they generalize it in tvagpiortant ways: the
possibilities may be assignedequalweights, and probabilities can be
computed whatever the evidence may be, symmeiribalanced or not.
Indeed, the logical interpretation, in its varigusses, seeks to encapsulate in
full generality the degree of support or confirratthat a piece of evidenée
confers upon a given hypothesiswhich we may write ag(H, E). In doing
S0, it can be regarded also as generalizing dedulctgic and its notion of
implication, to a complete theory of inference gad with the notion of
‘degree of implication’ that relatdsto H. It is often called the theory of
‘inductive logic’, although this is a misnomer: thas no requirement th&tbe
in any sense ‘inductive’ evidence fidr ‘Non-deductive logic’ would be a
better name, but this overlooks the fact that degeidogic's relations of



implication and incompatibility are also accommadbas extreme cases in
which the confirmation function takes the valueantl O respectively.
Nevertheless, what is significant is that the laginterpretation provides a
framework for induction.

Early proponents of logical probability include &sbn (1921), Keynes (1921),
and Jeffreys (1939). However, by far the most syatec study of logical
probability was by Carnap. His formulation of logliprobability begins with
the construction of a formal language. In (1950rtwesiders a class of very
simple languages consisting of a finite numbeogfdally independent
monadic predicates (naming properties) appliedtmtably many individual
constants (naming individuals) or variables, aredubual logical connectives.
The strongest (consistent) statements that canaole i a given language
describe all of the individuals in as much detaitlze expressive power of the
language allows. They are conjunctions of completgriptions of each
individual, each description itself a conjunctiantaining exactly one
occurrence (negated or unnegated) of each predit#ite language. Call these
strongest statemengate descriptions

Any probability measuren(—) over the state descriptions automatically edsen
to a measure over all sentences, since each sengeaqguivalent to a
disjunction of state descriptions; m in turn indsi@econfirmation function(—,

-):

SR

There are obviously infinitely many candidatesrforand hence, even for
very simple languages. Carnap argues for his favoreasureri*” by

insisting that the only thing that significantlystdhguishes individuals from
one another is some qualitative difference, ndtgudifference in labeling. Call
astructure descriptiorm maximal set of state descriptions, each of wharh
be obtained from another by some permutation oirttlividual namesm*
assigns each structure description equal measaiehw turn is divided
equally among their constituent state descriptitingives greater weight to
homogenous state descriptions than to heterogeme®ss thus ‘rewarding’
uniformity among the individuals in accordance wptitatively reasonable
inductive practice. The induced allows inductive learning from experience.

Consider, for example, a language that has threesa, b andc, for
individuals, and one predicake For this language, the state descriptions are:

Fa& Fb & Fc

-Fa& Fb & Fc
Fa& -Fb & Fc
Fa& Fb & -Fc

Wb



-Fa & -Fb & Fc
-Fa & Fb & -Fc
Fa & -Fb & -Fc
-Fa & -Fb & -Fc

© N O

There are four structure descriptions:
{1}, “Everything is F”;
{2, 3, 4}, “Two Fs, one +7;
{5, 6, 7}, “OneF, two —s”; and
{8}, “Everything is -F".

The measuret* assigns numbers to the state descriptions aswellfirst,

every structure description is assigned an equightiel/4; then, each state
description belonging to a given structure desiipis assigned an equal part
of the weight assigned to the structure description

State description Structure description Weight m*

1. Fa.Fb.Fc |. Everything isF 1/4 1/4

2. +aFb.Fc 1/12
3.Fa.-Fb.Fc Il. Two Fs,one + 1/4 1/12
4.Fa.Fb.-Fc 1/12
5. +Fa.-Fb.Fc 1/12
6. Fa.Fb.-Fc Ill. OneF, two +s 1/4 1/12
7.Fa.-Fb.-Fc 1/12
8. +a.-Fb.-Fc IV. Everythingis + 1/4 1/4

Notice thatm* gives greater weight to the homogenous staterg®mns 1 and
8 than to the heterogeneous ones. This will manifesf in the inductive
support that hypotheses can gain from appropridatierce statements.
Consider the hypothesis statemertFc, true in 4 of the 8 state descriptions,
with a priori probabilitym*(h) = 1/2. Suppose we examine individual and
find it has propertyr — call this evidence. Intuitively, e is favorable (albeit
weak) inductive evidence fox We havem*(h & €) = 1/3,m*(e) = 1/2, and
hence

c*(h,e) = %é)e) =2/3.



This is greater than thepriori probabilitym*(h) = 1/2, so the hypothesis has
been confirmed. It can be shown that in generajields a degree of
confirmationc* that allows learning from experience.

Note, however, that infinitely many confirmatiomfitions, defined by suitable
choices of the initial measure, allow learning frerperience. We do not have
yet a reason to think that is the right choice. Carnap claims nevertheléss t

c* stands out for being simple and natural.

He later generalizes his confirmation function tooatinuum of functions,.
Define afamily of predicates to be a set of predicates suchfthra¢ach
individual, exactly one member of the set appleas] consider first-order
languages containing a finite number of familiearr@ap (1963) focuses on the
special case of a language containing only oneeptaedicates. He lays down
a host of axioms concerning the confirmation fumret, including those
induced by the probability calculus itself, variasoms of symmetry (for
example, that(h, €) remains unchanged under permutations of indivgjua
and of predicates of any family), and axioms thargntee undogmatic
inductive learning, and long-run convergence tatre¢ frequencies. They
imply that, for a family Pn}, n=1, ...,k (k> 2):

(§ +MK)

¢, (individual s + 1 isPj, 5 of the firsts individuals areP;) = Y

where is a positive real number. The higher the valug, die less impact
evidence has: induction from what is observed besopnogressively more
swamped by a classical-style equal assignmentdo @athek possibilities
regarding individuas + 1.

| turn to various objections to Carnap's prograat trave been offered in the
literature, noting that this remains an area adlindebate. (See Maher (2010)
for rebuttals of these arguments and for defens€amap.) Firstly, is there a
correct setting ok, or said another way, how ‘inductive’ should the
confirmation function be? The concern here is #mgt particular setting of is
arbitrary in a way that compromises Carnap's claifme offering dogical
notion of probability. Also, it turns out that fany such setting, a universal
statement in an infinite universe always receia® zonfirmation, no matter
what the (finite) evidence. Many find this countéuitive, since laws of nature
with infinitely many instances can apparently bafemed. Earman (1992)
discusses the prospects for avoiding the unwelcesdt.

Significantly, Carnap's various axioms of symmeitrg hardly logical truths.
Moreover, Fine (1973, 202) argues that we cannpbsa further symmetry
constraints that are seemingly just as plausibl@aasap's, on pain of
inconsistency. Goodman taught us: that the futuleesemble the past in
some respect is trivial; that it will resemble ffeest in all respects is



contradictory. And we may continue: that a probgbdssignment can be
made to respect some symmetry is trivial, that@amebe made to respect all
symmetries is contradictory. This threatens thelevpoogram of logical
probability.

Another Goodmanian lesson is that inductive logiushbe sensitive to the
meanings of predicates, strongly suggesting tiparaly syntactic approach
such as Carnap's is doomed. Scott and Krauss (18&nodel theory in their
formulation of logical probability for richer andare realistic languages than
Carnap's. Still, finding a canonical language seenmany to be a pipe dream,
at least if we want to analyze the “logical proligi of any argument of real
interest — either in science, or in everyday life.

Logical probabilities are admissible. It is eagsihown that they satisfy finite
additivity, and given that they are defined ontBrsets of sentences, the
extension to countable additivity is trivial. Givarchoice of language, the
values of a given confirmation function are asaedhle; thus, If this language
is rich enough for a given application, the releéyaobabilities are
ascertainable. The whole point of the theory ofdagprobability is to
explicate ampliative inference, although givendpearent arbitrariness in the
choice of language and in the setting.ef thus, in the choice of confirmation
function — one may wonder how well it achieves thise problem of
arbitrariness of the confirmation function also lp@ns the extent to which the
logical interpretation can truly illuminate the cattion between probabilities
and frequencies.

The arbitrariness problem, moreover, stymies amypadling connection
between logical probabilities and rational credenéend a further problem
remains even after the confirmation function hasnbehosen: if one's
credences are to be based on logical probabilthey, must be relativized to
an evidence statemeut,But which is to be? Carnap requires that one's
total evidencethat is, the maximally specific information atetmdisposal, the
strongest proposition of which one is certain. He&vewhen we go beyond
toy examples, it is not clear that this is wellidetl. Suppose | have just
watched a coin toss, and thus learned that thelaoded heads. Perhaps ‘the
coin landed heads’ is my total evidence? But | ##soned a host of other
things: as it might be, that the coin landed a¢riagn time, bouncing in a
certain way, making a certain noise as it did s€all this long conjunction of
factsX. | also learned a potentially infinite setd# sepropositions: ‘I learned
thatX, ‘I learned that | learned that and so on. Perhaps, then, my total
evidence is the infinite intersection of all thggepositions, although this is
still not obvious — and it is not something thah dee represented by a
sentence in one of Carnap's languages, whichite fmlength. More
significantly, the total evidence criterion goesitian hand with positivism and
a foundationalist epistemology according to whiodré are such determinate,
ultimate deliverances of experience. But perhagsiag does not come in the



form of such ‘bedrock’ propositions, as Jeffrey42Phas argued — maybe it
rather involves a shift in one's subjective prohigds across a partition,
without any cell of the partition becoming certaiinen it may be the case that
the strongest proposition of which one is certaiexpressed by a tautologjy
— hardly an interesting notion of ‘total evidené®’.

In connection with the ‘applicability to scienceiterion, a point due to
Lakatos is telling. By Carnap's lights, the degreeonfirmation of a
hypothesis depends on the language in which thethgpis is stated and over
which the confirmation function is defined. Butesdiific progress often brings
with it a change in scientific language (for exaephe addition of new
predicates and the deletion of old ones), and audiange will bring with it a
change in the correspondingralues. Thus, the growth of science may
overthrow any particular confirmation theory. Thessomething of the snake
eating its own tail here, since logical probabilitgs supposed to explicate the
confirmation of scientific theories.

We have seen that the later Carnap relaxed higeaspiration to find a
uniqueconfirmation function, allowing a continuum of §utinctions

displaying a wide range of inductive cautiousn¥®ssious critics of logical
probabilities believe that he did not go far enougjiat even his later systems
constrain inductive learning beyond what is ratlyn@quired. This recalls the
classic debate earlier in the"™6entury between Keynes, a famous proponent
of logical probabilities, and Ramsey, an equalinéais opponent. Ramsey was
skeptical of there being any non-trivial relati@igogical probability: he said
that he could not discern them himself, and thia¢i® disagree about them.
This skepticism led him to formulate his own, enously influential
subjectiveinterpretation of probability.

3.3 Subjective probability
3.3.1 Probability as degree of belief

We may characterizeubjectivism(also known apersonalismandsubjective
Bayesianismwith the slogan: ‘Probability is degree of béeliéWe identify
probabilities with degrees of confidence, or crassn or “partial” beliefs of
suitable agents. Thus, we really hawanyinterpretations of probability here,
as many as there are doxastic states of suitabl@sigve have Aaron's degrees
of belief, Abel's degrees of belief, Abigail's degs of belief, ... , or better still,
Aaron's degrees of belief-at-tinig-Aaron's degrees of belief-at-timg-Abel's
degrees of belief-at-tima; ... . Of course, we must ask what makes an agent
‘suitable’. What we might calinconstrained subjectivisplaces no constraints
on the agents — anyone goes, and hence anythirsy gagous studies by
psychologists (see, e.g., several articles in Katameet al. 1982) are taken to
show that people commonly violate the usual prdiglmalculus in

spectacular ways. We clearly do not have here emsaible interpretation



(with respect to any probability calculus), sinkere is no limit to what agents
might assign. Unconstrained subjectivism is nagréosis proposal.

More interesting, however, is the claim that thi¢gedale agents must be, in a
strong senseational. Beginning with Ramsey (1926), various subjectsvis
have wanted to assimilate probability to logic loytpaying probability as the
logic of partial belief. A rational agent is recgarto be logically consistent,
now taken in a broad sense. These subjectivisteedtat this implies that the
agent obeys the axioms of probability (althoughhpps with only finite
additivity), and that subjectivism is thus (to teigent) admissible. Before we
can present this argument, we must say more allwait degrees of belief are.

3.3.2 The betting analysis and the Dutch Book arguemt

Subjective probabilities are traditionally analyzederms of betting behavior.
Here is a classic statement by de Finetti (1980):

Let us suppose that an individual is obliged tduat the rat@ at
which he would be ready to exchange the posses$ian arbitrary
sumS (positive or negative) dependent on the occurrefeegiven
eventE, for the possession of the sy8 we will say by definition
that this numbep is the measure of the degree of probability
attributed by the individual considered to the é\teror, more
simply, thatp is the probability oE (according to the individual
considered; this specification can be implicitiéte is no
ambiguity). (62)

This boils down to the following analysis:

Your degree of belief il is p iff p units of utility is the price at
which you would buy or sell a bet that pays 1 ohiutility if E, O if
notE.

The analysis presupposes that, for Bnthere is exactly one such price — let's
call this the agentfir price for the bet ork. This presupposition may fail.
There may be no such price — you may refuse tohe&tat all (perhaps
unless coerced, in which case your genuine opiabmutE may not be
revealed), or your selling price may differ fromuydouying price, as may
occur if your probability foE is imprecise. There may be more than one fair
price — you may find a range of such prices acd#ptas may also occur if
your probability forE is vague. For now, however, let us waive theseeors,
and turn to an important argument, again origigptuith Ramsey, that uses
the betting analysis purportedly to show that ralalegrees of belief must
conform to the probability calculus (with at leéistte additivity).



A Dutch book(against an agent) is a series of bets, each &iideo the
agent, but which collectively guarantee her lossydver the world turns out.
Ramsey notes, and it can be easily proven (e.grn$k1984), that if your
subjective probabilities violate the probabilityaadus, then you are
susceptible to a Dutch book. For example, supduseybu violate the
additivity axiom by assignin@(A U B) <P(A) + P(B), whereA andB are
mutually exclusive. Then a cunning bettor could bayn you a bet o U B
for P(A U B) units, and sell you bets @dnandB individually for P(A) andP
(B) units respectively. He pockets an initial prafitt(A) + P(B) - P(A U B),
and retains it whatever happens. Ramsey offerfotlosving influential gloss:
“If anyone's mental condition violated these lawafthe probability calculus],
his choice would depend on the precise form in tviie options were offered
him, which would be absurd.” (1980, 41)

Equally important, and often neglected, is the evse theorem that establishes
how you can avoid such a predicament. If your stilyje probabilities

conform to the probability calculus, then no Dubdok can be made against
you (Kemeny 1955); your probability assignmentsthesn said to beoherent

In a nutshell, conformity to the probability calaslis necessary and sufficient
for coherencé’

But let us return to the betting analysis of crexmsn It is an attempt to make
good on Ramsey's idea that probability “is a mearsent of beliefjuabasis

of action” (34). While he regards the method of suwgang an agent's credences
by her betting behavior as “fundamentally soundt)(®e recognizes that it

has its limitations.

The betting analysis gives an operational definitd subjective probability,
and indeed it inherits some of the difficultiesoplerationalism in general, and
of behaviorism in particular. For example, you rhaye reason to
misrepresent your true opinion, or to feign hawpgnions that in fact you
lack, by making the relevant bets (perhaps to exatoincoherence in
someone else's betting prices). Moreover, as Rapways out, placing the
very bet may alter your state of opinion. Trivialiydoes so regarding matters
involving the bet itself (e.g., you suddenly in@eagour probability that you
have just placed a bet). Less trivially, placing bet may change the world,
and hence your opinions, in other ways (bettingigi stakes on the
proposition ‘I will sleep well tonight’ may suddgniurn you into an
insomniac). And then the bet may concern an evgtt that, were it to occur,
you would no longer value the pay-off the same wBwring the August 11,
1999 solar eclipse in the UK, a man placed a latwiould have paid a million
pounds if the world came to an end.)

These problems stem largely from taking literafig hotion of entering into a
bet onE, with its corresponding payoffs. The problems rhbayavoided by
identifying your degree of belief in a propositiaith the betting price you



regard as fair, whether or not you enter into sublet; it corresponds to the
betting odds that you believe confer no advantagbsadvantage to either side
of the bet (Howson and Urbach 1993). There is shimgiof the Rawlsian

‘veil of ignorance’ reasoning here: imagine thatiywe to set the price for the
bet, but you do not yet know which side of theyami are to take. At your fair
price, you should be indifferent between takingeitside®!

de Finetti speaks of “an arbitrary sum” as thegozthe bet oft. The sum

had better be potentially infinitely divisible, else probability measurements
will be precise only up to the level of ‘grain’ tife potential prizes. For
example, a sum that can be divided into only 108spaill leave probability
measurements imprecise beyond the second deciata,ionflating
probabilities that should be distinguished (elgpse of a logical contradiction
and of ‘a fair coin lands heads 8 times in a roMre significantly, if utility

Is not a linear function of such sums, then the sizthe prize will make a
difference to the putative probability: winning alldr means more to a pauper
more than it does to Bill Gates, and this may lected in their betting
behaviors in ways that have nothing to do withrtgenuine probability
assignments. de Finetti responds to this problesulggesting that the prizes
be kept small; that, however, only creates the sp@@roblem that agents may
be reluctant to bother about trifles, as Ramsegtpaut.

Better, then, to let the prizes be measured iitiasl after all, utility is
infinitely divisible, and utility is a linear funicin of utility. While we're at it,
we should adopt a more liberal notion of bettingeAall, there is a sense in
which every decision is a bet, as Ramsey observed.

3.3.3 Probabilities and utilities

Utilities (desirabilities) of outcomes, their prdiéties, and rational
preferences are all intimately linked. Tiert Royal LogiqArnauld, 1662)
showed how utilities and probabilities togetheredeiine rational preferences;
de Finetti's betting analysis derives probabilifresn utilities and rational
preferences; von Neumann and Morgenstern (1944)adetilities from
probabilities and rational preferences. And mostaskably, Ramsey (1926)
(and later, Savage 1954 and Jeffrey 1966) debadsprobabilitiesand

utilities from rational preferences alone.

First, he defines a proposition to &inically neutral— relative to an agent —
if the agent is indifferent between having thatcome when the proposition is
true and when it is false. The idea is that thentigeesn't care about the
ethically neutral proposition as such — it is a ne# an end that he might
care about, but it has no intrinsic value. Nowyéhe a simple test for
determining whether, for a given agent, an ethyaadlutral propositioN has
probability 1/2. Suppose that the agent prefets B. ThenN has probability
1/2 iff the agent is indifferent between the garsble



Aif N, B if not
Bif N, A if not.

Ramsey assumes that it does not matter what tltedzdas forA andB are.
We may assign arbitrarily & andB any two real numbergA) andu(B) such
thatu(A) > u(B), thought of as the desirabilities AfandB respectively.
Having done this for the one arbitrarily choserr paandB, the utilities of all
other propositions are determined.

Given various assumptions about the richness gbtbkerence space, and
certain ‘consistency assumptions’, he can defirmakvalued utility function
of the outcomeg, B, etc — in fact, various such functions will regrasthe
agent's preferences. He is then able to defineliggaadifferences in utility
for any outcomes over which the agent has prefeseritturns out that ratios
of utility-differences are invariant — the same alever representative utility
function we choose. This fact allows Ramsey toragetiegrees of belief as
ratios of such differences. For example, supposadgfent is indifferent
betweenA, and the gambleB'if X, C otherwise.” Then it follows from
considerations of expected utility that her degriekelief inX, P(X), is given

by:

_u(A) —u(©)
AT
Ramsey shows that degrees of belief so derived thiteegrobability calculus
(with finite additivity). He calls what results ‘@hogic of partial belief,” and
indeed he opens his essay with the words “In théae the Theory of
Probability is taken as a branch of logic....”

Ramsey avoids some of the objections to the besinadysis, but not all of
them. Notably, the essential appeal to gamblesag#ses the concern that the
wrong quantities are being measured — an invetgaatgbler might
overvalue, and a puritan might undervalue, a gamdepared to what their
true credences would indicate. And his accountieasdifficulties. It is
unclear what facts about agents fix their prefeeaiankings. These rankings
cannot simply be read off their behaviors. For epd@mnthe coach of a football
team might ostentatiously bet at an inordinategjhtprice on his team
winning, in a public display of support that reveabthing about his honest
opinion. It is also dubious thabnsistencyequires one to have a set of
preferences as rich as Ramsey requires, or thataménd ethically neutral
propositions of probability 1/2. This in turn castame doubt on Ramsey's
claim to assimilate probability theory to logic.

Savage (1954) likewise derives probabilities aniitias from preferences
among options that are constrained by certain petatonsistency’ principles.



For a given set of such preferences, he generatlessof utility functions,
each a positive linear transformation of the offher of the formU; =aU; + b,
wherea > 0), and a unique probability function. Togettiese are said to
‘represent’ the agent's preferences. Jeffrey (18&#@)es the method further.
The result is theory of decision according to whiational choice maximizes
‘expected utility’, a certain probability-weightederage of utilities. Some of
the difficulties with the behavioristic betting dysis of degrees of belief can
now be resolved by moving to an analysis of degoéélief that is
functionalist in spirit. According to Lewis (1986HK)94a), an agent's degrees of
belief are represented by the probability functi@honging to a utility
function/probability function pair that best ratadizes her behavioral
dispositions, rationality being given a decisiordtetic analysis.

There is a deep issue that underlies all of theseuats of subjective
probability. They all presuppose the existenceaafassary connections
between desire-like states and belief-like statasjered explicit in the
connections between preferences and probabilihegsponse, one might
insist that such connections are at best contingectindeed can be imagined
to be absent. Think of an idealized Zen Buddhishkndevoid of any
preferences, who dispassionately surveys the vibaidre him, forming beliefs
but no desires. It could be replied that such ant not so easily imagined
after all — even if the monk does not value worlgbods, he will still prefer
some things to others (e.g., truth to falsehood).

Once desires enter the picture, they may also hawanted consequences.
Again, how does one separate an agent's enjoymelgdain for gambling
from the value she places on the gamble itselifidedly, a remark that
Ramsey makes in his critique of the betting analgsems apposite here: “The
difficulty is like that of separating two differenb-operating forces” (1980,
35). See Eriksson and Hajek (2007) for furthetiasin of preference-based
accounts of credence.

The betting analysis makes subjective probabildssertainable to the extent
that an agent's betting dispositions are ascetliEn@he derivation of them
from preferences makes them ascertainable to tieatethat his or her
preferences are known. However, it is unclear dinaigent's full set of
preferences is ascertainable even to himself @elffeHere a lot of weight
may need to be placed on the ‘in principle’ quedition in the ascertainability
criterion. The expected utility representation nsakeirtually analytic that an
agent should be guided by probabilities — aftertat probabilities are her
own, and they are fed into the formula for expectidy in order to determine
what it is rational for her to do.



3.3.4 Orthodox Bayesianism, and further constraint®n rational credences

But do they function as goodguide? Here it is useful to distinguish different
versions of subjectivisnOrthodox Bayesianm the style of de Finetti
recognize no rational constraints on subjectivéahbilities beyond:

I. conformity to the probability calculus, and

ii. a rule for updating probabilities in the face oiwevidence, known as
conditioning An agent with probability functioR1, who becomes certain
of a piece of evidende (and nothing stronger), should shift to a new
probability functionP- related tdP; by:

(Conditioning)P2(X) = P1(X | E) (providedP1(E) > 0).

This is a permissive epistemology, licensing dagasgates that we would
normally call crazy. Thus, you could assign probighbl to this sentence ruling
the universe, while upholding such extreme subjescti — provided, of
course, that you assign probability O to this secg@ot ruling the universe,
and that your other probability assignments alfoon to the probability
calculus.

Some otherwise extreme subjectivists impose thdurationality
requirement ofegularity: only a priori falsehoods get assigned probability O.
This is sometimes also called ‘strict coherenced & is advocated by authors
such as Kemeny (1955), Jeffreys (1961), Edwards €1963), Shimony
(1970), and Stalnaker (1970). It is meant to cagtuform of open-mindedness
and responsiveness to evidence. But then, perirapsiiively, someone who
assigns probability 0.999 to this sentence rulivgguniverse can be judged
rational, while someone who assigns it probabliig judged irrational. Note
also that the requirement of regularity seemsfiordfa new argument for the
non-existence of God as traditionally conceivedoamiscient agent, who
gives probability 1 to all truths, would be conedtof irrationality. Thus
regularity seems to require ignorance, or falseestyd See, e.g., Levi (1978)
for further opposition to regularity.

Probabilistic coherence plays much the same rolddgrees of belief that
consistencylays for ordinary, all-or-nothing beliefs. Whatt extreme
subjectivist, even one who demands regularity,daskan analogue tfuth,
some yardstick for distinguishing the ‘veridicafopability assignments from
the rest (such as the 0.999 one above), some walgiah probability
assignments are answerable to the world. It setyas, that the subjectivist
needs something more.

And various subjectivists offer more. Having iselhthe “logic” of partial
belief as conformity to the probability calculusarRsey goes on to discuss
what makes a degree of belief in a propositeasonable After canvassing



several possible answers, he settles upon onéottieges orhabitsof opinion
formation — “e.g. the habit of proceeding from th@nion that a toadstool is
yellow to the opinion that it is unwholesome” (5Be then asks, for a person
with this habit, what probability it would be bdst him to have that a given
yellow toadstool is unwholesome, and he answets‘ithaill in general be
equal to the proportion of yellow toadstools whaek in fact

unwholesome” (50). This resonates with more repesposals (e.g., van
Fraassen 1984, Shimony 1988) for evaluating degrkkslief according to
how closely they match the corresponding relatregdiencies — in the jargon,
how wellcalibratedthey are. Since relative frequencies obey themasiof
probability (up to finite additivity), it is thouglthat rational credences, which
strive to track them, should do so al8o.

However, rational credences may strive to trackousrthings. For example,
we are often guided by the opinions of experts.cdfesult our doctors on
medical matters, our weather forecasters on mdtepoal matters, and so on.
Gaifman (1988) coins the terms “expert assignmantf “expert probability”
for a probability assignment that a given agenvesrto track: “The mere
knowledge of the [expert] assignment will make dlgent adopt it as his
subjective probability” (193). This idea may be ifiedl as follows:

(Expert)P(A | pr(A) =X) =X,
for all x where this is defined.

where P’ is the agent's subjective probability functionddpr(A)’ is the
assignment that the agent regards as expert. Bon@g, if you regard the
local weather forecaster as an expert on your lealther, and she assigns
probability 0.1 to it raining tomorrow, then you ynaell follow suit:

P(rain | pr(rain) = 0.1) = 0.1

More generally, we might speak of an entire prolitstifinction as being such
a guide for an agent over a specified set of prtipas. van Fraassen (1989,
198) gives us this definition: “P is my personal probability function, thens
anexpert function for me concernirigmily F of propositions exactly iP(A | q
(A) =x) =x for all propositionsA in family F.”

Let us define ainiversal expert functiofor a given rational agent as one that
would guideall of that agent's probability assignments in thig.vea expert
function for the agent concerning all propositiovem Fraassen (1984, 1995a),
following Goldstein (1983), argues that an agemntsre probability functions
are universal expert functions for that agent. highenes this idea in his
Reflection PrinciplewhereP; is the agent's probability function at timp&and
Pwa IS her function at a later timeA:

Pi(A | Pua(A) =X) =X,
for all A and for allx where this is defined.



The principle encapsulates a certain demand fachionic coherence’
imposed by rationality. van Fraassen defends h witdiachronic’ Dutch Book
argument (one that considers bets placed at difféirmes), and by analogizing
violations of it to the sort of pragmatic inconsisty that one finds in Moore's
paradox.

We may go still further. There may be universaleskfunctions for large
classes of rational agents, and perhaps all of tii&@Principle of Direct
Probability regards theelative frequencyunction as a universal expert
function for all rational agents; we have alreadgrsthe importance that
proponents of calibration place on it. lebe an event-type, and ketifreq(A)

be the relative frequency #f(in some suitable reference class). Then for any
rational agent with probability functid®, we have (cf. Hacking 1965):

P(A | relfreq(A) = Xx) =X,
for all A and for allx where this is defined.

Lewis (1980) posits a similar expert role for tiigective chance function, ch
for all rationalinitial credences in hiBrincipal Principle (here simplifieés]):

C(A | ch(A) =x) =X,
for all A and for allx where this is defined.

‘C’ denotes the ‘ur’ credence function of an agerthatbeginning of enquiry.
This is an idealization that ensures that the adees not have any
“inadmissible” evidence that bears Arwithout bearing on the chanceAf
For example, a rational agent who somehow knowsatiparticular coin toss
lands heads is surehotrequired to assign

C(heads th(heads) = 1/2) = 1/2.

Rather, this conditional probability should be ibce she has information
relevant to the outcome ‘heads’ that trumps itsxckaThe other expert
principles surely need to be suitably qualifiedherwise they face analogous
counterexamples. Yet strangely, the Principal Rplads the only expert
principle about which concerns about inadmissibidence have been raised
in the literature.

| will say more about relative frequencies and caashortly.

The ultimate expert, presumably, is thath function — the function that
assigns 1 to all the true propositions and 0 tthallfalse ones. Knowledge of
its values should surely trump knowledge of theigalassigned by human
experts (including one's future selves), freques)ae chances. Note that for
any putative exped,



P(A|qA) =xNA) =1,
for all A and for allx where this is defined.

— the truth ofA overrides anything the expert might say. So athef
proposed expert probabilities above should readlydgarded as defeasible.
Joyce (1998) portrays the rational agent as estignatuth values, seeking to
minimize a measure of distance between them angdrbbability assignments.
He argues that for any measure of distance thiafisatcertain intuitive
properties, any agent who violates the probabéiiypms could serve this
epistemic goal better by obeying them instead, wewthe world turns out.

There are some unifying themes in these putatinstcaints on subjective
probability. An agent's degrees of belief deterntieeestimates of certain
guantities: the values of bets, or the desirabgdittf gambles more generally, or
the probability assignments of various ‘expertshamans, relative
frequencies, objective chances, or truth values.|&vs of probability then are
claimed to be constraints on these estimates:ipataécessary conditions for
minimizing her ‘losses’ in a broad sense, be theyatary, or measured by
distances from the assignments of these experts.

3.4 Frequency Interpretations

Gamblers, actuaries and scientists have long uttdershat relative
frequencies bear an intimate relationship to prdibals. Frequency
interpretations posit the most intimate relatiopstii all: identity. Thus, we
might identify the probability of ‘heads’ on a cart coin with the frequency of
heads in a suitable sequence of tosses of thediwvided by the total number
of tosses. A simple version of frequentism, whiawill call finite
frequentismattaches probabilities to events or attributes fimite reference
class in such a straightforward manner:

the probability of an attribute A in a finite refarce class B is the
relative frequency of actual occurrences of A witBi

Thus, finite frequentism bears certain structunailarities to the classical
interpretation, insofar as it gives equal weighéah member of a set of
events, simply counting how many of them are ‘fade’ as a proportion of
the total. The crucial difference, however, is tvaere the classical
interpretation counted all thEossibleoutcomes of a given experiment, finite
frequentism countactual outcomes. It is thus congenial to those with
empiricist scruples. It was developed by Venn (38&#o in his discussion of
the proportion of births of males and females, daaes: “probabilityis
nothing but that proportion” (p. 84, his emphadisite frequentism remains
the dominant view of probability in statistics, andhe sciences more
generally.



Finite frequentism gives an operational definitairprobability, and its
problems begin there. For example, just as we weaaliow that our
thermometers could be ill-calibrated, and couldstpive misleading
measurements of temperature, so we want to allaitlr ‘measurements’ of
probabilities via frequencies could be misleadesgwhen a fair coin lands
heads 9 out of 10 times. More than that, it seentetbuilt into the very notion
of probability that such misleading results cas@rindeed, in many cases,
misleading results are guaranteed. Starting widbgenerate case: according to
the finite frequentist, a coin that is never tossedl that thus yields no actual
outcomes whatsoever, lacks a probability for hedidgether; yet a coin that is
never measured does not thereby lack a diametdrapeeven more troubling,
a coin that is tossed exactly once yields a reddtigquency of heads of either
0 or 1, whatever its bias. Or we can imagine awmigdiocative atom whose
probabilities of decaying at various times obeyatimuous law (e.qg.
exponential); yet according to finite frequentismith probability 1 it decays at
the exact time that dctually does, for its relative frequency of doing so ik. 1/
Famous enough to merit a name of its own, thessstances of the the so-
called ‘problem of the single case’. In fact, ma&awents are most naturally
regarded as not merely unrepeated, but in a ssengainrepeatable— the
2000 presidential election, the final game of tA@ 2NBA play-offs, the Civil
War, Kennedy's assassination, certain events imdghgearly history of the
universe. Nonetheless, it seems natural to thimoofextreme probabilities
attaching to some, and perhaps all, of them. WetitBesome cosmologists
regard it as a genuinely chancy matter whetheuaiverse is open or closed
(apparently certain quantum fluctuations couldprimciple, tip it one way or
the other), yet whatever it is, it is ‘single-casethe strongest possible sense.

The problem of the single case is particularlykstg, but we really have a
sequence of related problems: ‘the problem of thébtk case’, ‘the problem

of the triple case’ ... Every coin that is tossedattyawice can yield only the
relative frequencies 0, 1/2 and 1, whatever its.bidA finite reference class of
sizen, however large is, can only produce relative frequencies at tager
level of ‘grain’, namely Id. Among other things, this rules out irrational
probabilities; yet our best physical theories stneowise. Furthermore, there is
a sense in which any of these problems can beftramsd into the problem of
the single case. Suppose that we toss a coin adhduimes. We can regard
this as asingletrial of a thousand-tosses-of-the-coin experim¥et.we do not
want to be committed to saying tliaat experiment yields its actual result with
probability 1.

The problem of the single case is that the fimég@ientist fails to see
intermediate probabilities in various places whaheers do. There is also the
converse problem: the frequentist sees intermegdrateabilities in various
places where others do not. Our world has myriédreint entities, with
myriad different attributes. We can group them stith more sets of objects,
and then ask with which relative frequencies vagiatiributes occur in these



sets. Many such relative frequencies will be intdrate; the finite frequentist
automatically identifies them with intermediate Ipabilities. But it would
seem that whether or not they are genpirababilities as opposed to mere
tallies, depends on the case at hand. Bare rdt@atributes among sets of
disparate objects may lack the sort of modal fdined¢ one might expect from
probabilities. | belong to the reference class =timg) of myself, the Eiffel
Tower, the southernmost sandcastle on Santa M&seah, and Mt Everest.
Two of these four objects are less than 7 ft. &afklative frequency of 1/2;
moreover, we could easily extend this class, pvasgthis relative frequency
(or, equally easily, not). Yet it would be odd &yghat myprobability of being
less than 7 ft. tall, relative to this referencassl is 1/2, even though it is
perfectly acceptable (if uninteresting) to say thi2tof the objects in the
reference class are less than 7 ft. tall.

Some frequentists (notably Venn 1876, Reichenb&d® 1and von Mises
1957 among others), partly in response to somieeoptoblems above, have
gone on to considenfinite reference classes, identifying probabilities with
limiting relative frequencies of events or attributes tinerEhus, we require an
infinite sequence of trials in order to define spcbbabilities. But what if the
actual world does not provide an infinite sequenicigials of a given
experiment? Indeed, that appears to be the norhparihaps even the rule. In
that case, we are to identify probability withygpotheticalor counterfactual
limiting relative frequency. We are to imagine htipetical infinite extensions
of an actual sequence of trials; probabilitiesthes what the limiting relative
frequenciesvould beif the sequence were so extended. We might tHuthca
interpretatiorhypothetical frequentism

Note that at this point we have left empiricismibeh A modal element has
been injected into frequentism with this invocataira counterfactual,
moreover, the counterfactual may involve a radilegdarture from the way
things actually are, one that may even requirétkaking of laws of nature.
(Think what it would take for the coin in my pockathich has only been
tossed once, to be tossed infinitely many timesevenwearing out, and never
running short of people willing to toss it!) One ynaonder, moreover,
whether there is always — or ever — a fact of ttadter of what such
counterfactual relative frequencies are.

Limiting relative frequencies, we have seen, mastdiativized to a sequence
of trials. Herein lies another difficulty. Considen infinite sequence of the
results of tossing a coin, as it might be H, THHH, T, H, T, T, ... Suppose
for definiteness that the corresponding relatiegfiency sequence for heads,
which begins 1/1, 1/2, 2/3, 3/4, 415, 4/6, 5/7,,%®, ..., converges to 1/2. By
suitably reordering these results, we can makseheence converge to any
value in [0, 1] that we like. (If this is not obws, consider how the relative
frequency of even numbers among positive integengh intuitively ‘should’
converge to 1/2, can instead be made to converfjgltoy reordering the



integers with the even numbers in every fourth @las follows: 1, 3, 5, 2, 7,
9,11, 4, 13,15, 17, 6, ...) To be sure, there neagdmething natural about the
ordering of the tosses as given — for example ay ime theitemporal

ordering. But there may be more than one natuddrarg. Imagine the tosses
taking place on a train that shunts backwards andards on tracks that are
oriented west-east. Then theatial ordering of the results from west to east
could look very different. Why should one orderivg privileged over others?

A well-known objection to any version of frequentiss thatrelative
frequencies must belativisedto a reference class. Consider a probability
concerning myself that | care about — say, my plodlg of living to age 80. |
belong to the class of males, the class of non-enspkhe class of philosophy
professors who have two vowels in their surnameRresumably the relative
frequency of those who live to age 80 varies acfossst of) these reference
classes. What, then, is my probability of livingaige 807? It seems that there is
no single frequentist answer. Instead, there igpropability-qua-male, my
probability-qua-non-smoker, my probability-qua-mal@en-smoker, and so on.
This is an example of the so-callederence class problefor frequentism
(although it can be argued that analogues of tbblem arise for the other
interpretations as wéll). And as we have seen in the previous paragraph, t
problem is only compounded for limiting relativeduencies: probabilities
must be relativized not merely to a reference ¢lagsto a sequence within the
reference class. We might call this tleéerence sequence problem.

The beginnings of a solution to this problem wookdto restrict our attention
to sequences of a certain kind, those with cedasirable properties. For
example, there are sequences for which the limittafive frequency of a
given attribute does not exist; Reichenbach thutuees such sequences. Von
Mises (1957) gives us a more thoroughgoing regindb what he calls
collectives— hypothetical infinite sequences of attributessgble outcomes)
of specified experiments that meet certain requaneis Call glace-selection
an effectively specifiable method of selecting a&si of members of the
sequence, such that the selection or not of thexindepends at most on the
firsti — 1 attributes. The axioms are:

Axiom of Convergencéhe limiting relative frequency of any
attribute exists.

Axiom of Randomnesthe limiting relative frequency of each
attribute in a collective» is the same in any infinite subsequence of
o which is determined by a place selection.

The probability of an attributd, relative to a collective, is then defined as

the limiting relative frequency & in o. Note that a constant sequence such as
H, H, H, ..., in which the limiting relative frequeycs the same ianyinfinite
subsequence, trivially satisfies the axiom of randess. This puts some strain



on the terminology — offhand, such sequences agpdag asionrandom as
they come — although to be sure it is desirableghababilities be assigned
even in such sequences. Be that as it may, therpasallel between the role of
the axiom of randomness in von Mises' theory aedtimciple of maximum
entropy in the classical theory: both attempt tptaee a certain notion of
disorder.

Collectives are abstract mathematical objectsal@anot empirically
instantiated, but that are nonetheless positecbbyMises to explain the
stabilities of relative frequencies in the behawabactual sequences of
outcomes of a repeatable random experiment. CH{aB2k0) renders precise
the notion of a place selection as a recursivetioncNevertheless, the
reference sequence problem remains: probabilitiest always be relativized
to a collective, and for a given attribute suchhasads’ there are infinitely
many. Von Mises embraces this consequence, ingigtat the notion of
probability only makes sense relative to a collectin particular, he regards
single case probabilities as nonsense: “We camgtyng about the
probability of death of an individual even if wedu his condition of life and
health in detail. The phrase ‘probability of deatlhhen it refers to a single
person, has no meaning at all for us” (11). Sontesbelieve that rather than
solving the problem of the single case, this meigtpres it. And note that von
Mises drastically understates the commitments ®theory: by his lights, the
phrase ‘probability of death’ also has no meaningllavhen it refers to a
million people, or a billion, or any finite number after all, collectives are
infinite. More generally, it seems that von Mises' the@y the unwelcome
consequence that probability statements never im@asing in the real world,
for apparently all sequences of attributes aredirte introduced the notion of
a collective because he believed that the regidarih the behavior of certain
actual sequences of outcomes are best explaingtebypothesis that those
sequences are initial segments of collectives tidatis curious: wé&nowfor
any actual sequence of outcomes that theyatrmitial segments of
collectives, since we know that they are not ihgiegments of infinite
sequences.

Let us see how the frequentist interpretations &aording to our criteria of
adequacy. Finite relative frequencies of coursisfydinite additivity. In a
finite reference class, only finitely many everds ©occur, so only finitely
many events can have positive relative frequenctthat case, countable
additivity is satisfied somewhat trivially: all bfibitely many terms in the
infinite sum will be 0. Limiting relative frequeres violate countable additivity
(de Finetti 1972, 85.22). Indeed, the domain oirdgbn of limiting relative
frequency is not even a field, let alone a sigreldf{de Finetti 1972, 85.8). So
such relative frequencies do not provide an adiiessnterpretation of
Kolmogorov's axioms. Finite frequentism has no Ileuneeting the
ascertainability criterion, as finite relative fregncies are in principle easily
determined. The same cannot be said of limitingtne frequencies. On the



contrary, any finite sequence of trials (whicheattll, is all we ever see) puts
literally no constraint on the limit of an infinigequence; still less does an
actualfinite sequence put any constraint on the limiaofinfinitehypothetical
sequence, however fast and loose we play with etiemof ‘in principle’ in
the ascertainability criterion.

It might seem that the frequentist interpretatimsoundingly meet the
applicability to frequencies criterion. Finite frggntism meets it all too well,
while hypothetical frequentism meets it in the wgaway. If anything, finite
frequentism makes the connection between probiakikind frequencidso
tight, as we have already observed. A fair coit ihéossed a million times is
very unlikelyto land headsxactlyhalf the time; one that is tossed a million
and one times is even less likely to do so! Faotsiafinite relative
frequencies should serve as evidence, butotlusiveevidence, for the
relevant probability assignments. Hypothetical érexgtism fails to connect
probabilities with finite frequencies. It connettem with limiting relative
frequencies, of course, but again too tightly:deen in infinite sequences, the
two can come apart. (A fair coin could land heamsVer, even if it is highly
unlikely to do so.) To be sure, science has mutgrest in finite frequencies,
and indeed working with them is much of the bussn&fsstatistics. Whether it
has any interest in highly idealized, hypotheteeknsions of actual
sequences, and relative frequencies therein, ihanmatter. The applicability
to rational opinion goes much the same way: itearcthat such opinion is
guided by finite frequency information, uncleartthas guided by information
about limits of hypothetical frequencies. For maobre extensive critiques of
finite frequentism and hypothetical frequentisne b&jek 1997 and Hajek
2009 respectively.

3.5 Propensity Interpretations

Like the frequency interpretationmopensityinterpretations locate probability
‘in the world’ rather than in our heads or in lagji@bstractions. Probability is
thought of as a physical propensity, or disposjtmmendency of a given type
of physical situation to yield an outcome of a agrkind, or to yield a long
run relative frequency of such an outcome.

While Popper is often credited as being the piooépropensity
interpretations, we already find the key idea m Writings of Peirce (1910, 79-
80): “I am, then, to define the meaning of theestant that therobability,

that if a die be thrown from a dice box it will tuap a number divisible by
three, is one-third. The statement means thatithkask a certain ‘would-be’;
and to say that the die has a ‘would-be’ is totbay it has a property, quite
analogous to angabit that a man might have.” A man's habit is a paraditc
example of a disposition; according to Peirce tieésgrobability of landing 3
or 6 is an analogous disposition. We might questitbether the analogy is
apt—the modal flavour of a habit is more onaetessityhan possibility. The



die's landing 3 or 6 is more like a maatslity to do something at which he
succeeds a third of the time. But then one migéd gluestion Peirce's talk of
probability as a ‘would-be’. Rather, it seems midee a gradedrhight-bé.

Be that as it may, Peirce continues: “Now in ortthat the full effect of the
die's ‘would-be’ may find expression, it is necegdhat the die should
undergo an endless series of throws from the dg& land he imagines the
relative frequency of the event-type in questiocilaing from one side of 1/3
to another. This again anticipates Popper's viewr.aB important difference is
that Peirce regards the propensity as a propeityeodie itself, whereas
Popper attributes the propensity to the entire chaet-up of throwing the die.

Popper (1957) is motivated by the desire to makeesef single-case
probability attributions that one finds in quantamechanics—for example “the
probability that this radium atom decays in 1608rgds 1/2”. He develops the
theory further in (1959a). For him, a probabijityf an outcome of a certain
type is a propensity of a repeatable experimeptaduce outcomes of that
type with limiting relative frequency. For instance, when we say that a coin
has probability 1/2 of landing heads when tossedmean that we have a
repeatable experimental set-up — the tossing set-tpat has a propensity to
produce a sequence of outcomes in which the lignitatative frequency of
heads is 1/2. With its heavy reliance on limitiegative frequency, this
position risks collapsing into von Mises-style fuegtism according to some
critics. Giere (1973), on the other hand, explcétllows single-case
propensities, with no mention of frequencies: pholig is just a propensity of
a repeatable experimental set-up to produce segqsaioutcomes. This,
however, creates the opposite problem to Popensg,; then, do we get the
desired connection between probabilities and freqes?

It is thus useful to follow Gillies (2000a) in disguishinglong-run propensity
theories andingle-casgropensity theories:

A long-run propensity theory is one in which propiéies are
associated with repeatable conditions, and arededas
propensities to produce in a long series of rapastof these
conditions frequencies which are approximately etuthe
probabilities. A single-case propensity theoryng a which
propensities are regarded as propensities to peoayarticular
result on a specific occasion (822).

Hacking (1965) and Gillies offer long-run (thougbt mfinitely long-run)
propensity theories; Fetzer (1982, 1983) and M{1€94) offer single-case
propensity theories. Note that ‘propensities’ aategorically different things
depending on which sort of theory we are considerxccording to the long-
run theories, propensities are tendencies to pedelative frequencies with
particular values, but the propensities are notsmeal by the probability



values themselves; according to the single-caswide the propensitiese
measured by the probability values. According tpg&w, for example, a fair
die has a propensity — @axtremely strongendency — to land ‘3’ with long-
run relative frequency 1/6. The small value of dé&@snot measure this
tendency. According to Giere, on the other hanel dile has aveaktendency
to land ‘3’. The value of 1/6oesmeasure this tendency.

It seems that those theories that tie propengtié®quencies do not provide
an admissible interpretation of the (full) probéapitalculus, for the same
reasons that relative frequencies do not. firisia facieunclear whether single
-case propensity theories obey the probabilityuwdakor not. To be sure, one
canstipulatethat they do so, perhaps using that stipulatiopaasof the

implicit definition of propensities. Still, it rem@s to be shown that there really
are such things — stipulating what a witch is doeissuffice to show that
witches exist. Indeed, to claim, as Popper does,ah experimental
arrangement has a tendency to produce a givenrigmelative frequency of a
particular outcome, presupposes a kind of stalmlityniformity in the
workings of that arrangement (for the limit woulok exist in a suitably
unstablearrangement). But this is the sort of ‘uniformatynature’
presupposition that Hume argued could not be knewrera priori, or
empirically. Now, appeals can be made to limit teews — so called ‘laws of
large numbers’ — whose content is roughly that uisdéable conditions,
such limiting relative frequencies almost certaiekyst, and equal the single
case propensities. Still, these theorems make gasms (e.g., that the trials
are independent and identically distributed) whinst again cannot be
known, and must merely be postulated.

Part of the problem here, say critics, is that wendt know enough about what
propensities are to adjudicate these issues. Tfisoeneproperty of this coin
tossing arrangement such that this coin would fewbs with a certain long-
run frequency, say. But as Hitchcock (2002) pomit “calling this property a
‘propensity’ of a certain strength does little ndlicate just what this property
is.” Said another way, propensity accounts are sextof giving empty
accounts of probability, & la Moliere's ‘dormatiietue’ (Sober 2000, 64).
Similarly, Gillies objects to single-case propeiesiton the grounds that
statements about them are untestable, and thaatkeynetaphysical rather
than scientific” (825). Some might level the sarharge even against long-run
propensities, which are supposedigtinctfrom the testable relative
frequencies.

This suggests that the propensity account hasdif§i meeting the
applicability to science criterion. Some propensigorists (e.g., Giere) liken
propensities to physical magnitudes such as etetitharge that are the
province of science. But Hitchcock observes thatahalogy is misleading.
We can only determine the general properties ofgeha— that it comes in two
varieties, that like charges repel, and so on —erpirical investigation. What



investigation, however, could tell us whether or pr@pensities are non-
negative, normalized and additive?

More promising, perhaps, is the idea that propmssére to play certain
theoretical roles, and that these place constramthie way they must behave,
and hence what they could be (in the style of tamsey/Lewis/‘Canberra
plan’ approach to theoretical terms — see Lewi0l®&7Jackson 2000). The
trouble here is that these roles may pull in ofpadirections,
overconstraininghe problem. The first role, according to somest@ins
them to obey the probability calculus (with fingdditivity); the second role,
according to others, constrains them to violate it.

On the one hand, propensities are said to congtraidegrees of belief, or
credencesof a rational agent. | will have more to sayhe hext section about
what credences are and what makes them ratiortdiptbiow recall the
‘applicability to rational belief’ criterion: an tarpretation should clarify the
role that probabilities play in constraining theaences of rational agents. One
such putative role for propensities is codifiedUgyvis’s ‘Principal Principle’.
(See section 3.3.) The Principal Principle undesin argument (Lewis 1980)
that whatever they are, propensities must obewshial probability calculus
(with finite additivity). After all, it is argued:ational credences, which are
guided by them, do.

On the other hand, Humphreys (1985) gives an inflabargument that
propensities doot obey Kolmogorov's probability calculus. The idsdhat
the probability calculus implieBayes' theorepwhich allows us to reverse a
conditional probability:

_P(B|A).P(A)
PAIB) =g
Yet propensities seem to be measures of ‘causdéteies’, and much as the
causal relation is asymmetric, so these propesstipposedly do not reverse.
Suppose that we have a test for an iliness thatsomeally gives false positives
and false negatives. A given sick patient may Fm@son-trivial) propensity to
give a positive test result, but it apparently nsake sense to say that a given
positive test result has a (non-trivial) propensityiqave come from a sick
patient. Thus, we have an argument that whateegrdhe, propensities must
not obey the usual probability calculus. ‘Humphreyw'gulox’, as it is known,
is really an argument against any formal accoumiropensities that has as a
theorem:

(*) if the probability ofB, givenA exists, then the probability &,
givenB exists,



however one understands these conditional prokiabiliThe argument has
prompted Fetzer and Nute (in Fetzer 1981) to aff@robabilistic causal
calculus” that looks quite different from Kolmogete calculus'® But one
could respond more conservatively. For examplepBop axiomatization of
primitive conditional probabilities does not havgds a theorem, and thus
propensities may conform to it despite Humphrel_;gajlment[.“] At least to
that extent they may still deserve to be calledbabilities’.

Or perhaps all this shows that the notion of ‘propty’ bifurcates: on the one
hand, there are propensities that bear an intic@tiaection to relative
frequencies and rational credences, and that dtgeydual probability calculus
(with finite additivity); on the other hand, theaiee causal propensities that
behave rather differently. In that case, there wdd still more interpretations
of probability than have previously been recognized

3.6 Best-System Interpretations

Traditionally, philosophers of probability have ogoized five leading
interpretations of probability—classical, logicalibjectivist, frequentist, and
propensity. But recently, so-callbest-systermterpretations of chance have
become increasingly popular and important. Whikythear some similarities
to frequentist accounts, they avoid some of fretjgers major failings; and
while they are sometimes assimilated to properitpunts, they are really
quite distinct. So they deserve separate treatment.

The best-system approach was pioneered by Lewl{i)9His analysis of
chance is based on his accounkagi¥s of naturg1973), which in turn refines
an account due to Ramsey (1928/1990). Accordingtas, the laws of nature
are the theorems of theest systematizatiaof the universe—theue theory
that best combines the theoretical virtuesiofplicity andstrength. These
virtues trade off. It is easy for a theory to mgle but not strong, by saying
very little; it is easy for a theory to be strongt bot simple, by conjoining lots
of disparate facts. The best theory balances simyphnd strength optimally—
in short, it is the most economical true theory.

So far, there is no mention of chances. Now, wanafirobabilistic theories to
enter the competition. We are not yet in a positemapeak of such theories as
being true. Instead, let us introduce another #texl virtue:fit. The more
probable the actual history of the universe isHgylights of the theory, the
better it fits that history. Now the theories congpaccording to how well they
combine simplicity, strength, and fit. The theoreshshe winning theory are
the laws of nature. Some of these laws may be pildtéec. The chances are
the probabilities that are determined by these gdvbistic laws.

According to Lewis (1986b), intermediate chance&siacompatible with
determinism. Loewer (2004) agrees that intermedliedpensitiesare



incompatible with determinism, understanding thioskbe essentially
dynamical “they specify the degree to which one state h@ndency to cause
another” (15). But he argues tl@itancesare best understood along Lewisian
best-system lines, and that there is no reasdmibthem to dynamical
chances. In particular, best-system chances maya#tisch tonitial

conditions adding to the dynamical laws a probability assignt, or
distribution, over initial conditions may provide a substangain in strength
with relatively little cost in simplicity. Sciendernishes important examples of
deterministic theories with such initial-conditiprobabilities. Adding the so-
called micro-canonical distribution to Newton's ag@nd the assumption that
the distant past had low entropy) yields all ofistecal mechanics; adding the
so-called quantum equilibrium distribution to Bolrdynamical laws yields
standard quantum mechanics. Indeed, this contaletastual science is one of
the selling points of best-system analyses.

This approach solves, or at least eases, somemidntism's problems.
Progress can be made on the problem of the siagke @he chances of a rare
atom decaying in various time intervals may be meiteed by a more
pervasive functional law, in which decay chancesgawen for a far wider
range of atoms by plugging in a range of settirfggome other magnitude
(e.g., atomic number). And simplicity may militatefavour of this functional
law being continuous, so even irrational-valuedbphnlities may be assigned.
Moreover, bare ratios of attributes among setsggatate objects will not
gualify as chances if they are not pervasive enpiagtthen a theory that
assigns them probabilities will lose too much sigifyl without sufficient gain
in strength.

However, some other problems for frequentism repaid some new ones
emerge, beginning with more basic problems folL#isian account of
lawhood itself. Some of them are partly a mattetewis's specific
formulation. Critics (e.g. van Fraassen 1989) qaedhe rather nebulous
notion of “balancing” simplicity and strength, whiare themselves somewhat
sketchy. But arguably some technical story (e fmrimation-theoretic) could

be offered to precisify them. Lewis himself worrteat the exchange rate for
such balancing may depend partly on our psycholimgyhich case there is
the threat the laws themselves depend on our pkyghaan unpalatable
idealism about them. But he maintains that thisdhrs not serious as long as
“nature is kind”, and one theory is so robustly fitet-runner that it remains
so under any reasonable standards for balancingjagain, perhaps technical
tools can offer some objectivity here. (See sedfidor a gesture at such tools.)

More telling is the concern that simplicity is larage-relative, and indeed that
any theory can be given the simplest specificgbiossible: simply abbreviate
it asT! Lewis replies that a theory's simplicity mustjbeged according to its
specification in a canonical language, in whichoélthe predicates correspond
to natural properties. Thus, ‘green’ may well be eligiblet lgrue’ surely is



not. Our abbreviation, then, has to be unpackedrms of such a language, in
which its true complexity will be revealed. Butgmow involves a substantial
metaphysical commitment to a distinction betweetunah and unnatural
properties, one that various empiricists (e.g. Werassen 1989) find
objectionable.

Further problems arise with the refinement to hambbabilistic laws. Again,
some of them may be due to Lewis's particular fdatan. Elga (2004)
observes that Lewis's notion of fit is problematizarious infinite universes—
think of an infinite sequence of tosses of a c@ifihand, it seems that the
particular infinite sequence that is actualized b assigned probabilizero

by any plausible candidate theory that regardpthbability of heads as
intermediate and the trials as independent. Elgaes, moreover, that there are
technical difficulties with addressing this problevith infinitesimal
probabilities. However, perhaps we merely needfarént understanding of
‘fit—perhaps understood as ‘typicality’ (Elga), perhaps one closer to that
employed by statisticians with ‘chi-squared’ tesitgoodness of fit (Schwarz
forthcoming).

Hoefer (2007) modifies Lewis's best-system accauhght of some of these
problems. Hoefer understands “best” as “best foramvering regularities that
are of interest to us, using the language botltiehse and of daily life,
without any special privilege bestowed upon natpraperties. Moreover, the
“best system” is now one of chances directly, nathan of laws. Thus, there
may be chances associated with the punctualitsaofd, for example, without
any presumption that there are any associated Hoefer follows Elga in
understanding ‘fit" as ‘typicality’. Strength israatter of the size of the overall
domain of the best system's probability functi@®isplicity is to be
understood in terms of elegant unification, and-fisendliness to beings like
us. As a result, Hoefer embraces the agent-camtiae of chances in his
sense, regarding as essential the credence-gummépr them that is captured
by the Principal Principle.

However, some other problems for Lewis's account raa deeper,
threatening best-system analyses more generatlysyanptomatic of the ghost
of frequentism that still hovers behind such aredy©ne problem for
frequentism that we saw strikes at the heart ofedtgmpt to reduce chances to
properties of patterns of outcomes. Such outconasba highly misleading
regarding the true chancdm®cause ofheir probabilistic nature. This is most
vivid for events that are single-case by any reabtntyping. Whether or our
universe turns out to be open or closed, plausiay outcome is compatible
with any underlying intermediate chance. The pgareralizes, however
pervasive the probabilistic pattern might be. Rlalysa coin's landing 9 heads
out of 10 tosses is compatible with any underlyirigrmediate chance for
heads; and so on. The pattern of outcomes thastiantiated may be a poor



guide to the true chance. (See Hajek 2009 for éurdinguments against
frequentism that carry over to best-system accounts

Another way of putting the concern is that bestesysaccounts mistake an
idealized epistemology of chance for its metapls/éicough see Lewis'
insistence that this is not the case). Such acsaingle out three theoretical
virtues—and one may wonder wjust those three—and reifies the
probabilities of a theory that displays the virtb@she highest degree. But a
probabilistic world may be recalcitrant to even best theorizing: nature may
be unkind.

4. Conclusion: Future Prospects?

It should be clear from the foregoing that therstils much work to be done
regarding the interpretations of probability. Eadierpretation that we have
canvassed seems to capture some crucial insigh&iobncept of it, yet falls
short of doing complete justice to this concepthBps the full story about
probability is something of a patchwork, with palti overlapping pieces. In
that sense, the above interpretations might bededaas complementary,
although to be sure each may need some furth@eraént. My bet, for what it
is worth, is that we will retain at least threetitist notions of probability: one
guasi-logical, one objective (chance), and oneexivie.

There are signs of the rehabilitation of classaral logical probability, and in
particular the principle of indifference and thénpiple of maximum entropy,
by authors such as Paris and Vencovska (1997), Maheo0, 2001), and
Bartha and Johns (2001). Relevant here may alsali@nces in information
theory and complexity theory (see Li and Vitany®T® These theories have
already proved to be fruitful in the study of ramteess (Kolmogorov 1965,
Martin-Lof 1966), which obviously is intimately egkd to the notion of
probability.

Refinements of our understanding of randomnedsirim should have a
bearing on the frequency interpretations (recatl Moses' appeal to
randomness in his definition of ‘collective’), and propensity accounts
(especially those that make explicit ties to freguies). Given the apparent
connection between propensities and causation a@tetbin Section 3.5,
powerful causal modeling techniques by authors ssc8pirtes, Glymour and
Scheines (1993) and Pearl (2000), and recent wokaasation more generally
(e.g., Hall 2003, Woodward 2003) should also prioveful here.

Johns (2002) offers a causal theory of chance;hguthe chance of an event
is the idealised epistemic probability of the eyegmnten a maximal
specification of its (possible) causes. Regardiegf{system interpretations of
chance, | noted that it is somewhat unclear exadtigt ‘simplicity’ and
‘strength’ consist in, and exactly how they ard¢obalanced. Perhaps insights



from statistics and computer science may be held: approaches to
statistical model selection, and in particular ‘theve-fitting’ problem, that
attempt to characterize simplicity, and its traffeaoth strength — e.g., the
Akaike Information Criterion (see Forster and Sob@94), the Bayesian
Information Criterion (see Kieseppa 2001), MinimDmascription Length
theory (see Rissanen 1999) and Minimum Messagethdhgory (see Wallace
and Dowe 1999). Another growth area is the studyooffundamental
objective probabilities, as one finds in statidtit@chanics and evolutionary
theory. Are they genuine chances? Do they showctietice is compatible
with determinism? See Lyon (2011) for a discussibsome of these issues.
Relatedly, an important approach to objective pbdlig that is gaining in
popularity involves the so-calledethod of arbitrary function®riginating
with Poincaré (1896), it is a mathematical techaeifpr determining
probability functions for certain systems with chaalynamical laws mapping
input conditions to outcomes. Roughly speaking pitababilities for the
outcomes are relatively insensitive to the proligdsl over the various initial
conditions — think of how the probabilities of ooitnes of spins of a roulette
wheel apparently do not depend on who is spinrhiegitheel, sometimes
vigorously, sometimes feebly. See Strevens (20833 etailed treatment of
this approach.

The subjectivist theory of probability is also thng. Developments in the last
decade or so include Schervish, Seidenfeld and ie&sl§2003) research on
degrees of incoherence (measuring the extent @rtleps from obedience to
the probability calculus). | foresee related attesrip ‘humanize’
Bayesianism—for example, the further study of incge probability and
imprecise decision theory, in which credences metdbe precise numbers.
(See http://www.sipta.org/ for up-to-date reseancthis area.) And a recently
burgeoning area of research has concernedahintsof subjective
probability assignments, the objects to which sagdignments attach—
whether they should be to propositions (sets o$iptes worlds), or to more
fine-grainedself-locatingpropositions (sets of centered worlds — see Lewis
1979), or to something else. Thus, an agent magsggn credences simply to
propositions concerning the way the world is, loutnore specific propositions
concerning who she is, where she is, or what tinge This in turn has
ramifications for updating rules, in particularload into question the
appropriateness of conditionalization. The so-daBi&eeping Beauty problem
(Elga 2000) has generated much discussion in¢lgiagrd. These promise to be
fertile areas of future research. We may expedtfthther criteria of adequacy
for subjective probabilities will be developed —Ip&ps refinements of
‘scoring rules’ (Winkler 1996), and more generaflgndidates for playing a
role for subjective probability analogous to thierhat truth plays for belief.

Here we come full circle. For belief is apparerahswerable both to logic and
to objective facts. A refined account of degreedafef may be answerable
both to a refined quasi-logical notion and a refinetion of chance. Indeed,



various cottage industries are springing up invguihe interrelations among
the different concepts of probability. A notableeat trend concerns the
putative connections between objective chance abgdstive probability,
along the lines of the Principal Principle. Can phiaciple be justified? Does
need refining? How should we understand “inadmissiévidence? See Hall
(1994, 2004) and Schwarz (forthcoming) for furtdescussion.

Well may we say that probability is a guide to;lifeit the task of
understanding exactly how and why it is has giilbé completed, and will
surely be a guide to future theorizing about it.

Suggested Further Reading

Kyburg (1970) contains a vast bibliography of titer&ture on probability and
induction pre-1970. Also useful for references beftO67 is the bibliography
for “Probability” in the MacmillarEncyclopedia of Philosoph{arman (1992)
and Howson and Urbach (1993) have more recenbigitalphies, and give
detailed presentations of the Bayesian programrtri&y2000) is an excellent
introduction to the philosophy of probability. v&Mato (1994) is more
technically demanding and more historically oriehteith another extensive
bibliography that has references to many landmiarkise development of
probability theory in the last century. Fine (19733till a highly sophisticated
survey of and contribution to various foundatioisglies in probability, with an
emphasis on interpretations. More recent philoszgtstudies of the leading
interpretations include Gillies (2000b), Galavg2005), and Mellor (2005).
Eagle (2010) is a valuable anthology of many sigaift papers in the
philosophy of probability. Billingsley (1995) anelfer (1968) are classic
textbooks on the mathematical theory of probability
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