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‘Interpreting probability’ is a commonly used but misleading characterization 
of a worthy enterprise. The so-called ‘interpretations of probability’ would be 
better called ‘analyses of various concepts of probability’, and ‘interpreting 
probability’ is the task of providing such analyses. Or perhaps better still, if our 
goal is to transform inexact concepts of probability familiar to ordinary folk 
into exact ones suitable for philosophical and scientific theorizing, then the task 
may be one of ‘explication’ in the sense of Carnap (1950). Normally, we speak 
of interpreting a formal system, that is, attaching familiar meanings to the 
primitive terms in its axioms and theorems, usually with an eye to turning them 
into true statements about some subject of interest. However, there is no single 
formal system that is ‘probability’, but rather a host of such systems. To be 
sure, Kolmogorov's axiomatization, which we will present shortly, has 
achieved the status of orthodoxy, and it is typically what philosophers have in 
mind when they think of ‘probability theory’. Nevertheless, several of the 
leading ‘interpretations of probability’ fail to satisfy all of Kolmogorov's 
axioms, yet they have not lost their title for that. Moreover, various other 
quantities that have nothing to do with probability do satisfy Kolmogorov's 
axioms, and thus are interpretations of it in a strict sense: normalized mass, 
length, area, volume, and other quantities that fall under the scope of measure 
theory, the abstract mathematical theory that generalizes such quantities. 
Nobody seriously considers these to be ‘interpretations of probability’, 
however, because they do not play the right role in our conceptual apparatus. 
Instead, we will be concerned here with various probability-like concepts that 
purportedly do. Be all that as it may, we will follow common usage and drop 
the cringing scare quotes in our survey of what philosophers have taken to be 
the chief interpretations of probability.

Whatever we call it, the project of finding such interpretations is an important 
one. Probability is virtually ubiquitous. It plays a role in almost all the sciences. 
It underpins much of the social sciences — witness the prevalent use of 
statistical testing, confidence intervals, regression methods, and so on. It finds 
its way, moreover, into much of philosophy. In epistemology, the philosophy 
of mind, and cognitive science, we see states of opinion being modeled by 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The Australian National University

https://core.ac.uk/display/156656676?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


subjective probability functions, and learning being modeled by the updating of 
such functions. Since probability theory is central to decision theory and game 
theory, it has ramifications for ethics and political philosophy. It figures 
prominently in such staples of metaphysics as causation and laws of nature. It 
appears again in the philosophy of science in the analysis of confirmation of 
theories, scientific explanation, and in the philosophy of specific scientific 
theories, such as quantum mechanics, statistical mechanics, and genetics. It can 
even take center stage in the philosophy of logic, the philosophy of language, 
and the philosophy of religion. Thus, problems in the foundations of 
probability bear at least indirectly, and sometimes directly, upon central 
scientific, social scientific, and philosophical concerns. The interpretation of 
probability is one of the most important such foundational problems.
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1. Kolmogorov's Probability Calculus

Probability theory was a relative latecomer in intellectual history. It was 
inspired by games of chance in 17th century France and inaugurated by the 
Fermat-Pascal correspondence. However, its axiomatization had to wait until 
Kolmogorov's classic Foundations of the Theory of Probability (1933). Let Ω 
be a non-empty set (‘the universal set’). A field (or algebra) on Ω is a set F of 
subsets of Ω that has Ω as a member, and that is closed under complementation 
(with respect to Ω) and union. Let P be a function from F to the real numbers 
obeying:

(Non-negativity) P(A) ≥ 0, for all A ∈ F.1.
(Normalization) P(Ω) = 1.2.
(Finite additivity) P(A ∪ B) = P(A) + P(B) for all A, B ∈ F such that A 
∩ B = ∅.

3.



Call P a probability function, and (Ω, F, P) a probability space.

The assumption that P is defined on a field guarantees that these axioms are 
non-vacuously instantiated, as are the various theorems that follow from them. 
The non-negativity and normalization axioms are largely matters of 
convention, although it is non-trivial that probability functions take at least the 
two values 0 and 1, and that they have a maximal value (unlike various other 
measures, such as length, volume, and so on, which are unbounded). We will 
return to finite additivity at a number of points below. We may now apply the 
theory to various familiar cases. For example, we may represent the results of 
tossing a single die once by the set Ω={1, 2, 3, 4, 5, 6}, and we could let F be 
the set of all subsets of Ω. Under the natural assignment of probabilities to 
members of F, we obtain such welcome results as P({1}) = 1/6, P(even) = P
({2} ∪ {4} ∪ {6}) = 3/6, P(odd or less than 4) = P(odd) + P(less than 4) − P
(odd ∩ less than 4) = 1/2 + 1/2 − 2/6 = 4/6, and so on.

We could instead attach probabilities to members of a collection S of sentences 
of a formal language, closed under (countable) truth-functional combinations, 
with the following counterpart axiomatization:

P(A) ≥ 0 for all A ∈ S.I.
If T is a logical truth (in classical logic), then P(T) = 1.II.
P(A ∨ B) = P(A) + P(B) for all A ∈ S and B ∈ S such that A and B are 
logically incompatible.

III.

The bearers of probabilities are sometimes also called “events” or “outcomes”, 
but the underlying formalism remains the same.

Now let us strengthen our closure assumptions regarding F, requiring it to be 
closed under complementation and countable union; it is then called a sigma 
field (or sigma algebra) on Ω. It is controversial whether we should strengthen 
finite additivity, as Kolmogorov does:

3′. (Countable additivity) If A1, A2, A3 … is a countably infinite 
sequence of (pairwise) disjoint sets, each of which is an element of 
F, then 

P(
∞ 

∪ 
n=1 

An)   =   
∞ 
∑ 

n=1 
P(An)

Kolmogorov comments that infinite probability spaces are idealized models of 
real random processes, and that he limits himself arbitrarily to only those 
models that satisfy countable additivity. This axiom is the cornerstone of the 
assimilation of probability theory to measure theory.

The conditional probability of A given B is then given by the ratio of 
unconditional probabilities:



P(A | B) =
P(A ∩ B)

P(B)
, provided P(B) > 0.

This is often taken to be the definition of conditional probability, although it 
should be emphasized that this is a technical usage of the term that may not 
align perfectly with a pretheoretical concept that we might have (see Hájek, 
2003). We recognize it in locutions such as “the probability that the die lands 1, 
given that it lands odd, is 1/3”, or “the probability that it will rain tomorrow, 
given that there are dark clouds in the sky tomorrow morning, is high”. It is the 
concept of the probability of something given or in the light of some piece of 
evidence or information that may be acquired. Indeed, some authors take 
conditional probability to be the primitive notion, and axiomatize it directly 
(e.g. Popper 1959b, Renyi 1970, van Fraassen 1976, Spohn 1986 and Roeper 
and Leblanc 1999).

There are other axiomatizations that give up normalization; that give up 
countable additivity, and even additivity; that allow probabilities to take 
infinitesimal values (positive, but smaller than every positive real number); that 
allow probabilities to be imprecise (interval-valued, or more generally 
represented with sets of numerical values). For now, however, when we speak 
of ‘the probability calculus’, we will mean Kolmogorov's approach, as is 
standard.

Given certain probabilities as inputs, the axioms and theorems allow us to 
compute various further probabilities. However, apart from the assignment of 1 
to the universal set and 0 to the empty set, they are silent regarding the initial 
assignment of probabilities.[1] For guidance with that, we need to turn to the 
interpretations of probability. First, however, let us list some criteria of 
adequacy for such interpretations.

2. Criteria of adequacy for the interpretations of 
probability

What criteria are appropriate for assessing the cogency of a proposed 
interpretation of probability? Of course, an interpretation should be precise, 
unambiguous, non-circular, and use well-understood primitives. But those are 
really prescriptions for good philosophizing generally; what do we want from 
our interpretations of probability, specifically? We begin by following Salmon 
(1966, 64), although we will raise some questions about his criteria, and 
propose some others. He writes:

Admissibility. We say that an interpretation of a formal system is 
admissible if the meanings assigned to the primitive terms in the 
interpretation transform the formal axioms, and consequently all the 
theorems, into true statements. A fundamental requirement for 
probability concepts is to satisfy the mathematical relations 



specified by the calculus of probability…  
 

Ascertainability. This criterion requires that there be some method 
by which, in principle at least, we can ascertain values of 
probabilities. It merely expresses the fact that a concept of 
probability will be useless if it is impossible in principle to find out 
what the probabilities are…

Applicability. The force of this criterion is best expressed in Bishop 
Butler's famous aphorism, “Probability is the very guide of life.”…

It might seem that the criterion of admissibility goes without saying: 
‘interpretations’ of the probability calculus that assigned to P the interpretation 
‘the number of hairs on the head of’ or ‘the political persuasion of’ would 
obviously not even be in the running, because they would render the axioms 
and theorems so obviously false. The word ‘interpretation’ is often used in 
such a way that ‘admissible interpretation’ is a pleonasm. Yet it turns out that 
the criterion is non-trivial, and indeed if taken seriously would rule out several 
of the leading interpretations of probability! As we will see, some of them fail 
to satisfy countable additivity; for others (certain propensity interpretations) the 
status of at least some of the axioms is unclear. Nevertheless, we regard them 
as genuine candidates. It should be remembered, moreover, that Kolmogorov's 
is just one of many possible axiomatizations, and there is not universal 
agreement on which is ‘best’ (whatever that might mean). Indeed, Salmon's 
preferred axiomatization differs from Kolmogorov's.[2] Thus, there is no such 
thing as admissibility tout court, but rather admissibility with respect to this or 
that axiomatization. It would be unfortunate if, perhaps out of an 
overdeveloped regard for history, one felt obliged to reject any interpretation 
that did not obey the letter of Kolmogorov's laws and that was thus 
‘inadmissible’. In any case, if we found an inadmissible interpretation that did 
a wonderful job of meeting the criteria of ascertainability and applicability, 
then we should surely embrace it.

So let us turn to those criteria. It is a little unclear in the ascertainability 
criterion just what “in principle” amounts to, though perhaps some latitude here 
is all to the good. Understood charitably, and to avoid trivializing it, it 
presumably excludes omniscience. On the other hand, understanding it in a 
way acceptable to a strict empiricist or a verificationist may be too restrictive. 
‘Probability’ is apparently, among other things, a modal concept, plausibly 
outrunning that which actually occurs, let alone that which is actually 
observed.

Most of the work will be done by the applicability criterion. We must say more 
(as Salmon indeed does) about what sort of a guide to life probability is 
supposed to be. Mass, length, area and volume are all useful concepts, and they 



are ‘guides to life’ in various ways (think how critical distance judgments can 
be to survival); moreover, they are admissible and ascertainable, so presumably 
it is the applicability criterion that will rule them out. Perhaps it is best to think 
of applicability as a cluster of criteria, each of which is supposed to capture 
something of probability's distinctive conceptual roles; moreover, we should 
not require that all of them be met by a given interpretation. They include:

Non-triviality: an interpretation should make non-extreme 
probabilities at least a conceptual possibility. For example, suppose 
that we interpret ‘P’ as the truth function: it assigns the value 1 to 
all true sentences, and 0 to all false sentences. Then trivially, all the 
axioms come out true, so this interpretation is admissible. We 
would hardly count it as an adequate interpretation of probability, 
however, and so we need to exclude it. It is essential to probability 
that, at least in principle, it can take intermediate values. All of the 
interpretations that we will present meet this criterion, so we will 
discuss it no more. 

Applicability to frequencies: an interpretation should render 
perspicuous the relationship between probabilities and (long-run) 
frequencies. Among other things, it should make clear why, by and 
large, more probable events occur more frequently than less 
probable events.

Applicability to rational belief: an interpretation should clarify the 
role that probabilities play in constraining the degrees of belief, or 
credences, of rational agents. Among other things, knowing that 
one event is more probable than another, a rational agent will be 
more confident about the occurrence of the former event.

Applicability to ampliative inference: an interpretation will score 
bonus points if it illuminates the distinction between ‘good’ and 
‘bad’ ampliative inferences, while explicating why both fall short of 
deductive inferences.

The next criterion may be redundant, given our list so far, but including it will 
do no harm:

Applicability to science: an interpretation should illuminate 
paradigmatic uses of probability in science (for example, in 
quantum mechanics and statistical mechanics).

Perhaps there are further metaphysical desiderata that we might impose on the 
interpretations. For example, there appear to be connections between 
probability and modality. Events with positive probability can happen, even if 
they don't. Some authors also insist on the converse condition that only events 
with positive probability can happen, although this is more controversial — see 



our discussion of ‘regularity’ in Section 4. (Indeed, in uncountable probability 
spaces this condition will require the employment of infinitesimals, and will 
thus take us beyond the standard Kolmogorov theory — ‘standard’ both in the 
sense of being the orthodoxy, and in its employment of standard, as opposed to 
‘non-standard’ real numbers. See Skyrms 1980.) In any case, our list is already 
long enough to help in our assessment of the leading interpretations on the 
market.

3. The Main Interpretations

Broadly speaking, there are arguably three main concepts of probability:

A quasi-logical concept, which is meant to measure objective evidential 
support relations. For example, “in light of the relevant seismological and 
geological data, it is probable that California will experience a major 
earthquake this decade”. 

1.

The concept of an agent's degree of confidence, a graded belief. For 
example, “I am not sure that it will rain in Canberra this week, but it 
probably will.”

2.

An objective concept that applies to various systems in the world, 
independently of what anyone thinks. For example, “a particular radium 
atom will probably decay within 10,000 years”.

3.

Some philosophers will insist that not all of these concepts are intelligible; 
some will insist that one of them is basic, and that the others are reducible to it. 
Be that as it may, it will be useful to keep these concepts in mind. Sections 3.1 
and 3.2 discuss analyses of concept (1), classical and logical probability; 3.3 
discusses analyses of concept (2), subjective probability; 3.4, 3.5, and 3.6 
discuss three kinds of analysis of concept (3), frequentist, propensity, and best-
system intepretations.

3.1 Classical Probability

The classical interpretation owes its name to its early and august pedigree. 
Championed by Laplace, and found even in the works of Pascal, Bernoulli, 
Huygens, and Leibniz, it assigns probabilities in the absence of any evidence, 
or in the presence of symmetrically balanced evidence. The guiding idea is that 
in such circumstances, probability is shared equally among all the possible 
outcomes, so that the classical probability of an event is simply the fraction of 
the total number of possibilities in which the event occurs. It seems especially 
well suited to those games of chance that by their very design create such 
circumstances — for example, the classical probability of a fair die landing 
with an even number showing up is 3/6. It is often presupposed (usually tacitly) 
in textbook probability puzzles.

Here is a classic statement by Laplace:



The theory of chance consists in reducing all the events of the same 
kind to a certain number of cases equally possible, that is to say, to 
such as we may be equally undecided about in regard to their 
existence, and in determining the number of cases favorable to the 
event whose probability is sought. The ratio of this number to that 
of all the cases possible is the measure of this probability, which is 
thus simply a fraction whose numerator is the number of favorable 
cases and whose denominator is the number of all the cases 
possible. (1814, 1951 6–7)

There are numerous questions to be asked about this formulation. When are 
events of the same kind? Intuitively, ‘heads’ and ‘tails’ are equally likely 
outcomes of tossing a fair coin; but if their kind is ‘ways the coin could land’, 
then ‘edge’ should presumably be counted alongside them. The “certain 
number of cases” and “that of all the cases possible” are presumably finite 
numbers. What, then, of probabilities in infinite spaces? Apparently, irrational-
valued probabilities such as 1/√2 are automatically eliminated, and thus 
theories such as quantum mechanics that posit them cannot be accommodated. 
(We will shortly see, however, that Laplace's theory has been refined to handle 
infinite spaces.)

Who are “we”, who “may be equally undecided”? Different people may be 
equally undecided about different things, which suggests that Laplace is 
offering a subjectivist interpretation in which probabilities vary from person to 
person depending on contingent differences in their evidence. This is not his 
intention. He means to characterize the objective probability assignment of a 
rational agent in an epistemically neutral position with respect to a set of 
“equally possible” cases. But then the proposal risks sounding empty: for what 
is it for an agent to be “equally undecided” about a set of cases, other than 
assigning them equal probability?

This brings us to one of the key objections to Laplace's account. The notion of 
“equally possible” cases faces the charge of either being a category mistake 
(for ‘possibility’ does not come in degrees), or circular (for what is meant is 
really ‘equally probable’). The notion is finessed by the so-called ‘principle of 
indifference’, a coinage due to Keynes. It states that whenever there is no 
evidence favoring one possibility over another, they have the same probability. 
Thus, it is claimed, there is no circularity in the classical definition after all. 
However, this move may only postpone the problem, for there is still a threat of 
circularity, albeit at a lower level. We have two cases here: outcomes for which 
we have no evidence at all, and outcomes for which we have symmetrically 
balanced evidence. There is no circularity in the first case unless the notion of 
‘evidence’ is itself probabilistic; but artificial examples aside, it is doubtful that 
the case ever arises. For example, we have a considerable fund of evidence on 
coin tossing from the results of our own experiments, the testimony of others, 
our knowledge of some of the relevant physics, and so on. In the second case, 



the threat of circularity is more apparent, for it seems that some sort of 
weighing of the evidence in favor of each outcome is required, and it is not 
obvious that this can be done without reference to probability. Indeed, the most 
obvious characterization of symmetrically balanced evidence is in terms of 
equality of conditional probabilities: given evidence E and possible outcomes 
O1, O2, …, On, the evidence is symmetrically balanced iff P(O1 | E) = P(O2 | E) 
= … = P(On | E). Then it seems that probabilities reside at the base of the 
interpretation after all. Still, it would be an achievement if all probabilities 
could be reduced to cases of equal probability.

As we have seen, Laplace's classical theory is restricted to finite spaces, one for 
which there are only finitely many possible outcomes. When the spaces are 
countably infinite, the spirit of the classical theory may be upheld by appealing 
to the information-theoretic principle of maximum entropy, a generalization of 
the principle of indifference championed by Jaynes (1968). Entropy is a 
measure of the lack of ‘informativeness’ of a probability function. The more 
concentrated is the function, the less is its entropy; the more diffuse it is, the 
greater is its entropy. For a discrete assignment of probabilities P = (p1, p2, …), 
the entropy of P is defined as:

−∑i pi log pi 

The principle of maximum entropy enjoins us to select from the family of all 
probability functions consistent with our background knowledge the function 
that maximizes this quantity. In the special case of choosing the most 
uninformative prior over a finite set of possible outcomes, this is just the 
familiar ‘flat’ classical assignment discussed previously. Things get more 
complicated in the infinite case, since there cannot be a flat assignment over 
denumerably many outcomes, on pain of violating the standard probability 
calculus (with countable additivity). Rather, the best we can have are 
sequences of progressively flatter assignments, none of which is truly flat. We 
must then impose some further constraint that narrows the field to a smaller 
family in which there is an assignment of maximum entropy.[3] This constraint 
has to be imposed from outside as background knowledge, but there is no 
general theory of which external constraint should be applied when. 

Let us turn now to uncountably infinite spaces. It is easy — all too easy — to 
assign equal probabilities to the points in such a space: each gets probability 0. 
Non-trivial probabilities arise when uncountably many of the points are 
clumped together in larger sets. If there are finitely many clumps, Laplace's 
classical theory may be appealed to again: if the evidence bears symmetrically 
on these clumps, each gets the same share of probability.

Enter Bertrand's paradoxes. They all arise in uncountable spaces and turn on 
alternative parametrizations of a given problem that are non-linearly related to 
each other. Some presentations are needlessly arcane; length and area suffice to 



make the point. The following example (adapted from van Fraassen 1989) 
nicely illustrates how Bertrand-style paradoxes work. A factory produces cubes 
with side-length between 0 and 1 foot; what is the probability that a randomly 
chosen cube has side-length between 0 and 1/2 a foot? The tempting answer is 
1/2, as we imagine a process of production that is uniformly distributed over 
side-length. But the question could have been given an equivalent restatement: 
A factory produces cubes with face-area between 0 and 1 square-feet; what is 
the probability that a randomly chosen cube has face-area between 0 and 1/4 
square-feet? Now the tempting answer is 1/4, as we imagine a process of 
production that is uniformly distributed over face-area. This is already 
disastrous, as we cannot allow the same event to have two different 
probabilities (especially if this interpretation is to be admissible!). But there is 
worse to come, for the problem could have been restated equivalently again: A 
factory produces cubes with volume between 0 and 1 cubic feet; what is the 
probability that a randomly chosen cube has volume between 0 and 1/8 cubic-
feet? Now the tempting answer is 1/8, as we imagine a process of production 
that is uniformly distributed over volume. And so on for all of the infinitely 
many equivalent reformulations of the problem (in terms of the fourth, fifth, … 
power of the length, and indeed in terms of every non-zero real-valued 
exponent of the length). What, then, is the probability of the event in question?

The paradox arises because the principle of indifference can be used in 
incompatible ways. We have no evidence that favors the side-length lying in 
the interval [0, 1/2] over its lying in [1/2, 1], or vice versa, so the principle 
requires us to give probability 1/2 to each. Unfortunately, we also have no 
evidence that favors the face-area lying in any of the four intervals [0, 1/4], 
[1/4, 1/2], [1/2, 3/4], and [3/4, 1] over any of the others, so we must give 
probability 1/4 to each. The event ‘the side-length lies in [0, 1/2]’, receives a 
different probability when merely redescribed. And so it goes, for all the other 
reformulations of the problem. We cannot meet any pair of these constraints 
simultaneously, let alone all of them.

Jaynes attempts to save the principle of indifference and to extend the principle 
of maximum entropy to the continuous case, with his invariance condition: in 
two problems where we have the same knowledge, we should assign the same 
probabilities. He regards this as a consistency requirement. For any problem, 
we have a group of admissible transformations, those that change the problem 
into an equivalent form. Various details are left unspecified in the problem; 
equivalent formulations of it fill in the details in different ways. Jaynes' 
invariance condition bids us to assign equal probabilities to equivalent 
propositions, reformulations of one another that are arrived at by such 
admissible transformations of our problem. Any probability assignment that 
meets this condition is called an invariant assignment. Ideally, our problem 
will have a unique invariant assignment. To be sure, things will not always be 
ideal; but sometimes they are, in which case this is surely progress on Bertrand
-style problems.



And in any case, for many garden-variety problems such technical machinery 
will not be needed. Suppose I tell you that a prize is behind one of three doors, 
and you get to choose a door. This seems to be a paradigm case in which the 
principle of indifference works well: the probability that you choose the right 
door is 1/3. It seems implausible that we should worry about some 
reparametrization of the problem that would yield a different answer. To be 
sure, Bertrand-style problems caution us that there are limits to the principle of 
indifference. But arguably we must just be careful not to overstate its 
applicability. 

How does the classical theory of probability fare with respect to our criteria of 
adequacy? Let us begin with admissibility. It is claimed that (Laplacean) 
classical probabilities are only finitely additive (see, e.g., de Finetti 1974). It 
would be more correct to say that classical probabilities are countably additive, 
but trivially so. As we have seen, classical probabilities are only defined on 
finite spaces. The statement 3′ of countable additivity, recall, is a conditional; 
its antecedent, “{Ai} is a countably infinite collection of (pairwise) disjoint 
sets,” is never satisfied in such spaces. Thus, the conditional is vacuously true. 
Clearly, classical probabilities obey the other axioms, so this interpretation is 
admissible.

Classical probabilities are ascertainable, assuming that the space of possibilities 
can be determined in principle. They bear a relationship to the credences of 
rational agents; the circularity concern, as we saw above, is that the 
relationship is vacuous, and that rather than constraining the credences of a 
rational agent in an epistemically neutral position, they merely record them.

Without supplementation, the classical theory makes no contact with frequency 
information. However the coin happens to land in a sequence of trials, the 
possible outcomes remain the same. Indeed, even if we have strong empirical 
evidence that the coin is biased towards heads with probability, say, 0.6, it is 
hard to see how the unadorned classical theory can accommodate this fact — 
for what now are the ten possibilities, six of which are favorable to heads? 
Laplace does supplement the theory with his Rule of Succession: “Thus we 
find that an event having occurred successively any number of times, the 
probability that it will happen again the next time is equal to this number 
increased by unity divided by the same number, increased by two 
units.” (1951, 19) That is:

Pr(success on N+1st trial | N consecutive successes) =
N+1
N+2

Thus, inductive learning is possible — though not by classical probabilities per 
se, but rather thanks to this further rule. And must ask whether such learning 
can be captured once and for all by such a simple formula, the same for all 



domains and events. We will return to this question when we discuss the 
logical interpretation below.

Science apparently invokes at various points probabilities that look classical. 
Bose-Einstein statistics, Fermi-Dirac statistics, and Maxwell-Boltzmann 
statistics each arise by considering the ways in which particles can be assigned 
to states, and then applying the principle of indifference to different 
subdivisions of the set of alternatives, Bertrand-style. The trouble is that Bose-
Einstein statistics apply to some particles (e.g. photons) and not to others, 
Fermi-Dirac statistics apply to different particles (e.g. electrons), and Maxwell-
Boltzmann statistics do not apply to any known particles. None of this can be 
determined a priori, as the classical interpretation would have it. Moreover, the 
classical theory purports to yield probability assignments in the face of 
ignorance. But as Fine (1973) writes:

If we are truly ignorant about a set of alternatives, then we are also 
ignorant about combinations of alternatives and about subdivisions 
of alternatives. However, the principle of indifference when applied 
to alternatives, or their combinations, or their subdivisions, yields 
different probability assignments (170).

This brings us to one of the chief points of controversy regarding the classical 
interpretation. Critics accuse the principle of indifference of extracting 
information from ignorance. Proponents reply that it rather codifies the way in 
which such ignorance should be epistemically managed — for anything other 
than an equal assignment of probabilities would represent the possession of 
some knowledge. Critics counter-reply that in a state of complete ignorance, it 
is better to assign imprecise probabilities (perhaps ranging over the entire [0, 1] 
interval), or to eschew the assignment of probabilities altogether.

3.2 Logical probability

Logical theories of probability retain the classical interpretation's idea that 
probabilities can be determined a priori by an examination of the space of 
possibilities. However, they generalize it in two important ways: the 
possibilities may be assigned unequal weights, and probabilities can be 
computed whatever the evidence may be, symmetrically balanced or not. 
Indeed, the logical interpretation, in its various guises, seeks to encapsulate in 
full generality the degree of support or confirmation that a piece of evidence E 
confers upon a given hypothesis H, which we may write as c(H, E). In doing 
so, it can be regarded also as generalizing deductive logic and its notion of 
implication, to a complete theory of inference equipped with the notion of 
‘degree of implication’ that relates E to H. It is often called the theory of 
‘inductive logic’, although this is a misnomer: there is no requirement that E be 
in any sense ‘inductive’ evidence for H. ‘Non-deductive logic’ would be a 
better name, but this overlooks the fact that deductive logic's relations of 



implication and incompatibility are also accommodated as extreme cases in 
which the confirmation function takes the values 1 and 0 respectively. 
Nevertheless, what is significant is that the logical interpretation provides a 
framework for induction.

Early proponents of logical probability include Johnson (1921), Keynes (1921), 
and Jeffreys (1939). However, by far the most systematic study of logical 
probability was by Carnap. His formulation of logical probability begins with 
the construction of a formal language. In (1950) he considers a class of very 
simple languages consisting of a finite number of logically independent 
monadic predicates (naming properties) applied to countably many individual 
constants (naming individuals) or variables, and the usual logical connectives. 
The strongest (consistent) statements that can be made in a given language 
describe all of the individuals in as much detail as the expressive power of the 
language allows. They are conjunctions of complete descriptions of each 
individual, each description itself a conjunction containing exactly one 
occurrence (negated or unnegated) of each predicate of the language. Call these 
strongest statements state descriptions.

Any probability measure m(−) over the state descriptions automatically extends 
to a measure over all sentences, since each sentence is equivalent to a 
disjunction of state descriptions; m in turn induces a confirmation function c(−, 
−):

c(h, e) =
m(h & e)

m(e)

There are obviously infinitely many candidates for m, and hence c, even for 
very simple languages. Carnap argues for his favored measure “m*” by 
insisting that the only thing that significantly distinguishes individuals from 
one another is some qualitative difference, not just a difference in labeling. Call 
a structure description a maximal set of state descriptions, each of which can 
be obtained from another by some permutation of the individual names. m* 
assigns each structure description equal measure, which in turn is divided 
equally among their constituent state descriptions. It gives greater weight to 
homogenous state descriptions than to heterogeneous ones, thus ‘rewarding’ 
uniformity among the individuals in accordance with putatively reasonable 
inductive practice. The induced c* allows inductive learning from experience.

Consider, for example, a language that has three names, a, b and c, for 
individuals, and one predicate F. For this language, the state descriptions are:

Fa & Fb & Fc1.
¬Fa & Fb & Fc2.
Fa & ¬Fb & Fc3.
Fa & Fb & ¬Fc4.



¬Fa & ¬Fb & Fc5.
¬Fa & Fb & ¬Fc6.
Fa & ¬Fb & ¬Fc7.
¬Fa & ¬Fb & ¬Fc8.

There are four structure descriptions:

{1}, “Everything is F”; 

{2, 3, 4}, “Two Fs, one ¬F”;

{5, 6, 7}, “One F, two ¬Fs”; and

{8}, “Everything is ¬F”.

The measure m* assigns numbers to the state descriptions as follows: first, 
every structure description is assigned an equal weight, 1/4; then, each state 
description belonging to a given structure description is assigned an equal part 
of the weight assigned to the structure description:

State description Structure description Weight m*

1. Fa.Fb.Fc I. Everything is F 1/4 1/4

2. ¬Fa.Fb.Fc 1/12

3. Fa.¬Fb.Fc II. Two Fs, one ¬F 1/4 1/12

4. Fa.Fb.¬Fc 1/12

5. ¬Fa.¬Fb.Fc 1/12

6. ¬Fa.Fb.¬Fc III. One F, two ¬Fs 1/4 1/12

7. Fa.¬Fb.¬Fc 1/12

8. ¬Fa.¬Fb.¬Fc IV. Everything is ¬F 1/4 1/4

Notice that m* gives greater weight to the homogenous state descriptions 1 and 
8 than to the heterogeneous ones. This will manifest itself in the inductive 
support that hypotheses can gain from appropriate evidence statements. 
Consider the hypothesis statement h = Fc, true in 4 of the 8 state descriptions, 
with a priori probability m*(h) = 1/2. Suppose we examine individual “a” and 
find it has property F — call this evidence e. Intuitively, e is favorable (albeit 
weak) inductive evidence for h. We have: m*(h & e) = 1/3, m*(e) = 1/2, and 
hence

c*(h, e) =
m*(h & e)

m*(e)
= 2/3.



This is greater than the a priori probability m*(h) = 1/2, so the hypothesis has 
been confirmed. It can be shown that in general m* yields a degree of 
confirmation c* that allows learning from experience.

Note, however, that infinitely many confirmation functions, defined by suitable 
choices of the initial measure, allow learning from experience. We do not have 
yet a reason to think that c* is the right choice. Carnap claims nevertheless that 
c* stands out for being simple and natural.

He later generalizes his confirmation function to a continuum of functions cλ. 
Define a family of predicates to be a set of predicates such that, for each 
individual, exactly one member of the set applies, and consider first-order 
languages containing a finite number of families. Carnap (1963) focuses on the 
special case of a language containing only one-place predicates. He lays down 
a host of axioms concerning the confirmation function c, including those 
induced by the probability calculus itself, various axioms of symmetry (for 
example, that c(h, e) remains unchanged under permutations of individuals, 
and of predicates of any family), and axioms that guarantee undogmatic 
inductive learning, and long-run convergence to relative frequencies. They 
imply that, for a family {Pn}, n = 1, …, k (k > 2):

cλ (individual s + 1 is Pj, sj of the first s individuals are Pj) =
(sj + λ/k)

s + λ
,

where λ is a positive real number. The higher the value of λ, the less impact 
evidence has: induction from what is observed becomes progressively more 
swamped by a classical-style equal assignment to each of the k possibilities 
regarding individual s + 1.

I turn to various objections to Carnap's program that have been offered in the 
literature, noting that this remains an area of lively debate. (See Maher (2010) 
for rebuttals of these arguments and for defenses of Carnap.) Firstly, is there a 
correct setting of λ, or said another way, how ‘inductive’ should the 
confirmation function be? The concern here is that any particular setting of λ is 
arbitrary in a way that compromises Carnap's claim to be offering a logical 
notion of probability. Also, it turns out that for any such setting, a universal 
statement in an infinite universe always receives zero confirmation, no matter 
what the (finite) evidence. Many find this counterintuitive, since laws of nature 
with infinitely many instances can apparently be confirmed. Earman (1992) 
discusses the prospects for avoiding the unwelcome result.

Significantly, Carnap's various axioms of symmetry are hardly logical truths. 
Moreover, Fine (1973, 202) argues that we cannot impose further symmetry 
constraints that are seemingly just as plausible as Carnap's, on pain of 
inconsistency. Goodman taught us: that the future will resemble the past in 
some respect is trivial; that it will resemble the past in all respects is 



contradictory. And we may continue: that a probability assignment can be 
made to respect some symmetry is trivial; that one can be made to respect all 
symmetries is contradictory. This threatens the whole program of logical 
probability.

Another Goodmanian lesson is that inductive logic must be sensitive to the 
meanings of predicates, strongly suggesting that a purely syntactic approach 
such as Carnap's is doomed. Scott and Krauss (1966) use model theory in their 
formulation of logical probability for richer and more realistic languages than 
Carnap's. Still, finding a canonical language seems to many to be a pipe dream, 
at least if we want to analyze the “logical probability” of any argument of real 
interest — either in science, or in everyday life.

Logical probabilities are admissible. It is easily shown that they satisfy finite 
additivity, and given that they are defined on finite sets of sentences, the 
extension to countable additivity is trivial. Given a choice of language, the 
values of a given confirmation function are ascertainable; thus, if this language 
is rich enough for a given application, the relevant probabilities are 
ascertainable. The whole point of the theory of logical probability is to 
explicate ampliative inference, although given the apparent arbitrariness in the 
choice of language and in the setting of λ — thus, in the choice of confirmation 
function — one may wonder how well it achieves this. The problem of 
arbitrariness of the confirmation function also hampers the extent to which the 
logical interpretation can truly illuminate the connection between probabilities 
and frequencies.

The arbitrariness problem, moreover, stymies any compelling connection 
between logical probabilities and rational credences. And a further problem 
remains even after the confirmation function has been chosen: if one's 
credences are to be based on logical probabilities, they must be relativized to 
an evidence statement, e. But which is to be? Carnap requires that e be one's 
total evidence, that is, the maximally specific information at one's disposal, the 
strongest proposition of which one is certain. However, when we go beyond 
toy examples, it is not clear that this is well-defined. Suppose I have just 
watched a coin toss, and thus learned that the coin landed heads. Perhaps ‘the 
coin landed heads’ is my total evidence? But I also learned a host of other 
things: as it might be, that the coin landed at a certain time, bouncing in a 
certain way, making a certain noise as it did so … Call this long conjunction of 
facts X. I also learned a potentially infinite set of de se propositions: ‘I learned 
that X’, ‘I learned that I learned that X’ and so on. Perhaps, then, my total 
evidence is the infinite intersection of all these propositions, although this is 
still not obvious — and it is not something that can be represented by a 
sentence in one of Carnap's languages, which is finite in length. More 
significantly, the total evidence criterion goes hand in hand with positivism and 
a foundationalist epistemology according to which there are such determinate, 
ultimate deliverances of experience. But perhaps learning does not come in the 



form of such ‘bedrock’ propositions, as Jeffrey (1992) has argued — maybe it 
rather involves a shift in one's subjective probabilities across a partition, 
without any cell of the partition becoming certain. Then it may be the case that 
the strongest proposition of which one is certain is expressed by a tautology T 
— hardly an interesting notion of ‘total evidence’.[4]

In connection with the ‘applicability to science’ criterion, a point due to 
Lakatos is telling. By Carnap's lights, the degree of confirmation of a 
hypothesis depends on the language in which the hypothesis is stated and over 
which the confirmation function is defined. But scientific progress often brings 
with it a change in scientific language (for example, the addition of new 
predicates and the deletion of old ones), and such a change will bring with it a 
change in the corresponding c-values. Thus, the growth of science may 
overthrow any particular confirmation theory. There is something of the snake 
eating its own tail here, since logical probability was supposed to explicate the 
confirmation of scientific theories.

We have seen that the later Carnap relaxed his earlier aspiration to find a 
unique confirmation function, allowing a continuum of such functions 
displaying a wide range of inductive cautiousness. Various critics of logical 
probabilities believe that he did not go far enough - that even his later systems 
constrain inductive learning beyond what is rationally required. This recalls the 
classic debate earlier in the 20th century between Keynes, a famous proponent 
of logical probabilities, and Ramsey, an equally famous opponent. Ramsey was 
skeptical of there being any non-trivial relations of logical probability: he said 
that he could not discern them himself, and that others disagree about them. 
This skepticism led him to formulate his own, enormously influential 
subjective interpretation of probability.

3.3 Subjective probability

3.3.1 Probability as degree of belief

We may characterize subjectivism (also known as personalism and subjective 
Bayesianism) with the slogan: ‘Probability is degree of belief’. We identify 
probabilities with degrees of confidence, or credences, or “partial” beliefs of 
suitable agents. Thus, we really have many interpretations of probability here, 
as many as there are doxastic states of suitable agents: we have Aaron's degrees 
of belief, Abel's degrees of belief, Abigail's degrees of belief, … , or better still, 
Aaron's degrees of belief-at-time-t1, Aaron's degrees of belief-at-time-t2, Abel's 
degrees of belief-at-time-t1, … . Of course, we must ask what makes an agent 
‘suitable’. What we might call unconstrained subjectivism places no constraints 
on the agents — anyone goes, and hence anything goes. Various studies by 
psychologists (see, e.g., several articles in Kahneman et al. 1982) are taken to 
show that people commonly violate the usual probability calculus in 
spectacular ways. We clearly do not have here an admissible interpretation 



(with respect to any probability calculus), since there is no limit to what agents 
might assign. Unconstrained subjectivism is not a serious proposal.

More interesting, however, is the claim that the suitable agents must be, in a 
strong sense, rational. Beginning with Ramsey (1926), various subjectivists 
have wanted to assimilate probability to logic by portraying probability as the 
logic of partial belief. A rational agent is required to be logically consistent, 
now taken in a broad sense. These subjectivists argue that this implies that the 
agent obeys the axioms of probability (although perhaps with only finite 
additivity), and that subjectivism is thus (to this extent) admissible. Before we 
can present this argument, we must say more about what degrees of belief are.

3.3.2 The betting analysis and the Dutch Book argument

Subjective probabilities are traditionally analyzed in terms of betting behavior. 
Here is a classic statement by de Finetti (1980):

Let us suppose that an individual is obliged to evaluate the rate p at 
which he would be ready to exchange the possession of an arbitrary 
sum S (positive or negative) dependent on the occurrence of a given 
event E, for the possession of the sum pS; we will say by definition 
that this number p is the measure of the degree of probability 
attributed by the individual considered to the event E, or, more 
simply, that p is the probability of E (according to the individual 
considered; this specification can be implicit if there is no 
ambiguity). (62)

This boils down to the following analysis:

Your degree of belief in E is p iff p units of utility is the price at 
which you would buy or sell a bet that pays 1 unit of utility if E, 0 if 
not E.

The analysis presupposes that, for any E, there is exactly one such price — let's 
call this the agent's fair price for the bet on E. This presupposition may fail. 
There may be no such price — you may refuse to bet on E at all (perhaps 
unless coerced, in which case your genuine opinion about E may not be 
revealed), or your selling price may differ from your buying price, as may 
occur if your probability for E is imprecise. There may be more than one fair 
price — you may find a range of such prices acceptable, as may also occur if 
your probability for E is vague. For now, however, let us waive these concerns, 
and turn to an important argument, again originating with Ramsey, that uses 
the betting analysis purportedly to show that rational degrees of belief must 
conform to the probability calculus (with at least finite additivity).



A Dutch book (against an agent) is a series of bets, each acceptable to the 
agent, but which collectively guarantee her loss, however the world turns out. 
Ramsey notes, and it can be easily proven (e.g., Skyrms 1984), that if your 
subjective probabilities violate the probability calculus, then you are 
susceptible to a Dutch book. For example, suppose that you violate the 
additivity axiom by assigning P(A ∪ B) < P(A) + P(B), where A and B are 
mutually exclusive. Then a cunning bettor could buy from you a bet on A ∪ B 
for P(A ∪ B) units, and sell you bets on A and B individually for P(A) and P
(B) units respectively. He pockets an initial profit of P(A) + P(B) − P(A ∪ B), 
and retains it whatever happens. Ramsey offers the following influential gloss: 
“If anyone's mental condition violated these laws [of the probability calculus], 
his choice would depend on the precise form in which the options were offered 
him, which would be absurd.” (1980, 41)

Equally important, and often neglected, is the converse theorem that establishes 
how you can avoid such a predicament. If your subjective probabilities 
conform to the probability calculus, then no Dutch book can be made against 
you (Kemeny 1955); your probability assignments are then said to be coherent. 
In a nutshell, conformity to the probability calculus is necessary and sufficient 
for coherence.[5]

But let us return to the betting analysis of credences. It is an attempt to make 
good on Ramsey's idea that probability “is a measurement of belief qua basis 
of action” (34). While he regards the method of measuring an agent's credences 
by her betting behavior as “fundamentally sound” (34), he recognizes that it 
has its limitations.

The betting analysis gives an operational definition of subjective probability, 
and indeed it inherits some of the difficulties of operationalism in general, and 
of behaviorism in particular. For example, you may have reason to 
misrepresent your true opinion, or to feign having opinions that in fact you 
lack, by making the relevant bets (perhaps to exploit an incoherence in 
someone else's betting prices). Moreover, as Ramsey points out, placing the 
very bet may alter your state of opinion. Trivially, it does so regarding matters 
involving the bet itself (e.g., you suddenly increase your probability that you 
have just placed a bet). Less trivially, placing the bet may change the world, 
and hence your opinions, in other ways (betting at high stakes on the 
proposition ‘I will sleep well tonight’ may suddenly turn you into an 
insomniac). And then the bet may concern an event such that, were it to occur, 
you would no longer value the pay-off the same way. (During the August 11, 
1999 solar eclipse in the UK, a man placed a bet that would have paid a million 
pounds if the world came to an end.)

These problems stem largely from taking literally the notion of entering into a 
bet on E, with its corresponding payoffs. The problems may be avoided by 
identifying your degree of belief in a proposition with the betting price you 



regard as fair, whether or not you enter into such a bet; it corresponds to the 
betting odds that you believe confer no advantage or disadvantage to either side 
of the bet (Howson and Urbach 1993). There is something of the Rawlsian 
‘veil of ignorance’ reasoning here: imagine that you are to set the price for the 
bet, but you do not yet know which side of the bet you are to take. At your fair 
price, you should be indifferent between taking either side.[6]

de Finetti speaks of “an arbitrary sum” as the prize of the bet on E. The sum 
had better be potentially infinitely divisible, or else probability measurements 
will be precise only up to the level of ‘grain’ of the potential prizes. For 
example, a sum that can be divided into only 100 parts will leave probability 
measurements imprecise beyond the second decimal place, conflating 
probabilities that should be distinguished (e.g., those of a logical contradiction 
and of ‘a fair coin lands heads 8 times in a row’). More significantly, if utility 
is not a linear function of such sums, then the size of the prize will make a 
difference to the putative probability: winning a dollar means more to a pauper 
more than it does to Bill Gates, and this may be reflected in their betting 
behaviors in ways that have nothing to do with their genuine probability 
assignments. de Finetti responds to this problem by suggesting that the prizes 
be kept small; that, however, only creates the opposite problem that agents may 
be reluctant to bother about trifles, as Ramsey points out.

Better, then, to let the prizes be measured in utilities: after all, utility is 
infinitely divisible, and utility is a linear function of utility. While we're at it, 
we should adopt a more liberal notion of betting. After all, there is a sense in 
which every decision is a bet, as Ramsey observed.

3.3.3 Probabilities and utilities

Utilities (desirabilities) of outcomes, their probabilities, and rational 
preferences are all intimately linked. The Port Royal Logic (Arnauld, 1662) 
showed how utilities and probabilities together determine rational preferences; 
de Finetti's betting analysis derives probabilities from utilities and rational 
preferences; von Neumann and Morgenstern (1944) derive utilities from 
probabilities and rational preferences. And most remarkably, Ramsey (1926) 
(and later, Savage 1954 and Jeffrey 1966) derives both probabilities and 
utilities from rational preferences alone.

First, he defines a proposition to be ethically neutral — relative to an agent — 
if the agent is indifferent between having that outcome when the proposition is 
true and when it is false. The idea is that the agent doesn't care about the 
ethically neutral proposition as such — it is a means to an end that he might 
care about, but it has no intrinsic value. Now, there is a simple test for 
determining whether, for a given agent, an ethically neutral proposition N has 
probability 1/2. Suppose that the agent prefers A to B. Then N has probability 
1/2 iff the agent is indifferent between the gambles:



A if N, B if not 

B if N, A if not.

Ramsey assumes that it does not matter what the candidates for A and B are. 
We may assign arbitrarily to A and B any two real numbers u(A) and u(B) such 
that u(A) > u(B), thought of as the desirabilities of A and B respectively. 
Having done this for the one arbitrarily chosen pair A and B, the utilities of all 
other propositions are determined.

Given various assumptions about the richness of the preference space, and 
certain ‘consistency assumptions’, he can define a real-valued utility function 
of the outcomes A, B, etc — in fact, various such functions will represent the 
agent's preferences. He is then able to define equality of differences in utility 
for any outcomes over which the agent has preferences. It turns out that ratios 
of utility-differences are invariant — the same whichever representative utility 
function we choose. This fact allows Ramsey to define degrees of belief as 
ratios of such differences. For example, suppose the agent is indifferent 
between A, and the gamble “B if X, C otherwise.” Then it follows from 
considerations of expected utility that her degree of belief in X, P(X), is given 
by:

P(X) =
u(A) − u(C)
u(B) − u(C)

Ramsey shows that degrees of belief so derived obey the probability calculus 
(with finite additivity). He calls what results “the logic of partial belief,” and 
indeed he opens his essay with the words “In this essay the Theory of 
Probability is taken as a branch of logic….”

Ramsey avoids some of the objections to the betting analysis, but not all of 
them. Notably, the essential appeal to gambles again raises the concern that the 
wrong quantities are being measured — an inveterate gambler might 
overvalue, and a puritan might undervalue, a gamble compared to what their 
true credences would indicate. And his account has new difficulties. It is 
unclear what facts about agents fix their preference rankings. These rankings 
cannot simply be read off their behaviors. For example, the coach of a football 
team might ostentatiously bet at an inordinately high price on his team 
winning, in a public display of support that reveals nothing about his honest 
opinion. It is also dubious that consistency requires one to have a set of 
preferences as rich as Ramsey requires, or that one can find ethically neutral 
propositions of probability 1/2. This in turn casts some doubt on Ramsey's 
claim to assimilate probability theory to logic.

Savage (1954) likewise derives probabilities and utilities from preferences 
among options that are constrained by certain putative ‘consistency’ principles. 



For a given set of such preferences, he generates a class of utility functions, 
each a positive linear transformation of the other (i.e. of the form U1 = aU2 + b, 
where a > 0), and a unique probability function. Together these are said to 
‘represent’ the agent's preferences. Jeffrey (1966) refines the method further. 
The result is theory of decision according to which rational choice maximizes 
‘expected utility’, a certain probability-weighted average of utilities. Some of 
the difficulties with the behavioristic betting analysis of degrees of belief can 
now be resolved by moving to an analysis of degrees of belief that is 
functionalist in spirit. According to Lewis (1986a, 1994a), an agent's degrees of 
belief are represented by the probability function belonging to a utility 
function/probability function pair that best rationalizes her behavioral 
dispositions, rationality being given a decision-theoretic analysis.

There is a deep issue that underlies all of these accounts of subjective 
probability. They all presuppose the existence of necessary connections 
between desire-like states and belief-like states, rendered explicit in the 
connections between preferences and probabilities. In response, one might 
insist that such connections are at best contingent, and indeed can be imagined 
to be absent. Think of an idealized Zen Buddhist monk, devoid of any 
preferences, who dispassionately surveys the world before him, forming beliefs 
but no desires. It could be replied that such an agent is not so easily imagined 
after all — even if the monk does not value worldly goods, he will still prefer 
some things to others (e.g., truth to falsehood).

Once desires enter the picture, they may also have unwanted consequences. 
Again, how does one separate an agent's enjoyment or disdain for gambling 
from the value she places on the gamble itself? Ironically, a remark that 
Ramsey makes in his critique of the betting analysis seems apposite here: “The 
difficulty is like that of separating two different co-operating forces” (1980, 
35). See Eriksson and Hájek (2007) for further criticism of preference-based 
accounts of credence.

The betting analysis makes subjective probabilities ascertainable to the extent 
that an agent's betting dispositions are ascertainable. The derivation of them 
from preferences makes them ascertainable to the extent that his or her 
preferences are known. However, it is unclear that an agent's full set of 
preferences is ascertainable even to himself or herself. Here a lot of weight 
may need to be placed on the ‘in principle’ qualification in the ascertainability 
criterion. The expected utility representation makes it virtually analytic that an 
agent should be guided by probabilities — after all, the probabilities are her 
own, and they are fed into the formula for expected utility in order to determine 
what it is rational for her to do.



3.3.4 Orthodox Bayesianism, and further constraints on rational credences

But do they function as a good guide? Here it is useful to distinguish different 
versions of subjectivism. Orthodox Bayesians in the style of de Finetti 
recognize no rational constraints on subjective probabilities beyond:

conformity to the probability calculus, andi.
a rule for updating probabilities in the face of new evidence, known as 
conditioning. An agent with probability function P1, who becomes certain 
of a piece of evidence E (and nothing stronger), should shift to a new 
probability function P2 related to P1 by: 

ii.

(Conditioning) P2(X) = P1(X | E) (provided P1(E) > 0).

This is a permissive epistemology, licensing doxastic states that we would 
normally call crazy. Thus, you could assign probability 1 to this sentence ruling 
the universe, while upholding such extreme subjectivism — provided, of 
course, that you assign probability 0 to this sentence not ruling the universe, 
and that your other probability assignments all conform to the probability 
calculus.

Some otherwise extreme subjectivists impose the further rationality 
requirement of regularity: only a priori falsehoods get assigned probability 0. 
This is sometimes also called ‘strict coherence’, and it is advocated by authors 
such as Kemeny (1955), Jeffreys (1961), Edwards et al. (1963), Shimony 
(1970), and Stalnaker (1970). It is meant to capture a form of open-mindedness 
and responsiveness to evidence. But then, perhaps unintuitively, someone who 
assigns probability 0.999 to this sentence ruling the universe can be judged 
rational, while someone who assigns it probability 0 is judged irrational. Note 
also that the requirement of regularity seems to afford a new argument for the 
non-existence of God as traditionally conceived: an omniscient agent, who 
gives probability 1 to all truths, would be convicted of irrationality. Thus 
regularity seems to require ignorance, or false modesty. See, e.g., Levi (1978) 
for further opposition to regularity.

Probabilistic coherence plays much the same role for degrees of belief that 
consistency plays for ordinary, all-or-nothing beliefs. What an extreme 
subjectivist, even one who demands regularity, lacks is an analogue of truth, 
some yardstick for distinguishing the ‘veridical’ probability assignments from 
the rest (such as the 0.999 one above), some way in which probability 
assignments are answerable to the world. It seems, then, that the subjectivist 
needs something more.

And various subjectivists offer more. Having isolated the “logic” of partial 
belief as conformity to the probability calculus, Ramsey goes on to discuss 
what makes a degree of belief in a proposition reasonable. After canvassing 



several possible answers, he settles upon one that focuses on habits of opinion 
formation — “e.g. the habit of proceeding from the opinion that a toadstool is 
yellow to the opinion that it is unwholesome” (50). He then asks, for a person 
with this habit, what probability it would be best for him to have that a given 
yellow toadstool is unwholesome, and he answers that “it will in general be 
equal to the proportion of yellow toadstools which are in fact 
unwholesome” (50). This resonates with more recent proposals (e.g., van 
Fraassen 1984, Shimony 1988) for evaluating degrees of belief according to 
how closely they match the corresponding relative frequencies — in the jargon, 
how well calibrated they are. Since relative frequencies obey the axioms of 
probability (up to finite additivity), it is thought that rational credences, which 
strive to track them, should do so also.[7]

However, rational credences may strive to track various things. For example, 
we are often guided by the opinions of experts. We consult our doctors on 
medical matters, our weather forecasters on meteorological matters, and so on. 
Gaifman (1988) coins the terms “expert assignment” and “expert probability” 
for a probability assignment that a given agent strives to track: “The mere 
knowledge of the [expert] assignment will make the agent adopt it as his 
subjective probability” (193). This idea may be codified as follows:

(Expert) P(A | pr(A) = x) = x, 
for all x where this is defined.

where ‘P’ is the agent's subjective probability function, and ‘pr(A)’ is the 
assignment that the agent regards as expert. For example, if you regard the 
local weather forecaster as an expert on your local weather, and she assigns 
probability 0.1 to it raining tomorrow, then you may well follow suit:

P(rain | pr(rain) = 0.1) = 0.1

More generally, we might speak of an entire probability function as being such 
a guide for an agent over a specified set of propositions. van Fraassen (1989, 
198) gives us this definition: “If P is my personal probability function, then q is 
an expert function for me concerning family F of propositions exactly if P(A | q
(A) = x) = x for all propositions A in family F.”

Let us define a universal expert function for a given rational agent as one that 
would guide all of that agent's probability assignments in this way: an expert 
function for the agent concerning all propositions. van Fraassen (1984, 1995a), 
following Goldstein (1983), argues that an agent's future probability functions 
are universal expert functions for that agent. He enshrines this idea in his 
Reflection Principle, where Pt is the agent's probability function at time t, and 
Pt+∆ is her function at a later time t+∆:

Pt(A | Pt+∆(A) = x) = x,  
for all A and for all x where this is defined.



The principle encapsulates a certain demand for ‘diachronic coherence’ 
imposed by rationality. van Fraassen defends it with a ‘diachronic’ Dutch Book 
argument (one that considers bets placed at different times), and by analogizing 
violations of it to the sort of pragmatic inconsistency that one finds in Moore's 
paradox.

We may go still further. There may be universal expert functions for large 
classes of rational agents, and perhaps all of them. The Principle of Direct 
Probability regards the relative frequency function as a universal expert 
function for all rational agents; we have already seen the importance that 
proponents of calibration place on it. Let A be an event-type, and let relfreq(A) 
be the relative frequency of A (in some suitable reference class). Then for any 
rational agent with probability function P, we have (cf. Hacking 1965):

P(A | relfreq(A) = x) = x,  
for all A and for all x where this is defined. 

Lewis (1980) posits a similar expert role for the objective chance function, ch, 
for all rational initial  credences in his Principal Principle (here simplified[8]):

C(A | ch(A) = x) = x,  
for all A and for all x where this is defined.

‘C’ denotes the ‘ur’ credence function of an agent at the beginning of enquiry. 
This is an idealization that ensures that the agent does not have any 
“inadmissible” evidence that bears on A without bearing on the chance of A. 
For example, a rational agent who somehow knows that a particular coin toss 
lands heads is surely not required to assign

C(heads | ch(heads) = 1/2) = 1/2. 

Rather, this conditional probability should be 1, since she has information 
relevant to the outcome ‘heads’ that trumps its chance. The other expert 
principles surely need to be suitably qualified - otherwise they face analogous 
counterexamples. Yet strangely, the Principal Principle is the only expert 
principle about which concerns about inadmissible evidence have been raised 
in the literature. 

I will say more about relative frequencies and chance shortly. 

The ultimate expert, presumably, is the truth function — the function that 
assigns 1 to all the true propositions and 0 to all the false ones. Knowledge of 
its values should surely trump knowledge of the values assigned by human 
experts (including one's future selves), frequencies, or chances. Note that for 
any putative expert q,



P(A | q(A) = x ∩ A) = 1,  
for all A and for all x where this is defined.

— the truth of A overrides anything the expert might say. So all of the 
proposed expert probabilities above should really be regarded as defeasible. 
Joyce (1998) portrays the rational agent as estimating truth values, seeking to 
minimize a measure of distance between them and her probability assignments. 
He argues that for any measure of distance that satisfies certain intuitive 
properties, any agent who violates the probability axioms could serve this 
epistemic goal better by obeying them instead, however the world turns out.

There are some unifying themes in these putative constraints on subjective 
probability. An agent's degrees of belief determine her estimates of certain 
quantities: the values of bets, or the desirabilities of gambles more generally, or 
the probability assignments of various ‘experts’ — humans, relative 
frequencies, objective chances, or truth values. The laws of probability then are 
claimed to be constraints on these estimates: putative necessary conditions for 
minimizing her ‘losses’ in a broad sense, be they monetary, or measured by 
distances from the assignments of these experts.

3.4 Frequency Interpretations

Gamblers, actuaries and scientists have long understood that relative 
frequencies bear an intimate relationship to probabilities. Frequency 
interpretations posit the most intimate relationship of all: identity. Thus, we 
might identify the probability of ‘heads’ on a certain coin with the frequency of 
heads in a suitable sequence of tosses of the coin, divided by the total number 
of tosses. A simple version of frequentism, which we will call finite 
frequentism, attaches probabilities to events or attributes in a finite reference 
class in such a straightforward manner:

the probability of an attribute A in a finite reference class B is the 
relative frequency of actual occurrences of A within B.

Thus, finite frequentism bears certain structural similarities to the classical 
interpretation, insofar as it gives equal weight to each member of a set of 
events, simply counting how many of them are ‘favorable’ as a proportion of 
the total. The crucial difference, however, is that where the classical 
interpretation counted all the possible outcomes of a given experiment, finite 
frequentism counts actual outcomes. It is thus congenial to those with 
empiricist scruples. It was developed by Venn (1876), who in his discussion of 
the proportion of births of males and females, concludes: “probability is 
nothing but that proportion” (p. 84, his emphasis). Finite frequentism remains 
the dominant view of probability in statistics, and in the sciences more 
generally.



Finite frequentism gives an operational definition of probability, and its 
problems begin there. For example, just as we want to allow that our 
thermometers could be ill-calibrated, and could thus give misleading 
measurements of temperature, so we want to allow that our ‘measurements’ of 
probabilities via frequencies could be misleading, as when a fair coin lands 
heads 9 out of 10 times. More than that, it seems to be built into the very notion 
of probability that such misleading results can arise. Indeed, in many cases, 
misleading results are guaranteed. Starting with a degenerate case: according to 
the finite frequentist, a coin that is never tossed, and that thus yields no actual 
outcomes whatsoever, lacks a probability for heads altogether; yet a coin that is 
never measured does not thereby lack a diameter. Perhaps even more troubling, 
a coin that is tossed exactly once yields a relative frequency of heads of either 
0 or 1, whatever its bias. Or we can imagine a unique radiocative atom whose 
probabilities of decaying at various times obey a continuous law (e.g. 
exponential); yet according to finite frequentism, with probability 1 it decays at 
the exact time that it actually does, for its relative frequency of doing so is 1/1. 
Famous enough to merit a name of its own, these are instances of the the so-
called ‘problem of the single case’. In fact, many events are most naturally 
regarded as not merely unrepeated, but in a strong sense unrepeatable — the 
2000 presidential election, the final game of the 2001 NBA play-offs, the Civil 
War, Kennedy's assassination, certain events in the very early history of the 
universe. Nonetheless, it seems natural to think of non-extreme probabilities 
attaching to some, and perhaps all, of them. Worse still, some cosmologists 
regard it as a genuinely chancy matter whether our universe is open or closed 
(apparently certain quantum fluctuations could, in principle, tip it one way or 
the other), yet whatever it is, it is ‘single-case’ in the strongest possible sense.

The problem of the single case is particularly striking, but we really have a 
sequence of related problems: ‘the problem of the double case’, ‘the problem 
of the triple case’ … Every coin that is tossed exactly twice can yield only the 
relative frequencies 0, 1/2 and 1, whatever its bias… A finite reference class of 
size n, however large n is, can only produce relative frequencies at a certain 
level of ‘grain’, namely 1/n. Among other things, this rules out irrational 
probabilities; yet our best physical theories say otherwise. Furthermore, there is 
a sense in which any of these problems can be transformed into the problem of 
the single case. Suppose that we toss a coin a thousand times. We can regard 
this as a single trial of a thousand-tosses-of-the-coin experiment. Yet we do not 
want to be committed to saying that that experiment yields its actual result with 
probability 1.

The problem of the single case is that the finite frequentist fails to see 
intermediate probabilities in various places where others do. There is also the 
converse problem: the frequentist sees intermediate probabilities in various 
places where others do not. Our world has myriad different entities, with 
myriad different attributes. We can group them into still more sets of objects, 
and then ask with which relative frequencies various attributes occur in these 



sets. Many such relative frequencies will be intermediate; the finite frequentist 
automatically identifies them with intermediate probabilities. But it would 
seem that whether or not they are genuine probabilities, as opposed to mere 
tallies, depends on the case at hand. Bare ratios of attributes among sets of 
disparate objects may lack the sort of modal force that one might expect from 
probabilities. I belong to the reference class consisting of myself, the Eiffel 
Tower, the southernmost sandcastle on Santa Monica Beach, and Mt Everest. 
Two of these four objects are less than 7 ft. tall, a relative frequency of 1/2; 
moreover, we could easily extend this class, preserving this relative frequency 
(or, equally easily, not). Yet it would be odd to say that my probability of being 
less than 7 ft. tall, relative to this reference class, is 1/2, even though it is 
perfectly acceptable (if uninteresting) to say that 1/2 of the objects in the 
reference class are less than 7 ft. tall.

Some frequentists (notably Venn 1876, Reichenbach 1949, and von Mises 
1957 among others), partly in response to some of the problems above, have 
gone on to consider infinite reference classes, identifying probabilities with 
limiting relative frequencies of events or attributes therein. Thus, we require an 
infinite sequence of trials in order to define such probabilities. But what if the 
actual world does not provide an infinite sequence of trials of a given 
experiment? Indeed, that appears to be the norm, and perhaps even the rule. In 
that case, we are to identify probability with a hypothetical or counterfactual 
limiting relative frequency. We are to imagine hypothetical infinite extensions 
of an actual sequence of trials; probabilities are then what the limiting relative 
frequencies would be if the sequence were so extended. We might thus call this 
interpretation hypothetical frequentism.

Note that at this point we have left empiricism behind. A modal element has 
been injected into frequentism with this invocation of a counterfactual; 
moreover, the counterfactual may involve a radical departure from the way 
things actually are, one that may even require the breaking of laws of nature. 
(Think what it would take for the coin in my pocket, which has only been 
tossed once, to be tossed infinitely many times — never wearing out, and never 
running short of people willing to toss it!) One may wonder, moreover, 
whether there is always — or ever — a fact of the matter of what such 
counterfactual relative frequencies are.

Limiting relative frequencies, we have seen, must be relativized to a sequence 
of trials. Herein lies another difficulty. Consider an infinite sequence of the 
results of tossing a coin, as it might be H, T, H, H, H, T, H, T, T, … Suppose 
for definiteness that the corresponding relative frequency sequence for heads, 
which begins 1/1, 1/2, 2/3, 3/4, 4/5, 4/6, 5/7, 5/8, 5/9, …, converges to 1/2. By 
suitably reordering these results, we can make the sequence converge to any 
value in [0, 1] that we like. (If this is not obvious, consider how the relative 
frequency of even numbers among positive integers, which intuitively ‘should’ 
converge to 1/2, can instead be made to converge to 1/4 by reordering the 



integers with the even numbers in every fourth place, as follows: 1, 3, 5, 2, 7, 
9, 11, 4, 13, 15, 17, 6, …) To be sure, there may be something natural about the 
ordering of the tosses as given — for example, it may be their temporal 
ordering. But there may be more than one natural ordering. Imagine the tosses 
taking place on a train that shunts backwards and forwards on tracks that are 
oriented west-east. Then the spatial ordering of the results from west to east 
could look very different. Why should one ordering be privileged over others?

A well-known objection to any version of frequentism is that relative 
frequencies must be relativised to a reference class. Consider a probability 
concerning myself that I care about — say, my probability of living to age 80. I 
belong to the class of males, the class of non-smokers, the class of philosophy 
professors who have two vowels in their surname, … Presumably the relative 
frequency of those who live to age 80 varies across (most of) these reference 
classes. What, then, is my probability of living to age 80? It seems that there is 
no single frequentist answer. Instead, there is my probability-qua-male, my 
probability-qua-non-smoker, my probability-qua-male-non-smoker, and so on. 
This is an example of the so-called reference class problem for frequentism 
(although it can be argued that analogues of the problem arise for the other 
interpretations as well[9]). And as we have seen in the previous paragraph, the 
problem is only compounded for limiting relative frequencies: probabilities 
must be relativized not merely to a reference class, but to a sequence within the 
reference class. We might call this the reference sequence problem.

The beginnings of a solution to this problem would be to restrict our attention 
to sequences of a certain kind, those with certain desirable properties. For 
example, there are sequences for which the limiting relative frequency of a 
given attribute does not exist; Reichenbach thus excludes such sequences. Von 
Mises (1957) gives us a more thoroughgoing restriction to what he calls 
collectives — hypothetical infinite sequences of attributes (possible outcomes) 
of specified experiments that meet certain requirements. Call a place-selection 
an effectively specifiable method of selecting indices of members of the 
sequence, such that the selection or not of the index i depends at most on the 
first i − 1 attributes. The axioms are:

Axiom of Convergence: the limiting relative frequency of any 
attribute exists. 

Axiom of Randomness: the limiting relative frequency of each 
attribute in a collective ω is the same in any infinite subsequence of 
ω which is determined by a place selection.

The probability of an attribute A, relative to a collective ω, is then defined as 
the limiting relative frequency of A in ω. Note that a constant sequence such as 
H, H, H, …, in which the limiting relative frequency is the same in any infinite 
subsequence, trivially satisfies the axiom of randomness. This puts some strain 



on the terminology — offhand, such sequences appear to be as non-random as 
they come — although to be sure it is desirable that probabilities be assigned 
even in such sequences. Be that as it may, there is a parallel between the role of 
the axiom of randomness in von Mises' theory and the principle of maximum 
entropy in the classical theory: both attempt to capture a certain notion of 
disorder.

Collectives are abstract mathematical objects that are not empirically 
instantiated, but that are nonetheless posited by von Mises to explain the 
stabilities of relative frequencies in the behavior of actual sequences of 
outcomes of a repeatable random experiment. Church (1940) renders precise 
the notion of a place selection as a recursive function. Nevertheless, the 
reference sequence problem remains: probabilities must always be relativized 
to a collective, and for a given attribute such as ‘heads’ there are infinitely 
many. Von Mises embraces this consequence, insisting that the notion of 
probability only makes sense relative to a collective. In particular, he regards 
single case probabilities as nonsense: “We can say nothing about the 
probability of death of an individual even if we know his condition of life and 
health in detail. The phrase ‘probability of death’, when it refers to a single 
person, has no meaning at all for us” (11). Some critics believe that rather than 
solving the problem of the single case, this merely ignores it. And note that von 
Mises drastically understates the commitments of his theory: by his lights, the 
phrase ‘probability of death’ also has no meaning at all when it refers to a 
million people, or a billion, or any finite number — after all, collectives are 
infinite. More generally, it seems that von Mises' theory has the unwelcome 
consequence that probability statements never have meaning in the real world, 
for apparently all sequences of attributes are finite. He introduced the notion of 
a collective because he believed that the regularities in the behavior of certain 
actual sequences of outcomes are best explained by the hypothesis that those 
sequences are initial segments of collectives. But this is curious: we know for 
any actual sequence of outcomes that they are not initial segments of 
collectives, since we know that they are not initial segments of infinite 
sequences. 

Let us see how the frequentist interpretations fare according to our criteria of 
adequacy. Finite relative frequencies of course satisfy finite additivity. In a 
finite reference class, only finitely many events can occur, so only finitely 
many events can have positive relative frequency. In that case, countable 
additivity is satisfied somewhat trivially: all but finitely many terms in the 
infinite sum will be 0. Limiting relative frequencies violate countable additivity 
(de Finetti 1972, §5.22). Indeed, the domain of definition of limiting relative 
frequency is not even a field, let alone a sigma field (de Finetti 1972, §5.8). So 
such relative frequencies do not provide an admissible interpretation of 
Kolmogorov's axioms. Finite frequentism has no trouble meeting the 
ascertainability criterion, as finite relative frequencies are in principle easily 
determined. The same cannot be said of limiting relative frequencies. On the 



contrary, any finite sequence of trials (which, after all, is all we ever see) puts 
literally no constraint on the limit of an infinite sequence; still less does an 
actual finite sequence put any constraint on the limit of an infinite hypothetical 
sequence, however fast and loose we play with the notion of ‘in principle’ in 
the ascertainability criterion.

It might seem that the frequentist interpretations resoundingly meet the 
applicability to frequencies criterion. Finite frequentism meets it all too well, 
while hypothetical frequentism meets it in the wrong way. If anything, finite 
frequentism makes the connection between probabilities and frequencies too 
tight, as we have already observed. A fair coin that is tossed a million times is 
very unlikely to land heads exactly half the time; one that is tossed a million 
and one times is even less likely to do so! Facts about finite relative 
frequencies should serve as evidence, but not conclusive evidence, for the 
relevant probability assignments. Hypothetical frequentism fails to connect 
probabilities with finite frequencies. It connects them with limiting relative 
frequencies, of course, but again too tightly: for even in infinite sequences, the 
two can come apart. (A fair coin could land heads forever, even if it is highly 
unlikely to do so.) To be sure, science has much interest in finite frequencies, 
and indeed working with them is much of the business of statistics. Whether it 
has any interest in highly idealized, hypothetical extensions of actual 
sequences, and relative frequencies therein, is another matter. The applicability 
to rational opinion goes much the same way: it is clear that such opinion is 
guided by finite frequency information, unclear that it is guided by information 
about limits of hypothetical frequencies. For much more extensive critiques of 
finite frequentism and hypothetical frequentism, see Hájek 1997 and Hájek 
2009 respectively.

3.5 Propensity Interpretations

Like the frequency interpretations, propensity interpretations locate probability 
‘in the world’ rather than in our heads or in logical abstractions. Probability is 
thought of as a physical propensity, or disposition, or tendency of a given type 
of physical situation to yield an outcome of a certain kind, or to yield a long 
run relative frequency of such an outcome. 

While Popper is often credited as being the pioneer of propensity 
interpretations, we already find the key idea in the writings of Peirce (1910, 79-
80): “I am, then, to define the meaning of the statement that the probability, 
that if a die be thrown from a dice box it will turn up a number divisible by 
three, is one-third. The statement means that the die has a certain ‘would-be’; 
and to say that the die has a ‘would-be’ is to say that it has a property, quite 
analogous to any habit that a man might have.” A man's habit is a paradigmatic 
example of a disposition; according to Peirce the die's probability of landing 3 
or 6 is an analogous disposition. We might question whether the analogy is 
apt—the modal flavour of a habit is more one of necessity than possibility. The 



die's landing 3 or 6 is more like a man's ability to do something at which he 
succeeds a third of the time. But then one might also question Peirce's talk of 
probability as a ‘would-be’. Rather, it seems more like a graded ‘might-be’. 

Be that as it may, Peirce continues: “Now in order that the full effect of the 
die's ‘would-be’ may find expression, it is necessary that the die should 
undergo an endless series of throws from the dice box”, and he imagines the 
relative frequency of the event-type in question oscilating from one side of 1/3 
to another. This again anticipates Popper's view. But an important difference is 
that Peirce regards the propensity as a property of the die itself, whereas 
Popper attributes the propensity to the entire chance set-up of throwing the die.

Popper (1957) is motivated by the desire to make sense of single-case 
probability attributions that one finds in quantum mechanics—for example “the 
probability that this radium atom decays in 1600 years is 1/2”. He develops the 
theory further in (1959a). For him, a probability p of an outcome of a certain 
type is a propensity of a repeatable experiment to produce outcomes of that 
type with limiting relative frequency p. For instance, when we say that a coin 
has probability 1/2 of landing heads when tossed, we mean that we have a 
repeatable experimental set-up — the tossing set-up — that has a propensity to 
produce a sequence of outcomes in which the limiting relative frequency of 
heads is 1/2. With its heavy reliance on limiting relative frequency, this 
position risks collapsing into von Mises-style frequentism according to some 
critics. Giere (1973), on the other hand, explicitly allows single-case 
propensities, with no mention of frequencies: probability is just a propensity of 
a repeatable experimental set-up to produce sequences of outcomes. This, 
however, creates the opposite problem to Popper's: how, then, do we get the 
desired connection between probabilities and frequencies?

It is thus useful to follow Gillies (2000a) in distinguishing long-run propensity 
theories and single-case propensity theories:

A long-run propensity theory is one in which propensities are 
associated with repeatable conditions, and are regarded as 
propensities to produce in a long series of repetitions of these 
conditions frequencies which are approximately equal to the 
probabilities. A single-case propensity theory is one in which 
propensities are regarded as propensities to produce a particular 
result on a specific occasion (822).

Hacking (1965) and Gillies offer long-run (though not infinitely long-run) 
propensity theories; Fetzer (1982, 1983) and Miller (1994) offer single-case 
propensity theories. Note that ‘propensities’ are categorically different things 
depending on which sort of theory we are considering. According to the long-
run theories, propensities are tendencies to produce relative frequencies with 
particular values, but the propensities are not measured by the probability 



values themselves; according to the single-case theories, the propensities are 
measured by the probability values. According to Popper, for example, a fair 
die has a propensity — an extremely strong tendency — to land ‘3’ with long-
run relative frequency 1/6. The small value of 1/6 does not measure this 
tendency. According to Giere, on the other hand, the die has a weak tendency 
to land ‘3’. The value of 1/6 does measure this tendency.

It seems that those theories that tie propensities to frequencies do not provide 
an admissible interpretation of the (full) probability calculus, for the same 
reasons that relative frequencies do not. It is prima facie unclear whether single
-case propensity theories obey the probability calculus or not. To be sure, one 
can stipulate that they do so, perhaps using that stipulation as part of the 
implicit definition of propensities. Still, it remains to be shown that there really 
are such things — stipulating what a witch is does not suffice to show that 
witches exist. Indeed, to claim, as Popper does, that an experimental 
arrangement has a tendency to produce a given limiting relative frequency of a 
particular outcome, presupposes a kind of stability or uniformity in the 
workings of that arrangement (for the limit would not exist in a suitably 
unstable arrangement). But this is the sort of ‘uniformity of nature’ 
presupposition that Hume argued could not be known either a priori, or 
empirically. Now, appeals can be made to limit theorems — so called ‘laws of 
large numbers’ — whose content is roughly that under suitable conditions, 
such limiting relative frequencies almost certainly exist, and equal the single 
case propensities. Still, these theorems make assumptions (e.g., that the trials 
are independent and identically distributed) whose truth again cannot be 
known, and must merely be postulated.

Part of the problem here, say critics, is that we do not know enough about what 
propensities are to adjudicate these issues. There is some property of this coin 
tossing arrangement such that this coin would land heads with a certain long-
run frequency, say. But as Hitchcock (2002) points out, “calling this property a 
‘propensity’ of a certain strength does little to indicate just what this property 
is.” Said another way, propensity accounts are accused of giving empty 
accounts of probability, à la Molière's ‘dormative virtue’ (Sober 2000, 64). 
Similarly, Gillies objects to single-case propensities on the grounds that 
statements about them are untestable, and that they are “metaphysical rather 
than scientific” (825). Some might level the same charge even against long-run 
propensities, which are supposedly distinct from the testable relative 
frequencies.

This suggests that the propensity account has difficulty meeting the 
applicability to science criterion. Some propensity theorists (e.g., Giere) liken 
propensities to physical magnitudes such as electrical charge that are the 
province of science. But Hitchcock observes that the analogy is misleading. 
We can only determine the general properties of charge — that it comes in two 
varieties, that like charges repel, and so on — by empirical investigation. What 



investigation, however, could tell us whether or not propensities are non-
negative, normalized and additive?

More promising, perhaps, is the idea that propensities are to play certain 
theoretical roles, and that these place constraints on the way they must behave, 
and hence what they could be (in the style of the Ramsey/Lewis/‘Canberra 
plan’ approach to theoretical terms — see Lewis 1970 or Jackson 2000). The 
trouble here is that these roles may pull in opposite directions, 
overconstraining the problem. The first role, according to some, constrains 
them to obey the probability calculus (with finite additivity); the second role, 
according to others, constrains them to violate it.

On the one hand, propensities are said to constrain the degrees of belief, or 
credences, of a rational agent. I will have more to say in the next section about 
what credences are and what makes them rational, but for now recall the 
‘applicability to rational belief’ criterion: an interpretation should clarify the 
role that probabilities play in constraining the credences of rational agents. One 
such putative role for propensities is codified by Lewis’s ‘Principal Principle’. 
(See section 3.3.) The Principal Principle underpins an argument (Lewis 1980) 
that whatever they are, propensities must obey the usual probability calculus 
(with finite additivity). After all, it is argued, rational credences, which are 
guided by them, do.

On the other hand, Humphreys (1985) gives an influential argument that 
propensities do not obey Kolmogorov's probability calculus. The idea is that 
the probability calculus implies Bayes' theorem, which allows us to reverse a 
conditional probability:

P(A | B) =
P(B | A).P(A)

P(B)

Yet propensities seem to be measures of ‘causal tendencies’, and much as the 
causal relation is asymmetric, so these propensities supposedly do not reverse. 
Suppose that we have a test for an illness that occasionally gives false positives 
and false negatives. A given sick patient may have a (non-trivial) propensity to 
give a positive test result, but it apparently makes no sense to say that a given 
positive test result has a (non-trivial) propensity to have come from a sick 
patient. Thus, we have an argument that whatever they are, propensities must 
not obey the usual probability calculus. ‘Humphreys' paradox’, as it is known, 
is really an argument against any formal account of propensities that has as a 
theorem:

(*) if the probability of B, given A exists, then the probability of A, 
given B exists,



however one understands these conditional probabilities. The argument has 
prompted Fetzer and Nute (in Fetzer 1981) to offer a “probabilistic causal 
calculus” that looks quite different from Kolmogorov's calculus.[10] But one 
could respond more conservatively. For example, Popper's axiomatization of 
primitive conditional probabilities does not have (*) as a theorem, and thus 
propensities may conform to it despite Humphreys' argument.[11] At least to 
that extent they may still deserve to be called ‘probabilities'.

Or perhaps all this shows that the notion of ‘propensity’ bifurcates: on the one 
hand, there are propensities that bear an intimate connection to relative 
frequencies and rational credences, and that obey the usual probability calculus 
(with finite additivity); on the other hand, there are causal propensities that 
behave rather differently. In that case, there would be still more interpretations 
of probability than have previously been recognized.

3.6 Best-System Interpretations

Traditionally, philosophers of probability have recognized five leading 
interpretations of probability—classical, logical, subjectivist, frequentist, and 
propensity. But recently, so-called best-system interpretations of chance have 
become increasingly popular and important. While they bear some similarities 
to frequentist accounts, they avoid some of frequentism's major failings; and 
while they are sometimes assimilated to propensity accounts, they are really 
quite distinct. So they deserve separate treatment.

The best-system approach was pioneered by Lewis (1994b). His analysis of 
chance is based on his account of laws of nature (1973), which in turn refines 
an account due to Ramsey (1928/1990). According to Lewis, the laws of nature 
are the theorems of the best systematization of the universe—the true theory 
that best combines the theoretical virtues of simplicity and strength. These 
virtues trade off. It is easy for a theory to be simple but not strong, by saying 
very little; it is easy for a theory to be strong but not simple, by conjoining lots 
of disparate facts. The best theory balances simplicity and strength optimally—
in short, it is the most economical true theory.

So far, there is no mention of chances. Now, we allow probabilistic theories to 
enter the competition. We are not yet in a position to speak of such theories as 
being true. Instead, let us introduce another theoretical virtue: fit. The more 
probable the actual history of the universe is by the lights of the theory, the 
better it fits that history. Now the theories compete according to how well they 
combine simplicity, strength, and fit. The theorems of the winning theory are 
the laws of nature. Some of these laws may be probabilistic. The chances are 
the probabilities that are determined by these probabilistic laws.

According to Lewis (1986b), intermediate chances are incompatible with 
determinism. Loewer (2004) agrees that intermediate propensities are 



incompatible with determinism, understanding those to be essentially 
dynamical: “they specify the degree to which one state has a tendency to cause 
another” (15). But he argues that chances are best understood along Lewisian 
best-system lines, and that there is no reason to limit them to dynamical 
chances. In particular, best-system chances may also attach to initial 
conditions: adding to the dynamical laws a probability assignment, or 
distribution, over initial conditions may provide a substantial gain in strength 
with relatively little cost in simplicity. Science furnishes important examples of 
deterministic theories with such initial-condition probabilities. Adding the so-
called micro-canonical distribution to Newton's laws (and the assumption that 
the distant past had low entropy) yields all of statistical mechanics; adding the 
so-called quantum equilibrium distribution to Bohm's dynamical laws yields 
standard quantum mechanics. Indeed, this contact with actual science is one of 
the selling points of best-system analyses.

This approach solves, or at least eases, some of frequentism's problems. 
Progress can be made on the problem of the single case. The chances of a rare 
atom decaying in various time intervals may be determined by a more 
pervasive functional law, in which decay chances are given for a far wider 
range of atoms by plugging in a range of settings of some other magnitude 
(e.g., atomic number). And simplicity may militate in favour of this functional 
law being continuous, so even irrational-valued probabilities may be assigned. 
Moreover, bare ratios of attributes among sets of disparate objects will not 
qualify as chances if they are not pervasive enough, for then a theory that 
assigns them probabilities will lose too much simplicity without sufficient gain 
in strength.

However, some other problems for frequentism remain, and some new ones 
emerge, beginning with more basic problems for the Lewisian account of 
lawhood itself. Some of them are partly a matter of Lewis's specific 
formulation. Critics (e.g. van Fraassen 1989) question the rather nebulous 
notion of “balancing” simplicity and strength, which are themselves somewhat 
sketchy. But arguably some technical story (e.g. information-theoretic) could 
be offered to precisify them. Lewis himself worries that the exchange rate for 
such balancing may depend partly on our psychology, in which case there is 
the threat the laws themselves depend on our psychology, an unpalatable 
idealism about them. But he maintains that this threat is not serious as long as 
“nature is kind”, and one theory is so robustly the front-runner that it remains 
so under any reasonable standards for balancing. And again, perhaps technical 
tools can offer some objectivity here. (See section 4 for a gesture at such tools.)

More telling is the concern that simplicity is language-relative, and indeed that 
any theory can be given the simplest specification possible: simply abbreviate 
it as T! Lewis replies that a theory's simplicity must be judged according to its 
specification in a canonical language, in which all of the predicates correspond 
to natural properties. Thus, ‘green’ may well be eligible, but ‘grue’ surely is 



not. Our abbreviation, then, has to be unpacked in terms of such a language, in 
which its true complexity will be revealed. But this now involves a substantial 
metaphysical commitment to a distinction between natural and unnatural 
properties, one that various empiricists (e.g. van Fraassen 1989) find 
objectionable.

Further problems arise with the refinement to handle probabilistic laws. Again, 
some of them may be due to Lewis's particular formulation. Elga (2004) 
observes that Lewis's notion of fit is problematic in various infinite universes—
think of an infinite sequence of tosses of a coin. Offhand, it seems that the 
particular infinite sequence that is actualized will be assigned probability zero 
by any plausible candidate theory that regards the probability of heads as 
intermediate and the trials as independent. Elga argues, moreover, that there are 
technical difficulties with addressing this problem with infinitesimal 
probabilities. However, perhaps we merely need a different understanding of 
‘fit’—perhaps understood as ‘typicality’ (Elga), or perhaps one closer to that 
employed by statisticians with ‘chi-squared’ tests of goodness of fit (Schwarz 
forthcoming).

Hoefer (2007) modifies Lewis's best-system account in light of some of these 
problems. Hoefer understands “best” as “best for us”, covering regularities that 
are of interest to us, using the language both of science and of daily life, 
without any special privilege bestowed upon natural properties. Moreover, the 
“best system” is now one of chances directly, rather than of laws. Thus, there 
may be chances associated with the punctuality of trains, for example, without 
any presumption that there are any associated laws. Hoefer follows Elga in 
understanding ‘fit’ as ‘typicality’. Strength is a matter of the size of the overall 
domain of the best system's probability functions. Simplicity is to be 
understood in terms of elegant unification, and user-friendliness to beings like 
us. As a result, Hoefer embraces the agent-centric nature of chances in his 
sense, regarding as essential the credence-guiding role for them that is captured 
by the Principal Principle. 

However, some other problems for Lewis's account may run deeper, 
threatening best-system analyses more generally, and symptomatic of the ghost 
of frequentism that still hovers behind such analyses. One problem for 
frequentism that we saw strikes at the heart of any attempt to reduce chances to 
properties of patterns of outcomes. Such outcomes may be highly misleading 
regarding the true chances, because of their probabilistic nature. This is most 
vivid for events that are single-case by any reasonable typing. Whether or our 
universe turns out to be open or closed, plausibly that outcome is compatible 
with any underlying intermediate chance. The point generalizes, however 
pervasive the probabilistic pattern might be. Plausibly, a coin's landing 9 heads 
out of 10 tosses is compatible with any underlying intermediate chance for 
heads; and so on. The pattern of outcomes that is instantiated may be a poor 



guide to the true chance. (See Hájek 2009 for further arguments against 
frequentism that carry over to best-system accounts.)

Another way of putting the concern is that best-system accounts mistake an 
idealized epistemology of chance for its metaphysics (though see Lewis' 
insistence that this is not the case). Such accounts single out three theoretical 
virtues—and one may wonder why just those three—and reifies the 
probabilities of a theory that displays the virtues to the highest degree. But a 
probabilistic world may be recalcitrant to even the best theorizing: nature may 
be unkind.

4. Conclusion: Future Prospects?

It should be clear from the foregoing that there is still much work to be done 
regarding the interpretations of probability. Each interpretation that we have 
canvassed seems to capture some crucial insight into a concept of it, yet falls 
short of doing complete justice to this concept. Perhaps the full story about 
probability is something of a patchwork, with partially overlapping pieces. In 
that sense, the above interpretations might be regarded as complementary, 
although to be sure each may need some further refinement. My bet, for what it 
is worth, is that we will retain at least three distinct notions of probability: one 
quasi-logical, one objective (chance), and one subjective.

There are signs of the rehabilitation of classical and logical probability, and in 
particular the principle of indifference and the principle of maximum entropy, 
by authors such as Paris and Vencovská (1997), Maher (2000, 2001), and 
Bartha and Johns (2001). Relevant here may also be advances in information 
theory and complexity theory (see Li and Vitanyi 1997). These theories have 
already proved to be fruitful in the study of randomness (Kolmogorov 1965, 
Martin-Löf 1966), which obviously is intimately related to the notion of 
probability.

Refinements of our understanding of randomness, in turn, should have a 
bearing on the frequency interpretations (recall von Mises' appeal to 
randomness in his definition of ‘collective’), and on propensity accounts 
(especially those that make explicit ties to frequencies). Given the apparent 
connection between propensities and causation adumbrated in Section 3.5, 
powerful causal modeling techniques by authors such as Spirtes, Glymour and 
Scheines (1993) and Pearl (2000), and recent work on causation more generally 
(e.g., Hall 2003, Woodward 2003) should also prove fruitful here.

Johns (2002) offers a causal theory of chance; roughly, the chance of an event 
is the idealised epistemic probability of the event, given a maximal 
specification of its (possible) causes. Regarding best-system interpretations of 
chance, I noted that it is somewhat unclear exactly what ‘simplicity’ and 
‘strength’ consist in, and exactly how they are to be balanced. Perhaps insights 



from statistics and computer science may be helpful here: approaches to 
statistical model selection, and in particular the ‘curve-fitting’ problem, that 
attempt to characterize simplicity, and its trade-off with strength — e.g., the 
Akaike Information Criterion (see Forster and Sober 1994), the Bayesian 
Information Criterion (see Kieseppä 2001), Minimum Description Length 
theory (see Rissanen 1999) and Minimum Message Length theory (see Wallace 
and Dowe 1999). Another growth area is the study of non-fundamental 
objective probabilities, as one finds in statistical mechanics and evolutionary 
theory. Are they genuine chances? Do they show that chance is compatible 
with determinism? See Lyon (2011) for a discussion of some of these issues. 
Relatedly, an important approach to objective probability that is gaining in 
popularity involves the so-called method of arbitrary functions. Originating 
with Poincaré (1896), it is a mathematical technique for determining 
probability functions for certain systems with chaotic dynamical laws mapping 
input conditions to outcomes. Roughly speaking, the probabilities for the 
outcomes are relatively insensitive to the probabilities over the various initial 
conditions — think of how the probabilities of outcomes of spins of a roulette 
wheel apparently do not depend on who is spinning the wheel, sometimes 
vigorously, sometimes feebly. See Strevens (2003) for a detailed treatment of 
this approach.

The subjectivist theory of probability is also thriving. Developments in the last 
decade or so include Schervish, Seidenfeld and Kadane's (2003) research on 
degrees of incoherence (measuring the extent of departures from obedience to 
the probability calculus). I foresee related attempts to ‘humanize’ 
Bayesianism—for example, the further study of imprecise probability and 
imprecise decision theory, in which credences need not be precise numbers. 
(See http://www.sipta.org/ for up-to-date research in this area.) And a recently 
burgeoning area of research has concerned the contents of subjective 
probability assignments, the objects to which such assignments attach— 
whether they should be to propositions (sets of possible worlds), or to more 
fine-grained self-locating propositions (sets of centered worlds — see Lewis 
1979), or to something else. Thus, an agent may not assign credences simply to 
propositions concerning the way the world is, but to more specific propositions 
concerning who she is, where she is, or what time it is. This in turn has 
ramifications for updating rules, in particular calling into question the 
appropriateness of conditionalization. The so-called Sleeping Beauty problem 
(Elga 2000) has generated much discussion in this regard. These promise to be 
fertile areas of future research. We may expect that further criteria of adequacy 
for subjective probabilities will be developed — perhaps refinements of 
‘scoring rules’ (Winkler 1996), and more generally, candidates for playing a 
role for subjective probability analogous to the role that truth plays for belief.

Here we come full circle. For belief is apparently answerable both to logic and 
to objective facts. A refined account of degrees-of-belief may be answerable 
both to a refined quasi-logical notion and a refined notion of chance. Indeed, 



various cottage industries are springing up involving the interrelations among 
the different concepts of probability. A notable recent trend concerns the 
putative connections between objective chance and subjective probability, 
along the lines of the Principal Principle. Can the principle be justified? Does it 
need refining? How should we understand “inadmissible” evidence? See Hall 
(1994, 2004) and Schwarz (forthcoming) for further discussion.

Well may we say that probability is a guide to life; but the task of 
understanding exactly how and why it is has still to be completed, and will 
surely be a guide to future theorizing about it.

Suggested Further Reading

Kyburg (1970) contains a vast bibliography of the literature on probability and 
induction pre-1970. Also useful for references before 1967 is the bibliography 
for “Probability” in the Macmillan Encyclopedia of Philosophy. Earman (1992) 
and Howson and Urbach (1993) have more recent bibliographies, and give 
detailed presentations of the Bayesian program. Skyrms (2000) is an excellent 
introduction to the philosophy of probability. von Plato (1994) is more 
technically demanding and more historically oriented, with another extensive 
bibliography that has references to many landmarks in the development of 
probability theory in the last century. Fine (1973) is still a highly sophisticated 
survey of and contribution to various foundational issues in probability, with an 
emphasis on interpretations. More recent philosophical studies of the leading 
interpretations include Gillies (2000b), Galavotti (2005), and Mellor (2005). 
Eagle (2010) is a valuable anthology of many significant papers in the 
philosophy of probability. Billingsley (1995) and Feller (1968) are classic 
textbooks on the mathematical theory of probability.
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