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Abstract. We construct a class of nonnegative martingale processes
that oscillate indefinitely with high probability. For these processes, we
state a uniform rate of the number of oscillations for a given magnitude
and show that this rate is asymptotically close to the theoretical upper
bound. These bounds on probability and expectation of the number of
upcrossings are compared to classical bounds from the martingale lit-
erature. We discuss two applications. First, our results imply that the
limit of the minimum description length operator may not exist. Sec-
ond, we give bounds on how often one can change one’s belief in a given
hypothesis when observing a stream of data.!

Keywords: Martingales, infinite oscillations, bounds, convergence
rates, minimum description length, mind changes.

1 Introduction

Martingale processes model fair gambles where knowledge of the past or choice
of betting strategy have no impact on future winnings. But their application is
not restricted to gambles and stock markets. Here we exploit the connection be-
tween nonnegative martingales and probabilistic data streams, i.e., probability
measures on infinite strings. For two probability measures P and @ on infi-
nite strings, the quotient Q/P is a nonnegative P-martingale. Conversely, every
nonnegative P-martingale is a multiple of Q/P P-almost everywhere for some
probability measure Q).

One of the famous results of martingale theory is Doob’s Upcrossing Inequality
[Doo53]. The inequality states that in expectation, every nonnegative martingale
has only finitely many oscillations (called upcrossings in the martingale litera-
ture). Moreover, the bound on the expected number of oscillations is inversely
proportional to their magnitude. Closely related is Dubins’ Inequality [Durl0]
which asserts that the probability of having many oscillations decreases expo-
nentially with their number. These bounds are given with respect to oscillations
of fixed magnitude.

In Section 4 we construct a class of nonnegative martingale processes that
have infinitely many oscillations of (by Doob necessarily) decreasing magnitude.

! In Theorem 4, Q needs to be absolutely continuous with respect to P on cylinder

sets. In Theorem 6, Corollary 7, Corollary 8, and Corollary 13, P needs to have
perpetual entropy. See technical report [LH14].
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These martingales satisfy uniform lower bounds on the probability and the ex-
pectation of the number of upcrossings. We prove corresponding upper bounds
in Section 5 showing that these lower bounds are asymptotically tight. Moreover,
the construction of the martingales is agnostic regarding the underlying proba-
bility measure, assuming only mild restrictions on it. We compare these results
to the statements of Dubins’ Inequality and Doob’s Upcrossing Inequality and
demonstrate that our process makes those inequalities (in Doob’s case asymptot-
ically) tight. If we drop the uniformity requirement, asymptotics arbitrarily close
to Doob and Dubins’ bounds are achievable. We discuss two direct applications
of these bounds.

The Minimum Description Length (MDL) principle [Ris78] and the closely
related Minimal Message Length (MML) principle [WB68] recommend to se-
lect among a class of models the one that has the shortest code length for the
data plus code length for the model. There are many variations, so the following
statements are generic: for a variety of problem classes MDL’s predictions have
been shown to converge asymptotically (predictive convergence). For continuous
independently identically distributed data the MDL estimator usually converges
to the true distribution [Grii07, Wal05] (inductive consistency). For arbitrary
(non-i.i.d.) countable classes, the MDL estimator’s predictions converge to those
of the true distribution for single-step predictions [PH05] and oo-step predic-
tions [Hut09]. Inductive consistency implies predictive convergence, but not the
other way around. In Section 6 we show that indeed, the MDL estimator for
countable classes is inductively inconsistent. This can be a major obstacle for
using MDL for prediction, since the model used for prediction has to be changed
over and over again, incurring the corresponding computational cost.

Another application of martingales is in the theory of mind changes [LS05].
How likely is it that your belief in some hypothesis changes by at least a > 0
several times while observing some evidence? Davis recently showed [Dav13]
using elementary mathematics that this probability decreases exponentially. In
Section 7 we rephrase this problem in our setting: the stochastic process

P( hypothesis | evidence up to time ¢ )

is a martingale bounded between 0 and 1. The upper bound on the probability of
many changes can thus be derived from Dubins’ Inequality. This yields a simpler
alternative proof for Davis’ result. However, because we consider nonnegative but
unbounded martingales, we get a weaker bound than Davis.

Omitted proofs can be found in the extended technical report [LH14].

2 Strings, Measures, and Martingales

We presuppose basic measure and probability theory [Durl0, Chp.1]. Let X be a
finite set, called alphabet. We assume X' contains at least two distinct elements.
For every u € X*, the cylinder set

Iy ={uv|ve X
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is the set of all infinite strings of which w is a prefix. Furthermore, fix the o-algebras
oo
Fi ::U({Fu|u€2t}) and Fo ::U(U]:t).
t=1

(Fi)ten is a filtration: since I, = UaEE Ly, it follows that F; C Fiyq for every
t € N, and all 7; C F, by the definition of F,. An event is a measurable set
E C ¥¥. The event E° := X¥ \ E denotes the complement of E.

Definition 1 (Stochastic Process). (X;)ien is called (R-valued) stochastic
process iff each X; is an R-valued random variable.

Definition 2 (Martingale). Let P be a probability measure over (X%, F,). An
R-valued stochastic process (X¢)ien is called a P-supermartingale (P-submartin-
gale) iff

(a) each X is Fi-measurable, and
(b) E[X, | Fs] < X, (E[Xy | Fs] > Xs) almost surely for all s,t € N with s < t.

A process that is both P-supermartingale and P-submartingale is called P-
martingale.

We call a supermartingale (submartingale) process (X;):en nonnegative iff X; >
0 for all £ € N.

A stopping time is an (N U {w})-valued random variable T' such that {v €
X9 | T(v) =t} € F; for all t € N. Given a supermartingale (X¢):en, the stopped
process (Xminfe,1})ten is a supermartingale [Durl0, Thm. 5.2.6]. If (X;)sen is
bounded, the limit of the stopped process, X1, exists almost surely even if T = w
(Martingale Convergence Theorem [Durl0, Thm. 5.2.8]). We use the following
variant on Doob’s Optional Stopping Theorem for supermartingales.

Theorem 3 (Optional Stopping Theorem [Durl0, Thm. 5.7.6]). Let
(Xt)ten be a nonnegative supermartingale and let T be a stopping time. The
random variable X1 is almost surely well defined and E[X 7] < E[Xo].

We exploit the following two theorems that state the connection between
probability measures on infinite strings and martingales. For any two probability
measures P and Q on (X%, F,), the quotient @)/ P is a nonnegative P-martingale.
Conversely, for every nonnegative P-martingale there is a probability measure
Q on (X%, F,) such that the martingale is P-almost surely a multiple of Q/P.

Theorem 4 (Measures — Martingales [Doo53, I11§7 Ex. 3]). Let Q and
P be two probability measures on (X, F,). The stochastic process (Xi)ien,
X:(v) :=QUv,,,)/P(Iy,,) is a nonnegative P-martingale with E[X;] = 1.

Theorem 5 (Martingales — Measures [LH14]). Let P be a probability mea-
sure on (X%, F,,) and let (Xi)ien be a nonnegative P-martingale with E[X,] = 1.
There is a probability measure Q on (X*,F,) such that for all v € X* and all
t € N with P(I,.,,) >0, X¢(v) = Q(Iy,.,)/P(Lu,.,)-
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3 Martingale Upcrossings

Fix ¢ € R, and let (Xi)iey be a martingale over the probability space
(X%, Fu, P). Let t1 < ta. We say the process (Xi)ien does an e-upcrossing be-
tween t; and to iff Xy, < ¢ — e and Xy, > ¢+ e. Similarly, we say (X;)ten
does an e-downcrossing between t; and ty iff X;, > c+¢ and Xy, <c—e¢. Ex-
cept for the first upcrossing, consecutive upcrossings always involve intermediate
downcrossings. Formally, we define the stopping times

TO(’U) = Oa
Topt1(v) :=1inf{t > Tor(v) | X¢(v) < c—e}, and
T2k+2(1}) = 1nf{t > T2k+1( ) | Xt( ) > C+€}.

The Tk (v) denote the indices of upcrossings. We count the number of upcross-
ings by the random variable U (c — ¢, ¢ + €), where

UX(c—e,c+¢e)(v) :=sup{k > 0| Tox(v) <t}

and UX(c — e,¢+ ¢€) = sup,eny Ui¥ (¢ — €,¢ + €) denotes the total number of
upcrossings. We omit the superscript X if the martingale (X;);en is clear from
context.

The following notation is used in the proofs. Given a monotone decreasing
function f : N — [0,1) and m,k € N, we define the events En)ii that denote
that there are at least k-many f(m)-upcrossings:

Em,C = {v e x| UX(l — f(m), 1+ f(m))(v) > k‘}

For all m,k € N we have Eﬁg D) Eii:iﬂ and En)ii C Eﬁfl o Again, we omit

X and f in the superscript if they are clear from context.

4 Indefinitely Oscillating Martingales

In this section we construct a class X,
of martingales that has a high prob-
ability of doing an infinite number of
upcrossings. The magnitude of the up-
crossings decreases at a rate of a given
summable function f (a function f is
called summable iff it has finite Li-
norm, ie., y .o, f(i) < o0), and the
value of the martingale X; oscillates Fig.1. An example evaluation of the mar-

back and forth between 1— f(M;) and tingale defined in the proof of Theorem 6
1+ f(My), where M, denotes the num-

ber of upcrossings so far. The process has a monotone decreasing chance of
escaping the oscillation.
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Theorem 6 (An Indefinitely Oscillating Martingale). Let 0 < § < 3 and
let f:N = [0,1) be any monotone decreasing function such that > .- f(i) < g.
For every probability measure P with P(I,) > 0 for all u € X* there is a
nonnegative martingale (X;)ien with E[X;] =1 and

P¥m. U(1 — f(m), 1+ f(m)) >m] >1-4.

Proof. We assume X = {0,1} by grouping symbols into two groups. Since
P(Iyo | I'w)+ P (L1 | Iy) = 1, we can define a function a : X* — X that assigns
to every string v € X* a symbol a, := a(u) such that p, := P(Iya, | Iu) < 3.
By assumption, we have p, > 0.

We define the following stochastic process (X;)en. Let v € X and t € N be
given and define u := v1.;. Let

M;(v) :==1+argmax {Vk <m. U (1 — f(k),1 + f(k)) >k},
meN

i.e., My is 1 plus the number of upcrossings completed up to time ¢. Define
Ye(v) == P (L f(Mi(v)) — Xe(v)).
For t = 0, we set Xo(v) := 1, otherwise we distinguish the following three cases.

(i) For X;(v) > 1:

X1 (v) == 1 — f(M¢(v)) if vi41 # au,
TR X (o) + P (X (0) = (1 f(Mo(©)))) i g1 = au
(ii) For 1> X;(v) > y:(v):

X)) = w(v) if v # au,
&“M’{Hfmm»iwm—%-

(iii) For X;(v) < vy (v) and X;(v) < 1:
let di(v) := max{0, min{, ” X;(v), 1_5“ Ye(v) = 2f (Me(v))}

P
Xt(’U) + dt(’U) if Vi1 7/: Qo s

Xig1(v) = 1-p. , _
Xi(v) — o di(v)  if vppr = ay.

We give an intuition for the behavior of the process (X;)ten. For all m, the
following repeats. First X; increases while reading a,,’s until it reads one symbol
that is not a,, and then jumps down to 1 — f(m). Subsequently, X; decreases
while not reading a,,’s until it falls below ~; or reads an a, and then jumps up
to 1+ f(m). If it falls below 1 and 4, then at every step, it can either jump up
to 1 — f(m) or jump down to 0, whichever one is closest (the distance to the
closest of the two is given by d;). See Figure 1 for a visualization.



326 J. Leike and M. Hutter

For notational convenience, in the following we omit writing the argument v
to the random variables X, ¢, My, and d;.

Claim 1: (X¢)ten is a martingale. Each X1 is Firi1-measurable, since it
uses only the first ¢ + 1 symbols of v. Writing out cases (i), (ii), and (iii), we get

E[Xe1 | F) 2 (1= FMD)1 = pu) + (Xe+ 17 (X1 = (1= F(M)pu = Xe.
E[Xp | F) 2 (Xe = (L4 F(M) = X)) (1= pa) + (L + F(M)p = X
E[Xes1 | F] 2 (X4 d) (1 - pa) + (X — P d)pa = X

Claim 2: Xy > 0 and E[X;] = 1. The latter follows from X, = 1. Regarding
the former, we use 0 < f(M;) < 1 to conclude

(i=) 1pfu (X¢ — (1 — f(My))) >0 for X; > 1,
(117&) Xt -Vt Z 0 fOI‘ Xt Z Yt
(iii#) X; + d; > 0 since d; > 0, and
(iii=) X;— ' Pd; > 0 since dy < P X;.

Claim 8: Xy < 1— f(M;) or X > 1+f(Mt) for all t > T7. We use induction
on t. The induction start holds with X7, < 1 — f(M;). The induction step is
clear for (i) X; > 1 and (ii) 1 > X; > v since v > 0. In case (iii) we have either
di=0ord; < 1;5“% — 2f (M) and since X; < v,

Xiv1 S Xp+dy S Xp + (14 f(My) — Xi) = 2f(My) = 1 — f(My).
Claim 4: If Xy > 1 — f(My) then X > ;. In this case
o= L+ f(My) = Xo) <2, 7 f(My),
and thus with p, < } and f(M;) <3202, f(k) < $ < 3
Xe = 21— f(My) = 2,7 f(Mg) =1~ 7P f(My) 21— 3f(My) > 0.
Claim 5: If Xy > 0 and (f(My) > 0 or Xy < 1) then Xiq1 # Xi.

(i) Assume X; > 1. Then either X;y; =1 — f(My) < 1, or 1;5“ (X —(1—
f(My))) > 0 since Xy > 1 — f(My).
(ii) Assume 1 > X; > ;. Then either X;11 = 1+ f(My) > 1 > Xy, or
1+ f(My)— Xt > 1—X; >0, hence 4 > 0 and thus Xy = Xy — v < X3
(iii) Assume 0 < X; < ¢ and X; < 1. From Claim 4 follows X; < 1 — f(My),
thus 1;5“ v —2f (M) =1— f(My) — X; > 0. By assumption, lp“ X >0
and therefore d; > 0. Hence X; +d; > X; and X; — 1;5” dy < X;.
Claim 6: For all m € N, if Epym—1 # 0 then P(Epym | Emom—1) > 1 —

2f(m). Let v € E; m—1 and let top € N be a time step such that exactly m — 1
upcrossings have been completed up to time g, i.e., My, (v) = m. The subsequent



Indefinitely Oscillating Martingales 327

downcrossing is completed eventually with probablity 1: we are in case (i) and
in every step there is a chance of 1 — p, > ; of completing the downcrossing.
Therefore we assume without loss of generality that the downcrossing has been
completed, i.e., that ¢y is such that X, (v) = 1 — f(m). We will bound the
probability p := P(Em m | Emm—1) that Xy rises above 1+ f(m) after ¢y to
complete the m-th upcrossing.

Define the stopping time T': X¥ — NU {w},

T(v):=inf{t > to | X¢e(v) > 1+ f(m) V Xi(v) =0},

and define the stochastic process Y; = 1 4 f(m) — Xpingso+¢,7}. Because
(Xmin{to+t,7} )ten is martingale, (Y;)ien is martingale. By definition, X; always
stops at 1 + f(m) before exceeding it, thus Xp < 1+ f(m), and hence (Y})ien
is nonnegative. The Optional Stopping Theorem yields E[Yr_¢, | Fi,] < E[Y) |
Fio] and thus E[X¢ | Fi ] > E[Xy, | Fi,] = 1 — f(m). By Claim 5, X; does not
converge unless it reaches either 0 or 1 + f(m), and thus
L—f(m) <E[Xr | Fip] = (1+ f(m))-p+0-(1-p),

hence P(Epmm | Emm-1) =p>1—f(m)(1+p) >1—2f(m).

Claim 7: Emt1,m = Emm and Epi1 my1 C Enm. By definition of My, the
i-th upcrossings of the process (Xi)ien is between 1 — f(i) and 1 + f(i). The
function f is monotone decreasing, and by Claim 3 the process (X¢)ten does not
assume values between 1 — f(i) and 1+ f(¢). Therefore the first m f(m + 1)-
upcrossings are also f(m)-upcrossings, i.e., Emt1m € Epm. By definition of
Em,k we have Eerl,m 2 Em,m and Em+1,m+1 c Eerl,m-

Claim 8: P(Eym) > 1 —>.1", 2f(i). For P(Epo) = 1 this holds trivially.
Using Claim 6 and Claim 7 we conclude inductively

P(Em,m) - P(Em,m N Em,m—l) - P(Em,m | Em,m—l)P(Em,m—l)
= P(Em,m | Em,m—l)P(Em—l,m—l)

m—1 m
> (1-2f(m)) (1 - 2f(i)> >1- 2f(i).
i=1 i=1
From Claim 7 follows ()", E;; = Ep,, and therefore P((;2, Ei;) =
im0 P(Emm) > 1— > 00, 2f(i) > 1 4. 0

Theorem 6 gives a uniform lower bound on the probability for many up-
crossings: it states the probability of the event that for all m € N, U(1 —
f(m),1+ f(m)) > m holds. This is a lot stronger than the nonuniform bound
PU - f(m),1+ f(m)) > m] > 1—4 for all m € N: the quantifier is inside the
probability statement.

As an immediate consequence of Theorem 6, we get the following uniform
lower bound on the ezpected number of upcrossings.

Corollary 7 (Expected Upcrossings). Under the same conditions as in The-
orem 6, for all m € N,

E[U(L - f(m), 1+ f(m))] = m(1 ).
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Proof. From Theorem 6 and Markov’s inequality. O

By choosing the slowly decreasing but summable function f by setting

i) = 25(5(11115)2 - f), we get the following concrete results.

Corollary 8 (Concrete Lower Bound). Let 0 < 6 < 1. For every probability
measure P with P(I,) > 0 for all w € X*, there is a nonnegative martingale
(Xt)ten with E[X:] =1 such that

rP {V5>O. Ul—e,1+¢)€e Q<5(1151)2>:| >1-94 and

€

EU(1—¢,1+¢) e Q(E(lnli)z).

Moreover, for all e < 0.015 we get E[U(1 —¢g,14¢)] > s1-9)

(1—
a(ln ;)2

and

P{V5<0.015.U(15,1+5)> >1-4.

5 -
a(ln i)z

The concrete bounds given in Theorem 8 are not the asymptotically optimal
ones: there are summable functions that decrease even more slowly. For example,
we could multiply f~! with the factor \/In(1/e) (which still is not optimal).

5 Martingale Upper Bounds

In this section we state upper bounds on the probability and expectations of
many upcrossings (Dubins’ Inequality and Doob’s Upcrossing Inequality). We
use the construction from the previous section to show that these bounds are
tight. Moreover, with the following theorem we show that the uniform lower
bound on the probability of many upcrossings guaranteed in Theorem 6 is
asymptotically tight.

Every function f is either summable or not. If f is summable, then we can scale
it with a constant factor such that its sum is smaller than g, and then apply
the construction of Theorem 6. If f is not summable, the following theorem
implies that there is no uniform lower bound on the probability of having at
least m-many f(m)-upcrossings.

Theorem 9 (Upper Bound on Upcrossing Rate). Let f : N — [0,1) be a
monotone decreasing function such that > .-, f(t) = co. For every probability
measure P and for every nonnegative P-martingale (Xy)ien with E[X;] =1,

P¥m.U(1 — f(m),1+4 f(m)) > m] =0.

Proof. Define the events Dy, := |J;"| Ef; = {Vi <m. U1 — f(i),1+ f(i)) > i}.
Then D, € Dypyt1. Assume there is a constant ¢ > 0 such that ¢ < P(D¢)) =
P(NX, E;;) for all m. Let m € N, v € D¢,, and pick tg € N such that the
process Xo(v), ..., X, (v) has completed i-many f(i)-upcrossings for all i < m
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and Xy (v) < 1— f(m+1). If X¢(v) > 1+ f(m+ 1) for some t > to, the
(m+ 1)-st upcrossing for f(m + 1) is completed and thus v € Ep,41 m+1. Define
the stopping time 7' : X* — (NU {w}),

T(v) :=inf{t > tg | Xe(v) > 1+ f(m+1)}.

According to the Optional Stopping Theorem applied to the process (X¢)i>t,,
the random variable X is almost surely well-defined and E[ X7 | F,] < E[Xq, |
Fio] = Xi,- This yields 1 — f(m +1) > Xy, > E[X¢ | F4,] and by taking the
expectation E[ - | X, <1 — f(m + 1)] on both sides,

1~ f(m+1) 2 E[Xr | X,y <1 f(m+1)]
> (14 f(m+1)P[X7 > 1+ f(m+1) | Xjp < 1= f(m+ 1)

by Markov’s inequality. Therefore

P(Emstams1 | D5) = P[Xr = 14 f(m+1) | Xgy <1 f(m+ 1)
 P[X;, <1— f(m+1)| D3]
< P[Xp > 1+ f(m+1)| Xy <1 f(m+1)]

1—f(m+1)
S 1+f(m+1) S ]- - f(m + 1)

Together with ¢ < P(D¢,) we get
P (Dm+1 \Dm) =P (chn.:,_l m4+1 ND;, )
= P (Em+1 m—+1 | Dm) P(Dfn) Z f(m + 1)0'
This is a contradiction because Y .o, f(i) = oo:

m

1> P(Dpy1) =P (L‘ﬂ(Dz‘H \Dz‘)> = ZP i+1\ Di)
i=1

i=1

(i+1)c — oc.

HMS

Therefore the assumption P(Dg,) > ¢ for all m is false, and hence we get

PNVm. U1 — f(m),1+4 f(m)) = m] = P(";2; Ei;) =limpy, 0 P(DG,) =0. O

By choosing the decreasing non-summable function f by setting f~1(g) :=

— b for Theorem 9, we get that U(1 —e,1+¢) ¢ 2(_, ' , ) P-almost

a(ln €) elog(1/e)

surely.

Corollary 10 (Concrete Upper Bound). Let P be a probability measure and
let (Xt)ien be a nonnegative martingale with BE[X;] = 1. Then for all a,b > 0,

P[V5>O.U(175,1+s)2 fb}:().

a
elog(l/e)

Theorem 11 (Dubins’ Inequality [Durl0, Ex.5.2.14]). For every nonneg-
ative P-martingale (Xt)ien and for every ¢ > 0 and every € > 0,

PlU(c—e,c+¢e) > k] < <§jr§)k1[<l [mm{ Xoa,l}] .
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Dubins’ Inequality immediately yields the following bound on the probability
of the number of upcrossings.

PIU(L= f(m), 1+ fm) = &) < (150"

The construction from Theorem 6 shows that this bound is asymptotically tight
for m = k — oo and § — 0: define the monotone decreasing function f : N —
[0,1),

f(t) = {25k, if t <k, and

0, otherwise.
Then the martingale from Theorem 6 yields the lower bound
PUL- S, 1+ 5) >k >1-4,
while Dubins’ Inequality gives the upper bound
k
PO 1+ ) 2 K < (1 ) 2’“) (1,7 )k 2% axp(—0).
14+ 2%k 2k + 6

As 6 approaches 0, the value of exp(—d) approaches 1 — ¢ (but exceeds it since
exp is convex). For 6 = 0.2 and m = k = 3, the difference between the two
bounds is already lower than 0.021.

The following theorem places an upper bound on the rate of expected upcross-
ings.

Theorem 12 (Doob’s Upcrossing Inequality [Xul2]). Let (X;):ien be a
submartingale. For every c € R and ¢ > 0,

E[U(c —¢e,c+¢)] < . Elmax{c— e — X;,0}].
Asymptotically, Doob’s Upcrossing Inequality states that with e — 0,
EU(l—¢e1+e)]e€0(l).

Again, we can use the construction of Theorem 6 to show that these asymptotics
are tight: define the monotone decreasing function f: N — [0,1),

F(t) = {an, if t <m, and

0, otherwise.
Then for 6 = %, Theorem 7 yields a martingale fulfilling the lower bound

m
B~ 1+ 2 )

and Doob’s Upcrossing Inequality gives the upper bound

E[U(1 - 4}na I+ 4}11)} < 2m,
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which differs by a factor of 4.

The lower bound for the expected number of upcrossings given in Theorem 8
is a little looser than the upper bound given in Doob’s Upcrossing Inequality.
Closing this gap remains an open problem. We know by Theorem 9 that given
a non-summable function f, the uniform probability for many f(m)-upcrossings
goes to 0. However, this does not necessarily imply that expectation also tends
to 0; low probability might be compensated for by high value. So for expectation
there might be a lower bound larger than Theorem 7, an upper bound smaller
than Doob’s Upcrossing Inequality, or both.

If we drop the requirement that the rate of upcrossings to be uniform,
Doob’s Upcrossing Inequality is the best upper bound we can give [LH14].

6 Application to the MDL Principle

Let M be a countable set of probability measures on (X%, F,), called environ-
ment class. Let K : M — [0,1] be a function such that 3, 2~ K@) < 1,
called complexity function on M. Following notation in [Hut09], we define for
u € X* the minimal description length model as

MDL" := argmin { — log Q(I,) + K(Q)}.
QeEM

That is, —log@Q(I7) is the (arithmetic) code length of u given model @, and
K(Q) is a complexity penalty for @, also called regularizer. Given data u € X*,
MDL* is the measure Q € M that minimizes the total code length of data and
model.

The following corollary of Theorem 6 states that in some cases the limit
lim; oo MDL"** does not exist with high probability.

Corollary 13 (MDL May not Converge). Let P be a probability measure on
the measurable space (X%, F,). For any § > 0, there is a set of probability mea-
sures M containing P, a complezxity function K : M — [0, 1], and a measurable
set Z € F, with P(Z) > 1—§ such that for all v € Z, the limit lim;_, o, MDL"*
does not ezxist.

Proof. Fix some positive monotone decreasing summable function f (e.g., the one
given in Theorem 8). Let (X¢):en be the P-martingale process from Theorem 6.
By Theorem 5 there is a probability measure @ on (X%, F,,) such that

P(Ell:t) .

Choose M := {P,Q} with K(P) := K(Q) := 1. From the definition of MDL
and @ it follows that

X,(u) <1 < Q(I,) < P(I,) = MDL" =P, and
X,(u) >1 < Q(I) > P(IL,) = MDL" = Q.
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For Z :=(\,-_; Em,m Theorem 6 yields
P(Z)=PNm.U(l— f(m),1+ f(m)) >m] >1—4.

For each v € Z, the measure MDL"** alternates between P and @ indefinitely,
and thus its limit does not exist. O

Crucial to the proof of Theorem 13 is that not only does the process Q/P
oscillate indefinitely, it oscillates around the constant exp(K(Q) — K(P)) = 1.
This implies that the MDL estimator may keep changing indefinitely, and thus
it is inductively inconsistent.

7 Bounds on Mind Changes

Suppose we are testing a hypothesis H C X on a stream of data v € X*. Let
P(H | I'y,.,) denote our belief in H at time ¢t € N after seeing the evidence vy.;.
By Bayes’ rule,

P(Ly,., | H)
P(F'Ul:t)

Since X is a constant multiple of P( - | H)/P and P( - | H) is a probability
measure on (X%, F,), the process (X;)en is a P-martingale with respect to the
filtration (F%)ten by Theorem 4. By definition, (X;):cn is bounded between 0 and
1. Let a > 0. We are interested in the question how likely it is to often change
one’s mind about H by at least «, i.e., what is the probability for X; = P(H |
T,,.,) to decrease and subsequently increase m times by at least «. Formally, we

define the stopping times 7p ,(v) := 0,

P(H | T,,,)=P(H) =: X¢(v).

Topi1, (v) i=inf{t > Ty, (0) | Xio(v) < Xy, () (v) —va},

Tfprn, (0) = nE{t > Thpy ,(0) | Xe(w) > Xay, | (v) +va,
and T} := min{T} , | v € {-1,+1}}. X,
(In Davis’ notation, XTé,V’XT{,,n N P A A~
an a-alternating W-sequence for v = 2
1 and an a-alternating M-sequence for cr \/\7\ 7\/ 7777
v = —1 [Davl3, Def. 4].) For any t € ¢—§ > Y/
N, the random variable e

A (a)(v) == sup{k > 0 | Ty(v) < t},
Fig. 2. This example process has two up-
is defined as the number of a-alter- crossings between ¢ — «/2 and ¢ + /2

nations up to time t. Let AX(a) := (completed at the time steps of the vertical
SUPen Ai( (a) denote the total num- orange bars) and four a-alternations (com-
ber of a-alternations. pleted when crossing the horizontal blue

Setting o = 2¢, the a-alternations Pars)
differ from e-upcrossings in three ways: first, for upcrossings, the process de-
creases below ¢ — ¢, then increases above ¢ + ¢, and then repeats. For alterna-
tions, the process may overshoot ¢ — ¢ or ¢ + ¢ and thus change the bar for the
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subsequent alternations, causing a ‘drift’ in the target bars over time. Second,
for a-alternations the initial value of the martingale is relevant. Third, one up-
crossing corresponds to two alternations, since one upcrossing always involves a
preceding downcrossing. See Figure 2.

To apply our bounds for upcrossings on a-alternations, we use the following
lemma by Davis. We reinterpret it as stating that every bounded martingale
process (X¢)ten can be modified into a martingale (Y;):en such that the proba-
bility for many a-alternations is not decreased and the number of alternations
equals the number of upcrossings plus the number of downcrossings [LH14].

Lemma 14 (Upcrossings and Alternations [Davl3, Lem. 9]). Let
(Xt)ten be a martingale with 0 < X; < 1. There exists a martingale (Y;)ien
with 0 <Y: <1 and a constant ¢ € (a/2,1 — «/2) such that for allt € N and
forall k e N,

P[Af () > 2k] < P[A) (@) > 2k] = P[U} (¢ — /2, ¢ + /2) > k].

Theorem 15 (Upper Bound on Alternations). For every martingale pro-
cess (Xi)en with 0 < Xy <1,

k
11—«
PlA > 2kl < .
e =2 < (11 0)
Proof. We apply Theorem 14 to (X)ten and (1 — X¢)ien to get the processes
(Y2)ten and (Zt)ten. Dubins’ Inequality yields

_« k
PIAX (0) 2 2K] < PIUY (4 — S04 — 3) 2 K] < ("* 3) — glcy) and
C++ 2
o

P[AI=%(a) > 2k] < P[UZ(c_ — %, ¢ —“)>k:]<< g)k: (c)
t R e A ghe=

for some c4,c_ € (/2,1 — a/2). Because Theorem 14 is symmetric for (Xy)ien
and (1 —X)sen, we have ¢, = 1 —c_. Since P[AX (a) > 2k] = P[A} =% (a) > 2K]
by the definition of A;¥ (), we have that both are less than min{g(c, ), g(c_)} =
min{g(c+), g(1 —c4)}. This is maximized for ¢; = c— = 1/2 because g is strictly
monotone increasing for ¢ > «/2. Therefore

PlAX(a) 2 24] < ()= (1o

5+ 9 1+«
Since this bound is independent of ¢, it also holds for P[A%X («) > 2k]. a

The bound of Theorem 15 is the square root of the bound derived by
Davis [Dav13, Thm. 10 & Thm. 11]:

PlA(0) > 24] < (1 ‘“)M 1)
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This bound is tight [Dav13, Cor. 13].

Because 0 < X; < 1, the process (1 — Xt)ten is also a nonnegative martin-
gale, hence the same upper bounds apply to it. This explains why the result in
Theorem 15 is worse than Davis’ bound (1): Dubins’ bound applies to all nonneg-
ative martingales, while Davis’ bound uses the fact that the process is bounded
from below and above. For unbounded nonnegative martingales, downcrossings
are ‘free’ in the sense that one can make a downcrossing almost surely successful
(as done in the proof of Theorem 6). If we apply Dubins’ bound to the process
(1 —X})ten, we get the same probability bound for the downcrossings of (X;):en
(which are upcrossings of (1 — X;)ten). Multiplying both bounds yields Davis’
bound (1); however, we still require a formal argument why the upcrossing and
downcrossing bounds are independent.

The following corollary to Theorem 15 derives an upper bound on the expected
number of a-alternations.

Theorem 16 (Upper Bound on Expected Alternations). For every mar-
tingale (X¢)ten with 0 < X, < 1, the expectation E[A(a)] < i

k
Proof. By Theorem 15 we have P[A(a) > 2k] < (i;g) , and thus

E[A(a)] = ) P[A(a) > K]

k=1

= PA(e) > 1] + i (P[A(a) > 2k] + P[A(a) > 2k + 1])

k=1
[e'e) o0 1_ak 1
<1+ 2P[A(a) > 2k] <142 = ]
<14 2Pl 2 20 < ;(Ha) !

We now apply the technical results of this section to the martingale process
X, = P( - | H)/P, our belief in the hypothesis H as we observe data. The
probability of changing our mind % times by at least o decreases exponentially
with k (Theorem 15). Furthermore, the expected number of times we change our
mind by at least « is bounded by 1/« (Theorem 16). In other words, having to
change one’s mind a lot often is unlikely.

Because in this section we consider martingales that are bounded between
0 and 1, the lower bounds from Section 4 do not apply here. While for the
martingales constructed in Theorem 6, the number of 2a-alternations and the
number of a-up- and downcrossings coincide, these processes are not bounded.
However, we can give a similar construction that is bounded between 0 and 1
and makes Davis’ bound asymptotically tight.

8 Conclusion

We constructed an indefinitely oscillating martingale process from a summable
function f. Theorem 6 and Theorem 7 give uniform lower bounds on the prob-
ability and expectation of the number of upcrossings of decreasing magnitude.
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In Theorem 9 we proved the corresponding upper bound if the function f is not
summable. In comparison, Doob’s Upcrossing Inequality and Dubins’ Inequality
give upper bounds that are not uniform. In Section 5 we showed that for a cer-
tain summable function f, our martingale makes these bounds asymptotically
tight as well.

Our investigation of indefinitely oscillating martingales was motivated by two
applications. First, in Theorem 13 we showed that the minimum description
length operator may not exist in the limit: for any probability measure P we can
construct a probability measure @ such that /P oscillates forever around the
specific constant that causes lim;_,.o MDL"** to not converge.

Second, we derived bounds for the probability of changing one’s mind about
a hypothesis H when observing a stream of data v € X“. The probability
P(H | I,,,) is a martingale and in Theorem 15 we proved that the probability
of changing the belief in H often by at least a decreases exponentially.

A question that remains open is whether there is a uniform upper bound on
the ezpected number of upcrossings tighter than Doob’s Upcrossing Inequality.
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