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[1] In our warming climate there is a general expectation
that the variability of precipitation (P) will increase at daily,
monthly and inter-annual timescales. Here we analyse obser-
vations of monthly P (1940–2009) over the global land sur-
face using a new theoretical framework that can distinguish
changes in global P variance between space and time. We
report a near-zero temporal trend in global mean P. Unex-
pectedly we found a reduction in global land P variance
over space and time that was due to a redistribution, where,
on average, the dry became wetter while wet became drier.
Changes in the P variance were not related to variations in
temperature. Instead, the largest changes in P variance were
generally found in regions having the largest aerosol emis-
sions. Our results combined with recent modelling studies
lead us to speculate that aerosol loading has played a key
role in changing the variability of P. Citation: Sun, F.,
M. L. Roderick, and G. D. Farquhar (2012), Changes in the variabil-
ity of global land precipitation, Geophys. Res. Lett., 39, L19402,
doi:10.1029/2012GL053369.

1. Introduction

[2] In many instances, e.g., agricultural and natural eco-
systems, and for water resources planning, changes in the
variability (or upper/lower extremes) of precipitation (P)
(e.g., floods and droughts) over the land surface can be as
important as changes in the mean [Easterling et al., 2000a,
2000b; Rodríguez-Iturbe and Porporato, 2004; Porporato
et al., 2004]. With global warming, climate models project
increased P variability in most regions at daily [O’Gorman
and Schneider, 2009], monthly [Benestad, 2006] and inter-
annual [Boer, 2009; Held and Soden, 2006; Rind et al.,
1989; Wetherald, 2010] timescales. Expectations are for P
extremes in storm events to increase with the saturation
vapour pressure in the atmosphere (�7% K�1) [Trenberth
et al., 2003]. Energetic constraints limit the increase of
global P (�2% K�1) [Allen and Ingram, 2002] so that the
mean time interval between successive storms is also
expected to increase [Trenberth et al., 2003] by �5% K�1.
An increase in P extremes in storm events due to warming
is relevant over short time scales (minutes-hours) and relates
directly to the occurrence of floods [Allan and Soden, 2008;

O’Gorman and Schneider, 2009]. However, care is needed
before applying that logic to the longer periods (months-
years) of relevance to droughts since relative changes in the
dry period length would be small. For example, Chicago’s
mean annual P (910 mm) falls in �660 hours leaving dry
the remaining 8100 hours [Eagleson, 2002]. If it fell in 5%
less time the dry period length would increase by �0.4%
(=0.05 � 660/8100). Even halving the total duration of
storms and thereby doubling the average storm intensity
would still only increase the dry period by 4%. Hence, a
change in the total storm duration does not provide guid-
ance on changes in longer term P variability on time scales
relevant to droughts.
[3] Long-term spatial databases at monthly resolution are

available to evaluate changes in P variability on timescales
relevant to droughts. In terms of generic expectations we
note that P cannot be less than zero and the simplest model is
for local-scale variability in P to increase (decrease) with
increases (decreases) in the local-scale mean P [Groisman
et al., 1999; Rind et al., 1989]. Observations over the past
50 years show little variation in global mean P [Huffman
et al., 2009] for periods longer than the turnover time of
water in the atmosphere (�10 days). Hence, over monthly
(and longer timescales), any increase in P in a given region
must have been roughly balanced by decreases elsewhere
such that the global P remained near constant. Thus, when
expressed in terms of precipitation the “wet get wetter and
dry get drier” idea [Chou et al., 2007; Trenberth, 2011; Held
and Soden 2006] can be interpreted to imply an increase in
the temporal variance in wet regions (since P is supposed to
increase there) coupled with a decrease in dry regions (since
P is supposed to decrease there) that could balance leaving
little overall temporal change in P variability. However, such
local changes also require a redistribution of P and in the
wet-get-wetter dry-get-drier scenario there would also be an
accompanying increase in the spatial variance. The key point
is that any analysis technique that only examines the changes
over time at individual grid-boxes will ignore this spatial
component and therefore ignore a potentially important
change in the overall climate.
[4] Inspired by the analysis of variance method [von

Storch and Zwiers, 1999; Wilks, 2011], we recently devel-
oped a general approach that partitions the overall variance,
called the grand variance, into separate spatial and temporal
components [Sun et al., 2010]. This new approach can be
applied to any space-time database and does not require
assumptions about the independence of the data. (See the
mathematical derivation in Sun et al. [2010].) Here we use
the same gridded databases that are already in widespread
use. For each decade, we first lump space and time to form
one empirical distribution and calculate the grand variance.
Following that we separately calculate the temporal variance
of each grid-box and also calculate the spatial variance
across all grid-boxes. The innovation is that the method
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describes how the separate spatial and temporal components
are added to equal the grand variance. This new procedure
has the advantage that the sources of variation, whether
through space, or through time, can be disentangled [Sun
et al., 2010]. Here we use that technique to examine chan-
ges in P variability in long-term monthly observations.
[5] Data on oceanic P are currently only available

from 1979 [Huffman et al., 2009; Xie and Arkin, 1997] with
many unresolved issues in their use for trend analysis [Yin
et al., 2004] (see Section S1 in Text S1 in the auxiliary
material).1 However, the critical impacts of changes in P
variability (agriculture, water resources) occur over land.
We use global land-based (2.5� � 2.5�) observations in
seven monthly databases: GPCC(1901–2009) [Rudolf and
Schneider, 2005], CRU(1901–2006) [Mitchell and Jones,
2005], GPCP(1979–2008) [Huffman et al., 2009], CMAP
(1979–2008) [Xie and Arkin, 1997], the database compiled
by Dai et al. [1997] (1920–1995), GHCN (1940–2009,
5� � 5�) [Peterson and Vose, 1997], and VASClimO
[Rudolf and Schneider, 2005] (1951–2000) (see Section S1.1
in Text S1). The VASClimO database used a mostly fixed
number of P measurement stations over time [Rudolf and
Schneider, 2005] (Figure S6a in Text S1) and we adopted
that as a reference. To further minimise interpolation pro-
blems (see Section S1.3 in Text S1) we use the GPCC meta-
data to define a spatial mask (fixed over the entire period,
Figure S6b in Text S1) by those grid-boxes having at least
one measurement site for 90% of the months over the 1951–
2000 (VASClimO) period. We also tested other spatial
masks using more stringent criteria but the same conclu-
sions held (see Figures S6 and S7 in Text S1). The final
mask includes 1,987 grid-boxes (�69% of global land area
excl. Antarctica) and was used to calculate the grand mean
(mg) and grand variance (sg

2) for each successive decade for
all seven databases. The different databases gave nearly
identical results for the period 1940–2009 (Figures S7–S11
in Text S1). All subsequent results use the mask derived
from the GPCC observations (1940–2009).

2. Results

[6] We find that mg has a near-zero trend (Figure 1a) while
sg2 has a decline of �6% (1940–1999, p = 0.003, Mann-
Kendall Test) before an increase of �5% in the final decade
(2000–2009) giving an overall decline (Figure 1b). The 99
Percentile (P0.99, Figure 1c), calculated from the empirical
distribution lumping space and time [Allan and Soden, 2008;
Allen and Ingram, 2002; O’Gorman and Schneider, 2009;
Sugiyama et al., 2010], tracks sg

2. Note that the trends in sg
2

do not follow those of temperature (Figure 1b). To examine
the trends in detail we decompose sg

2 into separate spatial
and temporal components following Sun et al. [2010] (Sec-
tion S1.4 in Text S1). The (linear) trend in sg

2 over the 7
decades (1940–2009) is �34.4 (mm month�1)2 decade�1

with 1/3 due to a decline in the spatial component (�11.9)
and 2/3 due to the temporal component (�22.8) (Table S2 in
Text S1). Further, the decline in the temporal component of
sg
2 is almost entirely due to a decline in the intra-annual

component (i.e., seasonal cycle, Figure S13d in Text S1)
with only a small residual change in the inter-annual

component (Figure S13e in Text S1). The decrease in intra-
annual variance could seem counter to an earlier report that
the difference between wet and dry season precipitation has
increased in the tropics for 1979–2005 [Chou et al., 2007].
Over that shorter period we also find an increase in the intra-
annual component (Figures S12b and S13b and Table S4 in
Text S1). However, over the full 1940–2009 period, the
overall trend in sg

2 remains one of decline (Figure 1b and
Table S2 in Text S1). The trend in the temporal component
of sg

2 shows a complex spatial pattern of change (Figure 1e)
and regions with increasing mean P (Figure 1d) tend to show
increasing P variance (Figure 1e) and vice-versa (Figure S14
in Text S1). However, that simple relation does not ade-
quately explain the overall global result because sg

2 decrea-
ses whilst mg has a near-zero trend (Figures 1a and 1b and
Table S2 in Text S1).
[7] The unexpected results prompt the question – what has

changed in the P frequency distribution? To address that we
develop a generalised space-time probability distribution for
P that is related to the sequence of wet and zero-Pmonths. In
the monthly (gridded) observations, P rarely equals zero,
although it can be close. We define the zero-P using a
threshold, P0. When P > P0 the month is classified as wet,
and the wet month frequency (fw(P)) follows the gamma
distribution [Eagleson, 2002; Groisman et al., 1999; Karl
et al., 1995; Rodríguez-Iturbe and Porporato, 2004; Thom,
1958; Tsonis, 1996; Porporato et al. 2004]

fw Pð Þ ¼ Pa�1 exp �P=bð Þ
G að Þba ; for P > P0 ð1Þ

with a the shape parameter controlling the relative contri-
bution from light versus heavy P (Figure S15a in Text S1),
G(a) the factorial gamma function and b (mm month�1)
the scale parameter that mostly controls the frequency at the
upper P extremes (Figure S15b in Text S1). For zero-P months

we use the uniform distribution, fd Pð Þ ¼ 1

P0
; for 0 ≤ P ≤ P0.

The mixture distribution is defined by f (P) = (1 � w)
fd (P) + wfw(P) (see Section S2.1 in Text S1), where
w (range 0–1) is the number of wet months expressed as a
fraction of the total number of months. The mean and var-
iance of the mixture distribution are m = (1 � w)md + w mw

and s2 = (1 � w)sd
2 + wsw

2 + w(1 � w)(mw � md)
2 respec-

tively [Wilks, 2011]. When combined with the definition
(equation (1)), the grand mean is

mg ¼ 1� wð ÞP0

2
þ wab ≈ wab ð2aÞ

and the grand variance is

s2
g ¼ 1� wð ÞP

2
0

12
þ wab2 þ w 1� wð Þ ab � P0

2

� �2

≈ wab2 1þ a� wað Þ ð2bÞ

The approximations in equation (2) arise since P0 is close to,
but not exactly, zero. We derived distributions by systemat-
ically varying the threshold P0 between 1 to 2 mm month�1.
In all cases, the results were nearly identical and we set
the threshold P0 to be 1 mm month�1 (see Section S2.3 in
Text S1). The observations follow the mixture distribution
(Figure 2 and Figures S16 and S17 in Text S1).

1Auxiliary materials are available in the HTML. doi:10.1029/
2012GL053369.
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[8] For detection purposes we derive differentials (per
equation (2)) for changes in the distribution over successive
decades (equations (S6)–(S9) and Section S2.2 in Text S1).
First, there is little change in w (Figure 3a). Second, because
of the near zero-trend in both w and mg (Figure 3b), the
observed increase in a must be balanced by an equal and
opposite relative decrease in b (Figures 3a and 3b). sg

2 is
twice as sensitive to the same relative change in b compared
to a (equation (S9) in Text S1) and therefore declines
(Figure 3c).
[9] The results (Figure 3a) imply a redistribution where P

is taken from wet regions/months (db < 0) and delivered to
dry regions/months (da > 0) (Figure S15c in Text S1). The
latitudinal distribution of the observed trend (Figure 4a) and
climatology (Figure 4b) are negatively related because P

increased in drier zones (e.g., 40�–90�N, 20�–40�S) at the
expense of wetter zones (e.g., 0–20�N). That relation is
clearer when the trend in P (1940–2009) for each month (in
a given grid-box) is grouped into P classes (Figure 4d) and
the land area (Figure 4f) is used to adjust the trend to a
volumetric basis (Figure 4e). The key result (Figure 4e)
shows that P was, on average, removed from relatively
wetter regions/months (P > 100 mm month�1) with nearly
all of that delivered to relatively dry regions/months
(P < 100 mm month�1). Those results confirm that, on
average, dry regions/months became wetter and wet regions/
months became drier over the 1940–2009 period. This con-
clusion holds in all available databases and also holds for
1940–1999 (Figures S18–S24 in Text S1).

Figure 1. Trends in P variability. Time series of the decadal (a) grand mean (mg), (b) grand variance (sg
2, blue line) (with

temperature anomaly (grey line) from the GISS database [Hansen et al., 2010]), and (c) the 99 percentile of monthly precip-
itation (GPCC, 1940–2009, with the land mask); and spatial pattern of trends in the (d) mean and (e) temporal variance.
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3. Discussion

[10] Early work before the advent of global monthly
databases reported increases in monthly P variability over
much of North America, Europe and Australia [Tsonis,
1996] and we found the same pattern (Figure 1e). How-
ever, global databases are now available and they reveal
many other regions that show decreased P variability
(Figure 1e). The changes reported here in the (monthly)
temporal variance (Figure 1e), that are dominated by the
change in the intra-annual variance, reinforce earlier regional
studies on changes in daily P extremes including increases
over much of North America, Europe [Karl et al., 1995;Min
et al., 2011], southeastern Brazil [Teixeira and Satyamurty,
2011] and South Africa [Easterling et al., 2000a, 2000b;
New et al., 2006] alongside declines over many parts of
Russia, China [Karl et al., 1995; Min et al., 2011] and
Thailand [Easterling et al., 2000a, 2000b] with mixed trends
in equatorial Africa [Easterling et al., 2000a, 2000b; New
et al., 2006] and India [Ghosh et al., 2011; Goswami et al.,
2006]. Importantly, these patterns show no relationship to
local (Figure S25 in Text S1) or global changes in temper-
ature (Figure 1b). When integrated there has been little
change in global mean P over land but with a tendency for
dry regions/months to become wetter and wet regions/
months to become drier (Figure 4e). This result is robust in
all databases examined (Figures S18–S24 in Text S1). If
anything, these results constitute a slight decline in meteo-
rological drought over the last 70 years.

[11] Recent climate modelling suggests that P extremes
and/or variance tend to increase with [CO2] [O’Gorman and
Schneider, 2009;Wetherald, 2010] but tend to decrease with
aerosols [Chen et al., 2011; Ming and Ramaswamy, 2011].
Hence a combination of well-mixed greenhouse gases and
spatially inhomogeneous aerosols could change local and
hemispheric circulations and lead to novel regional impacts
[Bollasina et al., 2011; Rotstayn and Lohmann, 2002]. In
that respect there is a striking spatial correspondence
between the largest changes in P variability (Figure 1e) and
the location of aerosol emissions [Ramanathan and Feng,
2009]. This correspondence coupled with modelling stud-
ies [Bollasina et al., 2011; Chen et al., 2011; Ming and

Figure 3. Detection of changes in the global land P
distribution. (a) Changes in the distribution parameters (in
equation (1)) and detection of changes in (b) the decadal
grand mean and (c) grand variance. The percentage anoma-
lies are expressed relative to the average for 1970–1999.
The total change (GPCC, black line) is estimated (red line)
using differentials (shown below Figure 1c). Separate contri-
butions due to changes in the frequency of wet months (w),
and the shape (a) and scale (b) parameters of the mixture dis-
tribution are depicted.

Figure 2. Frequency distribution of decadal P. The obser-
vations (grey vertical bars at intervals of 1 mm month�1)
are fitted by the mixture (uniform-gamma) distribution.
The relative frequency of wet months (w) is determined from
observations using a threshold (P0 = 1 mm month�1) and the
shape (a) and scaling (b) parameter values (see equation (1))
are estimated using two different methods (maximum likeli-
hood and moments). Empirical estimates of extremes (P0.99,
P0.999) are indicated.
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Ramaswamy, 2011; Rotstayn and Lohmann, 2002] leads us
to speculate that fully accounting for the observed P vari-
ability documented here will require intensive investigations
to separate the impacts of aerosols and greenhouse gases
from natural variability.
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S1. Precipitation Databases and Calculations 

S1.1. Precipitation databases 

We analysed the gridded (2.5º  2.5º) monthly precipitation observations for the 

seven readily available databases: GPCC (Global Precipitation Climatology Centre) 

Version 5 (1901-2009) [Rudolf and Schneider, 2005], CRU (Climatic Research Unit) 

T3.0 (1901-2006) [Mitchell and Jones, 2005], GPCP (Global Precipitation Climatology 

Project) V2.1 (1979-2008) [Huffman et al., 2009], CMAP (CPC Merged Analysis of 

Precipitation, standard monthly) (1979-2008) [Xie and Arkin, 1997], the global land 

precipitation database (denoted Dai1997)  compiled by Dai et al. [1997] (1920-1995 

was used for better data availability), GHCN (Global Historical Climatology Network) 

Version 2 (1940-2009 was used for better data availability) [Peterson and Vose, 1997], 

and a subset of the GPCC database designed for use in climate change studies called 

VASClimO (Variability Analysis of Surface Climate Observations) (1951-2000) 

[Rudolf and Schneider, 2005]. VASClimO used a mostly fixed set of meteorological 

measurement sites (9133 sites being used) and was developed to minimise problems 

associated with changes in the interpolation network over time [Rudolf and Schneider, 

2005] (Fig.S6a). Note that the CMAP and GPCP databases, both begin in 1979 and both 

are global (land plus ocean) merged satellite-gauge databases. The remaining five 

databases are for land only. 

S1.2. Trends over land and ocean in the raw databases 

To evaluate the databases, we calculated the grand mean (µg), grand variance (g
2) 

and the 99 percentile (P0.99), for each successive decade (e.g., 1901-1910, 1910-1919, 

1920-1929, etc.) for land (Fig.S1a-c) and ocean (Fig.S1d-S1f) as appropriate. Robust 

trends were difficult to identify (Figs.S1d-S1f, S4, and S5) over the ocean although the 

climatology from the two databases containing ocean data (CMAP, GPCP) was very 

similar (Figs.S2-S3). Different trends in global mean oceanic P have been 

acknowledged previously and relate to different data sources [Yin et al., 2004].  
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Over land the databases are derived using measurements at rainfall gauges with 

records of 100 years or more in some regions. Given that the prime socio-economic 

interest is changes in rainfall variability over land we restrict the analysis to the global 

land surface. The VASClimO database (1950-2000) was specifically designed for 

climate change studies and was adopted as the reference database for the study. We 

found general agreement in the overall trend between VASClimO and the other six 

databases over the 1950-2000 reference period (Figs.S1a-S1c). However, before 1940 

there is disagreement between GPCC and CRU in the overall trend of both the grand 

variance and the precipitation extremes (Fig.S1). Accordingly, we choose to restrict 

further analysis to the post-1940 period. 

S1.3. Global land mask 

We reasoned that the underlying data are sourced from various national 

meteorological agencies and should be more or less common among the various 

databases. That suggests that any bias between the VASClimO and other databases in 

the post-1940 results may be due to different interpolation approaches. Importantly, the 

GPCC metadata document the number of P measurement sites contained in each grid-

box at each month. We used the GPCC metadata to calculate the number of grid-boxes 

that contained various numbers of measurement sites (Fig.S6). The results show that of 

the 3232 land based (excl. Antarctica) grid-boxes, around 1000 had at least one rainfall 

gauge in the year 1900, rising to a maximum of around 2600 grid boxes in the 1980s. 

(The numbers are less if we count grid-boxes having at least two or more rainfall gauges 

(Fig.S6).) These results suggest that interpolation in data sparse regions would likely 

account for much of the bias between the VASClimO and other databases. 

To test that interpretation we defined a series of spatial masks based on grid-boxes 

that included at least one, two, three, four, and five rainfall gauge(s) for at least 90% of 

all months between 1951 and 2000. The resulting masks, defined using the GPCC 

metadata, were used to calculate the grand mean and grand variance for each decade in 

all six databases. The globally integrated results based on the GPCC, GHCN and CRU 

databases were more or less identical with those from the VASClimO database for 

1950-2000 (Fig.S7). Further, the pattern of change over time in the remaining databases 
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was also consistent with that in the VASClimO database over the same 1950-2000 

period.  

Given the close agreement in the pattern of change over time between all 

databases (1940-2009), we adopted the spatial mask based on having one measurement 

site (for 90% of the time) in each grid-box (Fig.S7k). The results and subsequent 

conclusion are not sensitive to that because g
2 declines for all of the spatial masks 

(Figs.S7f-S7j). That spatial mask covers 69.3% of the land surface (excluding 

Antarctica). The major gaps in the spatial mask are in the places one expects to be 

poorly sampled; the Arctic (Greenland, Alaska, northern Canada and Russia), parts of 

the Amazon and Congo as well as major desert regions (Sahara, central Asia). 

To test our approach we used the above-noted mask to calculate maps showing 

trends in the mean and variance (analogous to Figs.1d-e in main text) for the 

VASClimO, GPCC, GHCN, and CRU databases using the common 1951-2000 period 

that defined the VASClimO database (Figs.S8-S11). The spatial patterns of the trends 

are more or less identical.  

Note that in Fig.S7f, the decade with the minimum grand variance is 1990-1999 

for the GPCC, GPCP, CMAP, Dai1997 and VASClimO databases but in the CRU and 

GHCN databases, the minimum occurs one decade earlier. Because of the independent 

agreement, we adopted the GPCC database for the 1940-2009 period as well as the 

above-noted spatial mask for all subsequent analysis in the main text. We also used the 

same mask to extract the temperature anomaly from the GISS (Goddard Institute for 

Space Studies) database [Hansen et al., 2010] and calculated the decadal anomaly for 

the period 1940-2009 (Fig.1b). 

S1.4. Partitioning the Variance between Space and Time 

Precipitation varies considerably through both space and time. Previous studies on 

the detection of changes in P extremes have used a lumped space-time distribution 

[Allan and Soden, 2008; Allen and Ingram, 2002; O'Gorman and Schneider, 2009]. We 

have also used that approach in the main text (Figs.1b-c). This approach gives an 
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invaluable summary but it cannot distinguish the variability between space and time. To 

address that shortcoming we recently derived analytical relationships between the total 

variance across space and time (here called the grand variance) and the separate spatial 

and temporal variance components [Sun et al., 2010]. To be comparable with previous 

studies, we use the time-first formulation of Sun et al. [2010]. The temporal variance 

can be further partitioned into intra- and inter-annual components using the intra-first 

scheme of Sun et al. [2010]. Here we describe the key procedures. The grand variance 

2
g  is calculated using a mixed space-time distribution (n grid boxes and m months) as, 

       

2

2

12 21 1

1 1

t

n

j t
j

g s

w j
n m m n

m n n m n




  



 
    

    
 
 



    

             (S1A) 

where the weight jw  indicates the area of the  jth grid box scaled as a proportion of the 

mean area of the grid-boxes.  2
t j  is the temporal variance (calculated over the m 

months) of the jth grid box and  2 2

1

n

t j t
j

w j n 


  is the mean of the temporal 

variances  2
t j  of the n grid boxes.  2

s   is the spatial variance of the temporal 

means. The temporal mean  t j
 
of the jth grid box is calculated over the m months. 

The grand mean  
1

n

g j t
j

w j n 


   is an average of  t j  over n grid boxes and is 

adjusted by the (area-dependent) weights jw . The detailed terminology can be found in 

Sun et al. [2010]. 

In this specific study, we used decadal blocks (m = 120 months) to calculate the 

grand mean and grand variance. For the 69.3% coverage (see detailed discussion in 

Section S1.3) of GPCC global land (excluding Antarctica) database, n = 1,987 grid 

boxes. With those data, Eqn.S1A becomes  
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 2 2 20.99167 0.99950g t s           (S1B) 

The above-noted temporal variance can be further partitioned between variation 

due to the seasonal cycle (called intra-annual variance) and the remaining inter-annual 

variability. Separation of those components helps to understand changes in the temporal 

variance. Here, for a given (e.g. the jth) grid box, the m-month time series can be 

reorganised into a 2-dimentional array: p (=12) months per year and q years (

10q m p  ). With that, the temporal variance  2
t j  can be further partitioned into 

intra- and inter- annual variances as follows, 

         

2

2

2 21
1 1

1 1

a

q

a
l

t e

l
q p p q

j
p q q p q




  



 
  
  

    
  





               (S2A) 

where  
 2

2 1

q

a
l

a

l

q


 


 is the mean of the intra-annual variances of the seasonal cycle

 2
a l  for the q years and  2

e   is the inter-annual variance of the annual mean (Unit: 

(mm month-1)2). For further details see Sun et al. [2010, Table 1, Eqn.11]. Eqn.S2A 

becomes, 

   2 2 20.92437 0.90756t a ej           (S2B) 

We calculated each component of the grand variance 2
g  (in Eqns.S1B and S2B). 

For reference, the grand variance and components for the climatology (1940-2009) are 

summarized in Table S1. The trends in all components for the 1940-2009 period are in 

Table S2 and Fig.S13. Note that in both the climatology and the trends, the temporal 

variance is dominated by the intra-annual component. For comparison with other 

previous studies, we also computed the trends in the grand variance (and components) 

for two other periods (1940-1999 and 1980-2009) (see Tables S3 and S4). 
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S2. The Mixture Distribution 

S2.1. Validity of the Mixture Distribution Approximation 

In the main text, we defined a mixture distribution composed of a gamma 

distribution (Eqn.1) to describe the frequency of P in wet months (w) and a uniform 

distribution for the dry months (1-w). Once the parameters are defined, the frequency 

can be integrated. In a formal mathematical sense this requires an (implicit) 

approximation that is always present when empirical data are used to determine the 

parameters (α, β). The total frequency implied by the parameters will usually not exactly 

equal the frequency determined empirically using the P0 threshold. This discrepancy 

makes no practical difference to the numerical results but is described here for 

completeness. 

The P frequency for wet months is known to follow the gamma distribution (

 wf P , Eqn.1) [Eagleson, 2002; Groisman et al., 1999; Karl et al., 1995; Rodríguez-

Iturbe and Porporato, 2004; Thom, 1958; Tsonis, 1996; Porporato et al. 2004] (see 

Fig.2 in the main text and also Figs.S16-S17). For given values of α and β in the gamma 

distribution and a defined threshold P0, we can calculate the integral of the frequency 

for the interval 0P P  as 

 
0

w w

P

c f P dP


          (S3) 

where cw < 1 because 0P  > 0. Note that wc  is not analytically tractable [Wilks, 2011]. By 

definition,  
0

1wf P dP


  so that  
0

0

1
P

w wf P dP c  . To give an example, the empirical 

estimate for w in Fig.2 (in the main text) is 0.899. In contrast, if the gamma distribution 

is the only distribution being used, for parameter values (α = 0.7567, β = 100.9), the 

numerical value of cw is 0.965. (Note that the inter-decadal anomaly in cw is small and 

within ±0.35 %.) This is the source of the above-noted approximation. The method used 

to handle this is described below.  



8 

To allow the gamma distribution to reproduce the integral (w) of the empirical 

frequency distribution for 0P P , the integral (Eqn.S3) needs to be scaled by the factor, 

w

w

c
. With that, the integral becomes (i)  

0

w w
w wP

w w
f P dP c w

c c



  , and using the same 

scaling for the integral from 0 to P0 we have (ii)    
0

0

1
P

w w
w w

w w
f P dP c

c c
  . In practice, 

that latter component can be approximated as a uniform distribution because 0P  is small 

(e.g., 1 or 2 mm month-1) and because the frequency distribution is calculated using a 

small but finite interval (e.g., we used 1 mm month-1). The sum of the two above-noted 

integrals is  1 w
w w

w w
w c

c c
   . Hence there is a residual, whose integrated frequency 

in the interval 00 P P   must equal (iii) 1
w

w

c
 . We also use a uniform distribution for 

that component.  

Combining the (ii) and (iii) components in the interval 00 P P  , the integrated 

frequency becomes  1 1 1w
w w

w w
c w

c c

 
     

 
. That defines the mixture distribution 

used in the main text, i.e.,        1 d wf P w f P w f P   . 

S2.2. Derivation of the Detection Method 

For the mixture (uniform-gamma) distribution, we derived the analytical formulae 

(Eqn.2 in the main text) for the grand mean (µg) and grand variance (g
2). To examine 

the changes over time, the differentials are, 

g g g
gd dw d d

w

  
  

 
  

  
  

      (S4) 

where  g

w








, g w










, and 
g w










. 
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2 2 2
2 g g g
gd dw d d

w

  
  

 
  

  
  

      (S5) 

where  
2

2 1 2g w
w


  


  


,  

2
2 1 2 2g w w


  




  


, and 

 
2

2 1g w w


  



  


. 

For detection purposes, we express those differentials in a relative form, except 

for the fraction of wet months, w, which is already a dimensionless variable, as,  

1g g g g

g g g g

d d d
dw

w

      
       

  
  
  

     (S6) 

where 
1 1g

gw w








, 1g

g

 
 





, and 1g

g

 
 





.  

2 2 2 2

2 2 2 2

1g g g g

g g g g

d d d
dw

w

      
       

  
  

  
    (S7) 

where 
 2

2

1 21

(1 )
g

g

w

w w w

  
  

  


  
, 

 
 

2

2

1 2 2

1
g

g

w

w

  
   

  


  
, and  

2

2
2g

g

 
 





. 

The relative change in g can be calculated as  
2

2 2

1

2
g g g g

g g g

d d d   
  

  .  

After substituting the numerical values (α = 0.758, w = 0.899) derived from the 

GPCC observations (1970-1999) into Eqns.S6-S7, we have, 

1.11g

g

d d d
dw

  
  

          (S8) 
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2

2
0.41 1.07 2g

g

d d d
dw

  
  

         (S9) 

Fig.3 (Main Text) for the GPCC observations has been computed using Eqns.S8-S9 and 

the detection analysis is discussed in the main text. 

S2.3. Parameter Estimation 

The mixture distribution introduced here includes three parameters, w, α, and β. w 

is the fractional number of months having precipitation more than a threshold P0. In a 

recent study by [Allan and Soden, 2008], a threshold of 0.08 mm day-1 was used. That is 

equivalent to 2.4 mm month-1 if it is assumed to rain every day and 1.2 mm month-1 if it 

is assumed to rain every second day. Following that, we derived distributions by 

systematically varying the threshold P0 between 1 to 2 mm month-1. In all cases, the 

results were more or less identical and we finally set the threshold P0 to be 1 mm month-

1. 

To estimate the other two parameters of the distribution (α, β) we used both the 

Moment Method and Maximum Likelihood Estimation [von Storch and Zwiers, 1999; 

Wilks, 2011]. The decadal results (1990-1999) for the GPCC observations are 

summarized in Fig.2 (and also in Fig.S16 with linear scales) and the results for other 

observational databases are shown in Fig.S17. Both methods gave very similar results 

and we found that the resulting detection was more or less the same. Consequently, in 

numerical calculations we used parameter estimates (α, β) based on the Moment Method. 

To evaluate the goodness-of-fit, we prepared the Q-Q plots (empirical quantiles versus 

modeled quantiles) [Wilks, 2011] by calculating every 0.1-percentile P from the lower 

end to the 99.9 percentile for all seven databases. The results show perfect fit between 

the mixture distribution and empirical distribution (linear regression: y = 1.007x + 2.0; 

R2 = 0.999; mean absolute error: 3.0 mm month-1, Figs.S16-S17). 

S3. Supporting Figures 
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Figure S1 | Time series of the (a) µg, (b) g
2, and (c) P0.99 based on raw data from seven 

global land (full land coverage excluding Antarctica) databases of monthly precipitation 

observations. Panels (d), (e) and (f) are for the ocean (60ºS to 90ºN) based on raw data 

from the GPCP and CMAP databases. 
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Figure S2 | Climatology of the (a) mean and (b) variance based on raw data from the 

GPCP database (1980-2008). (White areas denote missing data.) 

 

 

Figure S3 | Analogous to Fig.S2 but for the CMAP database. (White areas denote 

missing data.) 

 

 

a b

mm month-1

 0 25 50 75 100 125 150 175  

(mm month-1)2

 0   2500   5000   7500    

a b

mm month-1

 0 25 50 75 100 125 150 175  

(mm month-1)2

 0   2500   5000   7500    



13 

 

Figure S4 | Trend of the (a) mean and (b) variance based on raw data from the GPCP 

database (1980-2008). (White areas denote missing data.) 

 

Figure S5 | Analogous to Fig.S4 but for the CMAP database. (White areas denote 

missing data.) 
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Figure S6 | Time series of (a) the number of stations for the GPCC and VASClimO 

databases, (b) the number of grid boxes having at least one, two, three, four or five 

rainfall gauges per the GPCC metadata and the final mask (1,987 grid-boxes). 
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Figure S7 | Time series of the (left panels) grand mean µg and (middle panels) grand 

variance g
2 in all seven databases based on (right panels) five different spatial masks. 

The spatial masks are defined by those grid-boxes having at least (k) one, (l) two, (m) 

three, (n) four or (o) five rainfall gauge(s) for 90% of all months between 1951-2000. 
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Figure S8 | Analogous to Fig.1d-e (in the main text) but for the period 1951-2000. 

(Data: VASClimO, the same spatial mask as Fig.1d-e) 

 

Figure S9 | Analogous to Fig.1d-e (in the main text) but for the period 1951-2000. 

(Data: GPCC, the same spatial mask as Fig.1d-e). 
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Figure S10 | Analogous to Fig.1d-e (in the main text) but for the period 1951-2000. 

(Data: GHCN, the same spatial mask as Fig.1d-e). 

 

Figure S11 | Analogous to Fig.1d-e (in the main text) but for the period 1951-2000. 

(Data: CRU, the same spatial mask as Fig.1d-e). 
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Figure S12 | Analogous to Fig.1d-e (in the main text) but for the period 1980-2009. 

(Data: GPCC, the same spatial mask as Fig.1d-e). 

 

Figure S13 | Time series of decadal (a) grand variance (same as Fig.1b in the main 

text), and the underlying (b) temporal and (c) spatial components. The temporal 

variance is further partitioned into the (d) intra-annual and (e) inter-annual components. 

(Also see Table S2 for full accounting.) 
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Figure S14 | Relationship between trends in the temporal variance (  2
t j ) and the 

mean (  t j ) for all available grid boxes of the GPCC observations (1940-2009) 

(equivalent to Fig.1d versus Fig.1e in the main text). Linear regression (solid): 

163.2 30.7y x  , n = 1987, R2 = 0.31). 
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Figure S15 | Theoretical curves of the mixture (uniform-gamma) distribution (Eqn.1 in 

the main text) for different values of the shape (α) and scaling (β) parameters. Effect of 

varying (a) α and (b) β and (c) varying both α and β (in opposite directions) while 

holding the product, αβ, constant. That mimics the observed changes (see Fig. 3 in main 

text). 
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Figure S16 | Goodness-of-fit of the mixture distribution to the GPCC observations: 

(a) Analogous to Fig.2 (in the main text) but with linear scales; and (b) Empirical 

quantiles versus modeled quantiles (for every 0.1 percentile from the lower end to the 

99.9 percentile). 
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Figure S17 | Goodness-of-fit of the mixture distribution to the other six 
observations: left panels analogous to Fig.2 (in the main text) and right panels 
analogous to Fig.S16b.  
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Figure S17 | (Continued). 
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Figure S18 | Analogous to Fig.4 (in the main text) but for the GHCN database (1940-

2009).  
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Figure S19 | Analogous to Fig.4 (in the main text) but for the CRU database (1940-

2006).  
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Figure S20 | Analogous to Fig.4 (in the main text) but for the Dai1997 database (1940-

1995).  
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Figure S21 | Analogous to Fig.4 (in the main text) but for the GPCC database (1940-

1999).  
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Figure S22 | Analogous to Fig.4 (in the main text) but for the GHCN database (1940-

1999).  
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Figure S23 | Analogous to Fig.4 (in the main text) but for the CRU database (1940-

1999).  
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Figure S24 | Analogous to Fig.4 (in the main text) but for the VASClimO database 

(1951-2000).  
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Figure S25 | Relationship between trends in grid-box level near surface air temperature 

(  T j , GISS, 1940-2009) and the temporal variance (  2
t j ) of P (GPCC, 1940-2009). 

(Linear regression, R = -0.05). 
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S4. Supporting Tables 

Table S1. Climatology (1940-2009) of the decadal grand mean, grand variance and the 

underlying variance components of the monthly GPCC observations. | Units: mm 

month-1 for the mean; and (mm month-1)2 for the variances. Calculations are based on 

the decadal block: m = 120 months (q = 10 yrs, p = 12 months per yr) and n = 1,987 

grid-boxes (Eqns.S1 and S2).  

Variable Grand 
mean  

Grand 
variance  

Temporal component Spatial component 

g  2
g   1

1

n m

m n


 

 
2
t   1

1

m n

m n


 

 
 2

s   

 68.8 7648.3 0.99167 4667.4 0.99950 3021.2 

Variable  Temporal 
variance 

Intra-annual component Inter-annual component 

2
t   1

1

q p

p q


   

2
a  

 1

1

p q

p q


   

 2
e 

 

  4667.4 0.92437 4876.8 0.90756 175.7 
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Table S2. Trends in the decadal grand mean, grand variance and the underlying 

variance components in the monthly GPCC observations (1940-2009). | Units: mm 

month-1 decade-1 for the trend in the mean; and (mm month-1)2 decade-1 for the trend in 

the variances.  

Variable Grand 
mean  

Grand 
variance  

Temporal component Spatial component 

gd

dt


 

2
gd

dt


 

 1

1

n m

m n


 

 
2
td

dt


 

 1

1

m n

m n


 

 
 2

sd

dt

 
 

Trend 0.02 -34.4 0.99167 -22.8 0.99950 -11.9 

% decade-1 0.02 -0.5  -0.5  -0.4 

  Temporal 
variance 

Intra-annual component Inter-annual component 

 2
td

dt


 

 1

1

q p

p q


   

2
ad

dt


 

 1

1

p q

p q


   

 2
ed

dt

 
 

Trend  -22.8 0.92437 -25.8 0.90756 1.2 

% decade-1  -0.5  -0.5  0.7 
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Table S3. Analogous to Table S2 but for 1940-1999. | Units: mm month-1 decade-1 for 

the mean; and (mm month-1)2 decade-1 for the variance. 

Variable Grand 
mean  

Grand 
variance  

Temporal component Spatial component 

gd

dt


 

2
gd

dt


 

 1

1

n m

m n


 

 
2
td

dt


 

 1

1

m n

m n


 

 
 2

sd

dt

 
 

Trend -0.01 -89.6 0.99167 -57.0 0.99950 -33.1 

% decade-1 -0.02 -1.2  -1.2  -1.1 

  Temporal 
variance 

Intra-annual component Inter-annual component 

 2
td

dt


 

 1

1

q p

p q


   

2
ad

dt


 

 1

1

p q

p q


   

 2
ed

dt

 
 

Trend  -57.0 0.92437 -61.3 0.90756 -0.4 

% decade-1  -1.2  -1.3  -0.2 
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Table S4. Analogous to Table S2 but for 1980-2009, respectively. | Units: mm month-1 

decade-1 for the mean; and (mm month-1)2 decade-1 for the variance. 

Variable Grand 
mean  

Grand 
variance  

Temporal component Spatial component 

gd

dt


 

2
gd

dt


 

 1

1

n m

m n


 

 
2
td

dt


 

 1

1

m n

m n


 

 
 2

sd

dt

 
 

Trend 0.3 178.1 0.99167 126.6 0.99950 52.6 

% decade-1 0.5 2.3  2.7  1.7 

  Temporal 
variance 

Intra-annual component Inter-annual component 

 2
td

dt


 

 1

1

q p

p q


   

2
ad

dt


 

 1

1

p q

p q


   

 2
ed

dt

 
 

Trend  126.6 0.92437 129.8 0.90756 7.4 

% decade-1  2.7  2.7  4.2 
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