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We review approaches to predicting carbon and nitrogen allocation in forest models in terms of their underlying assumptions 
and their resulting strengths and limitations. Empirical and allometric methods are easily developed and computationally 
efficient, but lack the power of evolution-based approaches to explain and predict multifaceted effects of environmental vari-
ability and climate change. In evolution-based methods, allocation is usually determined by maximization of a fitness proxy, 
either in a fixed environment, which we call optimal response (OR) models, or including the feedback of an individual’s strat-
egy on its environment (game-theoretical optimization, GTO). Optimal response models can predict allocation in single trees 
and stands when there is significant competition only for one resource. Game-theoretical optimization can be used to 
account for additional dimensions of competition, e.g., when strong root competition boosts root allocation at the expense 
of wood production. However, we demonstrate that an OR model predicts similar allocation to a GTO model under the root-
competitive conditions reported in free-air carbon dioxide enrichment (FACE) experiments. The most evolutionarily realistic 
approach is adaptive dynamics (AD) where the allocation strategy arises from eco-evolutionary dynamics of populations 
instead of a fitness proxy. We also discuss emerging entropy-based approaches that offer an alternative thermodynamic 
perspective on allocation, in which fitness proxies are replaced by entropy or entropy production. To help develop allocation 
models further, the value of wide-ranging datasets, such as FLUXNET, could be greatly enhanced by ancillary measurements 
of driving variables, such as water and soil nitrogen availability.

Keywords: acclimation, evolutionarily stable strategy, functional balance, game theory, partitioning, plasticity, soil depth, 
theory, tree growth.

Introduction

The question of how plants allocate carbon among different 
organs has long been a topic of ecological interest. In times of 
rising atmospheric carbon dioxide, forest carbon (C) allocation 
has drawn particular interest due to its responsiveness and 
potential effect on carbon sequestration and the global carbon 
balance. The differences in lifespan and decomposition rates 
among tree organs, such as stems and leaves, imply that C 

allocation in trees strongly influences forest carbon cycling 
rates. Whereas the importance of C allocation is undisputed, 
there is little consensus on how it should be modeled. As a 
result, a plethora of contrasting approaches exist. Although 
many promising approaches have been developed for the pur-
pose of scientific insight, it is remarkable how rudimentary the 
representation of C allocation is in comparison to C assimila-
tion (photosynthesis) in many applied forest models. For 
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example, most dynamic global vegetation models (DGVMs) 
that are used for future carbon budget projections have fixed 
or only water-dependent C allocation (Ostle et al. 2009). The 
lack of consensus on how to model C allocation may be part of 
the reason for the diverging predictions of the future global 
forest carbon balance among large-scale models (Purves and 
Pacala 2008, Ise et al. 2010).

The deficiency of large-scale models in their allocation com-
ponents seems not to be due to a lack of empirical evidence, 
but rather to the difficulty in interpreting the available informa-
tion in the form of well-defined principles that are valid under a 
wide range of conditions. Because allocation is the outcome of 
many processes rather than a process in itself (Cannell and 
Dewar 1994), it is natural to derive allocation mechanistically 
by combining the individual underlying processes in a bottom-
up fashion (Lacointe 2000). However, while the individual pro-
cesses of different organs are relatively well understood, it is 
not straightforward to predict their concerted responses under 
variable environmental conditions. Consequently, allocation is 
the Achilles’ heel of most forest models (Le Roux et al. 2001, 
Landsberg 2003).

In contrast to the limited allocation schemes in large-scale 
applied models, a number of promising approaches have been 
tested at smaller scales for the purpose of scientific insight. 
These approaches range from simple empirical scaling func-
tions to complex mechanistic representations of the ecological 
and evolutionary dynamics of the whole forest. In order to elu-
cidate the state of the art in forest allocation modeling and as 
an initial step towards improving allocation in applied forest 
models, we discuss a range of C allocation approaches in 
terms of their underlying assumptions, strengths and limita-
tions. Because C allocation does not differ from nutrient alloca-
tion in terms of controlling principles, most of the discussion 
applies to both types of allocation, together referred to simply 
as ‘allocation’. We discuss the principles that control allocation 
in trees in response to internal or environmental factors (e.g., 
allometric scaling, optimization) rather than the processes 
themselves (growth, respiration and exudation). In order to 
promote fruitful use of eco-evolutionary theory in forest model-
ing, we put emphasis on approaches rooted in ecological or 
evolutionary concepts. We identify conditions where simpler 
individual optimization-based approaches are consistent with 
evolutionary theory and when more complex approaches 
including feedbacks between individual behavior and the envi-
ronment are called for. Emerging entropy-based approaches 
are discussed in terms of their probabilistic interpretation and 
their potential to address allocation strategies in a computa-
tionally efficient way. Finally, because model testing and empir-
ical data are essential for model development, we suggest 
statistical methods and types of data that would be most help-
ful for further development of models and theories on C alloca-
tion in forests.

Overview of approaches to allocation modeling 
in forest models

In this paper, we review a range of approaches used to predict 
allocation in forest models in terms of underlying principles. 
Although most of the concepts and terms used are well estab-
lished in forest modeling or tree physiology, terms that may be 
less commonly used in these fields, or may have variable 
meanings depending on the context, are explained in a glos-
sary (Table 1). Examples of models are used to illustrate the 
approaches, which are introduced in order of increasing com-
plexity, ranging from empirically based factors to mechanistic 
representations of evolutionary dynamics. Before the different 
approaches are discussed in detail in the following sections, 
here the main categories of methods are summarized (Table 2) 
and put into a common framework to facilitate comparison 
(Figure 1).

Five main categories of approaches to allocation modeling 
are identified, based on the key principles used to predict 
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Table 1. ​ Glossary—terms and their meanings as used in this paper.

Term Meaning1

Density 
dependence

The number and size of individuals in a given 
area influences the environment of each 
individual.

Entropy Statistically interpreted, a measure of the 
probability of a certain state of a complex, 
non-equilibrium system, compared with other 
states.

Environmental 
feedback

An individual’s strategy affects the environment in 
a way that feeds back on the fitness of the 
individual.

Feedback 
environment

Properties of the environment that are part of the 
environmental feedback.

Evolutionarily 
stable strategy 
(ESS)

A strategy that cannot be invaded by another 
strategy in the environment it creates.

Fitness Per capita population growth rate.
Fitness proxy A substitute approximation for fitness used for 

convenience (e.g., growth rate).
Game theory A theory where the success of an individual’s 

strategy depends on the strategy of others.
Optimization A modeling technique for finding the strategy that 

maximizes a goal function (e.g., fitness proxy) in 
a model.

Plasticity Non-genetic change or acclimation of a strategy 
of an individual during its lifetime, usually in 
response to the environment.

Reaction norm A plastic strategy, i.e., a strategy that changes in 
response to the environment.

Strategy A combination of traits that defines an individual 
or its behavior (phenotype).

Trait An attribute of an individual, usually with 
influence on fitness, e.g., the reaction norm for 
allocation, wood density or photosynthetic 
capacity.

1Italicized words are explained in the glossary.
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allocation: empirical, allometric scaling, functional balance, evo-
lution based and entropy based. The distinction is not clear-cut 
as all models have empirical components and—because this 
classification is not a purpose per se but a vehicle for readabil-
ity—we accept some overlap between categories. For exam-
ple, allometric scaling may be based on metabolic theory or 
solely on empirical data, i.e., it can be a mechanistic or an 
empirical method. However, we distinguish between allometric 
scaling and empirical methods in general due to an important 
and distinct feature of allometric scaling: it accounts for onto-
genetic effects on allocation in individuals but not environmen-
tal effects (plasticity) (Figure 1a). We categorize an approach 
as empirical if it is based on observed relationships rather than 
a theoretically justified principle, e.g., if it accounts for environ-
mental effects based on empirical relationships (Figure 1b). In 
functional-balance approaches, allocation is controlled in order 
to maintain internal homeostasis of physiological processes or 
element concentrations, without reference to an ultimate goal 
or purpose of the behavior. In contrast, the evolution-based 
methods are teleonomic, meaning that, from a modeler’s per-
spective, allocation is predicted based on its ultimate effect on 

future success, i.e., fitness or a fitness proxy. The evolution-
based approaches include optimal response (OR) models, 
which maximize a fitness proxy in a fixed environment 
(Figure 1c), game theoretically based approaches (GTO, Figure 
1d), which maximize a fitness proxy including the feedback of 
an individual’s strategy on its environment, and adaptive 
dynamics (AD, Figure 1e), which models the evolution of strat-
egies (e.g., allocation) in the context of population dynamics. 
Whereas OR and GTO models usually address acclimation (or 
plasticity) of allocation, AD can be used to predict the evolu-
tion of allocation strategies. Entropy-based approaches resem-
ble OR or GTO, but the controlling principle is based on 
thermodynamics rather than evolutionary theory and involves 
maximization of entropy or entropy production (Figure 1e).

What is the simplest way to model allocation?

Empirical and allometric approaches

In forest modeling or any other scientific modeling, it is advis-
able to follow ‘Einstein’s razor’, i.e., make the model as simple 
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Table 2. ​ Summary of carbon allocation principles.

Name Description1 Examples

Empirical approaches
 ​ ​  Fixed ratios Fixed fractions of the assimilated carbon (C) 

is allocated to each organ.
Fixed leaf : fine-root allocation ratio in most 
dynamic global vegetation models (DGVMs; Ostle 
et al. 2009).

Allometric approaches
 ​ ​  Allometric scaling Scaling relationships between organs that 

vary with individual size but not with the 
environment.

Metabolic scaling with body size leads to universal 
scaling relationships between organs (metabolic 
theory of ecology; West et al. 2009).

Functional-balance approaches
 ​ ​  Coordination theory Equalization of the limiting effects of 

different resources via preferential allocation 
of C to the organ responsible for acquisition 
of the most limiting resource.

Root versus shoot growth in response to C and 
nitrogen (N) supply (Reynolds and Chen 1996) 
and C and water supply (Chen and Reynolds 
1997) in small plants.

Eco-evolutionarily-based 
approaches
 ​ ​  Optimal response (OR) Optimization of a strategy (e.g., allocation) in 

order to maximize a fitness proxy in a fixed 
environment.

Allocation of C and N controlled by maximization 
of photosynthesis at the canopy scale (McMurtrie 
et al. 2008) and net growth at the whole plant 
level (Franklin et al. 2009).

 ​ �​  Game-theoretic optimization 
(GTO)

Models where the success of an individual’s 
strategy depends on the strategy of other 
individuals. In forest modeling it accounts for 
the feedback of allocation on the abiotic and 
biotic environment.

Prediction of root, foliage and wood allocation in a 
growing even-aged stand (King 1993; Figures 3 
and 4).

 ​ ​  Adaptive dynamics (AD) Modeling of the emergence of strategies 
through evolution, via explicitly modeled 
population dynamics. It may result in an ESS.

Derivation of ESS for root, foliage and wood 
allocation in a steady-state forest (Dybzinski et al. 
2011).

Thermodynamic approach
 ​ �​  Maximum entropy 

production (MEP)
Optimization of traits (including allocation) to 
maximize the rate of entropy production 
(free energy dissipation) under a fixed 
environment.

Plant C allocation control at different timescales 
and levels of organization (Dewar 2010; Figure 7, 
and Appendix B).

1Italicized words are explained in Table 1.
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as possible, but no simpler. There exist some very simple 
approaches to C allocation, but the question is when are they 
too simple and under which circumstances are they 
acceptable?

The simplest way to model C allocation is to assume that a 
fixed fraction of the C assimilated in photosynthesis is allo-
cated to each organ (e.g., fixed leaf : fine-root allocation ratio in 
most DGVMs; Ostle et al. 2009). Although in reality the alloca-
tion of C varies with both individual status (such as size and 
age) and environmental conditions, the fixed allocation 
approach may be justified under certain conditions for models 
operating at the scale of stands or larger. If the forest tree size-
distribution and productivity are assumed to be in a steady 
state, large-scale allocation is also likely to be in a steady state 
even though the allocation of each tree changes with time. 
Similarly, a large-scale perspective can average out spatial vari-
ability in environmental factors and their effects on allocation. 
However, a potentially critical limitation of the fixed allocation 
approach, commonly used in long-term simulations of terrestrial 

C budgets, is the lack of allocation response to environmental 
changes, such as climate change, N deposition and elevated 
atmospheric CO2. This lack of response contradicts experimen-
tal results and physiologically more sophisticated models, 
showing that rising CO2 levels lead to large shifts in C alloca-
tion between fine roots and wood that strongly interact with 
soil N availability and stand age (Iversen et al. 2008).

Whereas fixed allocation may be justified at large scales for 
steady-state forests in constant environments, at the individual 
level allocation clearly varies with size (and age) of a tree. This 
intrinsic (ontogenetic) allocation pattern can be described by 
allometric scaling relationships based on empirical data or allo-
metric theory (e.g., West et al. 2009) (Figure 1a). Allometric 
scaling provides a simple way of deriving a typical or mean 
behavior of a species and even to derive structural and func-
tional properties at the population level (West et al. 2009). An 
often used allometric relationship in forest models is the pipe 
model (Shinozaki et al. 1964) that links the sapwood cross-
sectional area of the stem to leaf area, based on the relationship 
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Figure 1. ​ Examples of interactions between environment (abiotic and biotic), internal status (e.g., size and growth rate) and allocation of carbon 
(C) addressed to determine C allocation in different modeling approaches. In allometric scaling (a) allocation only depends on individual size. 
Functional balance (b) can be used to link the size of each organ (internal status) to the acquisition of a particular resource and allocate C among 
organs in order to maintain internal homeostasis, e.g., fixed biomass C : N ratio. In an OR approach (c) effects of environmental and internal factors 
are integrated to get the optimal allocation that maximizes fitness or a fitness proxy (optimization fitness). In addition to the interactions of the OR 
approach, a GTO approach (d) accounts for the effect of individuals (internal status) on their environment, e.g., competition effects. The AD 
approach (e) includes the interactions applied in GTO but instead of prescribing a fitness proxy, allocation at the individual level evolves through 
the effect of selection via explicit modeling of population dynamics. The MEP approach (f) is based on similar interactions to the evolution-based 
approaches but has a different organizing principle, i.e., maximum entropy production (optimization entropy). The exact formulation of the MEP 
principle depends on which part of the system is assumed to be in steady state (dashed box), which is determined by the level of organization 
(e.g., forest, tree or canopy) and corresponding temporal scale addressed.
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between leaf water use and stem transport capacity. Because 
the pipe model relationship is mainly governed by the internal 
relationship between plant organs for a single resource (water), 
it is likely to be more invariant across environments than most 
other allometric relationships, such as among root, stem and 
leaf biomasses that are each linked to acquisition of different 
resources from the environment. Because allometric scaling 
among organs does not address the plastic response of alloca-
tion to environmental factors, it cannot be used to model 
effects of resource availability and climate change on C alloca-
tion in trees.

If we are interested in the effects of a changing or variable 
environment (abiotic and biotic) on forests, the variation in allo-
cation in response to these variables must also be considered, 
i.e., the reaction norm (explanation in Table 1) for allocation. A 
conceptually simple way to address environmental effects on 
allocation is through heuristic rules that mimic observed 
responses (Figure 1b). For example, observations that reduced 
nutrient availability increases root allocation (Landsberg and 
Waring 1997), or that low light increases relative C allocation to 
the stem, can be used to construct empirically based allocation 
functions, which are fitted to observations. Because empirically 
based allocation relationships are usually based on functions of 
simple shape, e.g., monotonic, they should be most easily 
derived and accurate for simple allocation patterns, such as the 
rather universal trend of increasing allocation to wood with site 
productivity (Litton et al. 2007). In contrast, deriving empirical 
allocation relationships may be more problematic for more 
complex, e.g., non-monotonic, relationships, such as the allo-
cation to fine roots in response to soil N availability (Mäkelä 
et al. 2008, Franklin et al. 2009), which likely contributes to 
the low predictive power of empirical root-allocation models 
(Gower et al. 1996).

Functional-balance approaches

Compared with empirical and allometric approaches, the func-
tional-balance concept, first suggested by Davidson (1969), 
leads to more mechanistic representations of the allocation 
process. In this approach, allocation is driven by bottom-up 
responses to maintain an optimal (usually fixed) internal 
resource status or element ratio (e.g., biomass C : N). Similar 
approaches have been referred to as optimal partitioning the-
ory (McCarthy and Enquist 2007), which—as they do not 
specify an overarching eco-evolutionarily rooted optimality cri-
terion—should not be confused with the OR approach 
described below. Coordination theory is another approach 
rooted in the functional-balance concept, which states that the 
plant strives to equalize the limiting effects of different 
resources via preferential allocation of C to the organ respon-
sible for acquisition of the most limiting resource in each time 
step (Reynolds and Chen 1996, Chen and Reynolds 1997). 
Because the limiting effects are calculated in terms of growth 

rate, this approach may lead to allocation that approximates a 
growth rate maximization behavior without foresight. This 
method offers a practical bottom-up way of simulating adaptive 
responses to temporal variability in resource availability without 
the need to account for conceptually and computationally more 
challenging long-term goals, such as fitness maximization.

The bottom-up perspective also means that an evolutionary 
underpinning of the choice of the particular goal or ‘balance’ 
variable used (whole-plant instantaneous growth rate) is lack-
ing. It is not self-evident why whole-plant growth should be 
maximized rather than, e.g., shoot growth, which may be criti-
cal for survival under the asymmetric competition for light 
experienced by most plants in nature. In addition, for trees 
these methods may be hampered by the assumed direct link-
ing of each organ to the acquisition of a particular resource or 
need, e.g., between stem height and light capture in trees, as 
done in Scheiter and Higgins (2009). For trees in forests such 
simple links may not always hold as organs interact, e.g., leaf 
area and stem height both influence light absorption, and the 
optimal C allocation to leaf versus stem growth will depend on 
the local light environment. Such interactive and variable rela-
tionships among organs can be addressed in a general manner 
by applying an overarching control principle, such as a goal 
function of the integrated effects of all organs based on evolu-
tionary, fitness-maximizing arguments. Nevertheless, even in 
such an evolution-based allocation model (discussed below), 
many elements from functional-balance models (e.g., C and N 
mass balances) and allometric scaling (e.g., the pipe model) 
remain essential for the representation of physiological con-
straints in the model.

Eco-evolutionarily-based models: theory for 
insight and prediction

Few physicists would choose to ignore the guiding principles 
of their field, such as the conservation of mass and energy, 
when modeling a physical phenomenon. In contrast, in applied 
ecological modeling it has been common practice to ignore the 
guiding principles of ecological and evolutionary theory. 
However, an increasing number of forest modelers have recog-
nized that ecological and evolutionary theory are not only fun-
damental for understanding biology and ecology but also 
provide powerful tools for improving predictive models (Dewar 
et al. 2009, Anten and During 2011). An organizing eco-evolu-
tionary principle can limit the uncertainty in models by impos-
ing a top-down control that selects one (most likely or fittest) 
behavior out of the otherwise infinite number of possibilities. In 
addition, this way of deriving allocation eliminates the need for 
empirical estimation of allocation factors and the associated 
practical difficulties and uncertainties, e.g., measuring fine-root 
production. However, although the practical and theoretical 
advantages of an accurate organizing principle are clear, 

652  Franklin et al.

 at A
ustralian N

ational U
niversity on A

ugust 8, 2012
http://treephys.oxfordjournals.org/

D
ow

nloaded from
 

http://treephys.oxfordjournals.org/


Tree Physiology Online at http://www.treephys.oxfordjournals.org

finding the most appropriate principles and assumptions is not 
straightforward.

Allocation, like all biological processes, is a product of evolu-
tion, which suggests that to fully understand allocation, it may 
be necessary to model the underlying evolutionary process in 
considerable detail. This is easier said than done, particularly 
for trees and forests, where long generation times and a large 
number of environmental and internal variables interacting on 
different temporal and spatial scales create a system that is 
exceptionally challenging to model. In addition, whereas in 
empirical approaches C allocation can be modeled separately 
from C acquisition (photosynthesis), in an evolutionary 
approach, allocation is linked to all other physiological pro-
cesses, and the integrated whole-plant behavior is subjected 
to selection or optimization (Figure 1). Due to the complexity 
of the evolutionary process, its effects must be simplified to 
bring out the consequences for allocation in a form that can be 
applied for predictive purposes, e.g., to predict allocation plas-
ticity in response to environmental variables. A common fea-
ture of simplification in most tree allocation models is the use 
of a proxy for fitness, such as instantaneous growth rate, that 
can be readily measured and modeled. This simplification is 
natural for short timescale models, addressing acclimation 
responses (plasticity) of existing trees rather than the long-
term community composition or evolution. However, although 
the observed behavior of the existing forest can guide the 
selection of a fitness proxy, it is not always possible to discern 
the most appropriate fitness measure based on the resulting 
correspondence with empirical data (Anten and During 2011). 
This uncertainty is minimized by using a fitness measure that 
accounts for the whole life cycle, such as mean number of off-
spring produced per individual during its lifetime (R0). Perrin 
(1992) derived a theoretical framework based on maximization 
of R0 that leads to allocation that maximizes net productivity 
increase in each time step followed by a complete switch to 
reproductive allocation. However, an important limitation of the 
approach by Perrin (1992) is that the environment must be 
specified externally (exogenously), which is not a straightfor-
ward task for the life cycle of a tree in a forest. In addition, the 
fixed external environment implies that interactions between 
individuals, in particular effects of competition, are not explic-
itly addressed. However, competition is ubiquitous in forests, 
as evident from the existence of tall tree stems as a result of 
competition for light (Mäkelä 1985, King 1990, Falster and 
Westoby 2003). It turns out that competition plays an impor-
tant role when selecting the most appropriate type of evolu-
tion-based allocation approach.

A single tree optimality perspective: OR models

The most widely used evolution-based models for trees and 
forests, the OR models, are based on maximization of a goal 
function that reflects fitness on the timescale addressed by 

the model. The underlying assumption is that evolution has 
led to a behavior that optimizes this goal function due to its 
importance for fitness. Consequently, the reaction norm for 
allocation in an OR model is implicitly defined by the goal 
function, e.g., maximization of net growth. In contrast to a 
game-theoretic approach, an OR model does not explicitly 
address a feedback loop between the plant’s strategy (behav-
ior) and its abiotic or biotic environment (Figure 1c). 
Practically speaking, the most important consequence of the 
absence of explicit environmental feedback is that allocation 
can be optimized in a fixed environment, which reduces 
mathematical complexity compared with a GTO model. Due 
to its power and relative simplicity, the OR approach is useful 
for scaling up processes across organizational levels, i.e., by 
assuming optimal functioning at each level from chloroplasts 
to forest canopies, the number of parameters and the accu-
mulation of uncertainty at each new organizational level 
added to a model can be minimized (Schymanski 2008). 
Although OR is not a new approach to model plant behavior 
(e.g., Vincent and Pulliam 1980), it is only recently that its 
ability to predict and synthesize a wide range of plant 
responses to global change has begun to emerge, from com-
parisons with a growing body of data from free-air carbon 
dioxide enrichment (FACE) experiments and other empirical 
studies (Dewar et al. 2009).

Theoretically, OR is a valid approach when plant behavior on 
the timescale addressed by the model is not significantly influ-
enced by environmental feedback, such as competition. For 
example, within-canopy distribution of leaf area and N usually 
do not significantly affect the environment of neighboring trees. 
Consistent with this observation, an OR model was success-
fully used to determine covariations in leaf traits in agreement 
with the observed leaf economic spectrum (McMurtrie and 
Dewar 2011): leaf acclimation of specific leaf area, N concen-
tration and stomatal conductance to elevated CO2 (McMurtrie 
et al. 2008); leaf-N per leaf-area in trees at ambient and ele-
vated CO2 (Franklin 2007); and leaf-N per leaf-area in crops 
(Franklin and Ågren 2002). Although these models address 
slightly different leaf and canopy properties, they all derive 
optimal C and N allocation through maximization of net C gain, 
i.e., photosynthesis minus C costs of respiration and leaf turn-
over, for a given amount of canopy N.

For OR modeling of whole trees, the benefits and costs of all 
organs (canopy, stem and roots) must be included in the goal 
function of the model. In addition, the effect of competition can 
rarely be neglected. However, the effects of competition can 
sometimes be subsumed in the optimization target of an OR 
model. For example, C and N allocation to stem wood, fine 
roots and leaf area index (LAI) in response to soil N availability 
and CO2 was determined by maximization of net stem growth 
(plus reproduction, which was negligible; Franklin et al. 2009). 
This goal function (fitness proxy) is based on the idea that 
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stem growth rate determines the success of an individual due 
to strong and asymmetric competition (disproportional advan-
tage for larger versus smaller individuals) for light. Thus, by 
letting the goal function represent the most competitive strat-
egy, OR can be used to address an effect of environmental 
feedback, such as competition, despite the absence of explicit 
modeling of the feedbacks.

The OR model by Franklin (2007) applies nested optimiza-
tions to determine C and N allocation at three hierarchical lev-
els: optimal total canopy N at the whole-plant level, LAI (for a 
steady-state canopy N) at the canopy level and leaf N per area 
(for steady-state canopy N and LAI) at the leaf level. Steady 
state is assumed in each optimization and for the levels above, 
which means that canopy N and LAI are in steady state only 
when the canopy is in steady state, i.e., fully expanded 
(Figure 2a). For expanding (young) canopies, LAI and leaf N 
per area are optimized for each value of canopy N, which is not 
in steady state (canopy N increases with canopy expansion). 
This leads to different relationships between productivity and 

canopy N for expanding and fully grown canopies (Figure 2b). 
For example, this result explains why growth per canopy N 
(canopy nitrogen use efficiency) decreases with canopy N and 
age in expanding canopies (Franklin 2007, van Kuijk and Anten 
2009) but does not decrease with canopy N (e.g., in response 
to N additions) in fully closed canopies. Thus, OR applied at 
different levels and corresponding equilibrium timescales can 
be combined in the same model to address allocation 
responses on different timescales and for different life stages.

Optimal response models have also been developed based 
on fitness proxies defined at organizational levels above the 
individual, e.g., at the stand level. Because selection mainly 
operates at the individual level, it is not straightforward to eval-
uate the applicability of an OR model based on a fitness proxy 
defined at the stand level. Nevertheless, allocation to stem 
wood, fine roots and foliage in response to N uptake and CO2 
was successfully determined by maximization of net primary 
productivity (NPP) at the stand level for steady-state (old) pine 
and spruce forests (Mäkelä et  al. 2008). Thus, although not 
obviously defendable from a theoretical perspective, it appears 
that maximization of NPP provides a sufficiently good approxi-
mation for predicting the behavior of the forests on the time
scale addressed in this model. In general, various 
productivity-related fitness proxies appear to provide good 
approximations of allocation plasticity in OR models of existing 
trees and forests. However, with increasing time horizon, the 
impact of any mismatch between a fitness proxy and actual fit-
ness will increase. On timescales including different life stages 
(reproductive, vegetative growth), a single productivity-based 
fitness proxy is clearly not sufficient to explain a tree’s alloca-
tion strategy.

The validity of the OR approach in forest modeling is mainly 
limited by two interrelated factors: potential inadequacy of the 
fitness proxy, and environmental feedback through competi-
tion. In an OR model, it is necessary to use an integrated mea-
sure of an individual’s performance, including any environmental 
feedbacks (Table 1; Heino et al. 1998; e.g., competition) in the 
form of a single variable (fitness proxy, e.g., height growth), 
which is maximized. In practice, this implies that the potential 
to address competitive effects in an OR model should be lim-
ited to one dimension of competition, i.e., a one-dimensional 
feedback environment. For example, it appears that vegetative 
growth in even-aged stands dominated by competition for light 
is one example where the feedback environment can be suffi-
ciently one-dimensional to use OR. This means that fitness 
increases monotonically with height growth rate because there 
is no other way to gain an advantage over your competitors. 
However, if there is competition for another limiting resource 
(another dimension of competition), such as soil N, it is also 
possible for a tree to influence its height growth rate relative to 
the other trees by increasing its share of nutrient uptake at the 
expense of the others, by diverting C allocation from stem to 
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Figure 2. ​ Model of canopy expansion and optimal steady-state canopy 
in an OR model. (a) The steady-state optimal canopy nitrogen (Nc*) 
that maximizes net growth (G), where G equals the difference between 
carbon gain (GPP) and C costs (respiration, R + litter production, L). 
(b) The paths of net production as a function of canopy N of expand-
ing (young) canopies (NPP and G, solid lines) and steady-state cano-
pies (NPP* and G*,  dashed lines). For expanding canopies, NPP and G 
are functions of increasing Nc for fixed slopes of R and L as shown in 
(a). For steady-state canopies, the curves of NPP* and G* do not cor-
respond to the fixed slopes of R and L as shown in (a) but are drawn 
by varying the slope of R  + L versus Nc (the C cost per Nc) and deriv-
ing a new Nc* for each R  + L slope. In nature, the R  + L slope changes 
with age or soil fertility as a result of shifts in stem-wood N : canopy-N 
ratio or root-N : canopy-N ratio. For example, increasing stem wood 
respiration with stem height causes a decrease of NPP* and G* along 
the dashed lines. The model is described in Franklin (2007).
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roots (see below). Because the competitors respond in the 
same way, there is an interactive relationship between individu-
als that influence the optimal allocation strategy. Thus, it is no 
longer possible to derive the optimal allocation strategy with-
out reference to the interaction with neighbors (the feedback 
environment in Figure 1d).

Addressing competition: GTO models

Continuous-trait game theory in ecology and evolution is cen-
tered around the concept of the evolutionarily stable strategy 
(ESS), which is a strategy (e.g., a reaction norm for C alloca-
tion) that cannot be invaded by a different strategy when it is in 
equilibrium with its environment (it is the resident strategy) 
(McGill and Brown 2007). Whereas the optimal strategy in an 
OR model is determined in a fixed environment, a GTO 
approach includes the interaction of the strategy and the envi-
ronment (Figure 1c and d), e.g., competition with neighbors 
(biotic environment). Critically, the result of a GTO model, the 
ESS, is optimal in the sense that it cannot be invaded and thus 
successfully holds a site, but it may or may not maximize a 
particular aspect of productivity, such as carbon sequestration, 
reproduction, height growth, etc. (Dybzinski et  al. 2011). 
Game-theoretic optimization has mainly been applied to explain 
height growth in trees (Mäkelä 1985, King 1990) but also to 
root : stem : foliage allocation ratios in trees, suggesting that 
competition for soil N can significantly influence allocation 
(King 1993).

One of the most interesting findings from the use of GTO in 
forest modeling is that ESS allocation, particularly to roots, will 
not maximize ‘stand fitness’ (e.g., stand growth rate; King 
1993). This result, also shown for grasses (Craine 2006) and 
herbs (Gersani et al. 2001), is caused by competition and the 
fact that it is beneficial for an individual to increase its marginal 
N uptake at the expense of others. Thus, each individual will 
increase N uptake beyond the ‘collective optimum’ until a com-
petitive optimum (or equilibrium) is reached at a higher root 
allocation than would maximize stand productivity, i.e., a trag-
edy of the commons occurs.

The explicit modeling of environmental feedback in GTO 
models means that, in comparison to an OR approach, an addi-
tional level of interaction must be included in the solution, i.e., 
in the derivation of an ESS. Thus, for most modeling purposes, 
GTO models are more complex and computationally costly than 
OR models. However, competition effects based on GTO can 
be modeled at similar computational cost as for OR models 
under simplifying assumptions, such as identical trees maxi-
mizing wood growth (King 1993). In this case, whole-forest 
(stand) properties can be derived directly without the need to 
simulate interactions among individuals or size classes explic-
itly. However, if interactions between different size classes and 
non-equilibrium conditions are addressed, explicit simulation of 
individuals in one way or another will likely be necessary, which 

increases computational cost considerably and makes the 
results less tractable.

In conclusion, the scarcity of GTO in forest models despite 
its power to address important aspects of competition sug-
gests that GTO has a large potential to further improve and 
extend forest allocation models, particularly in combination 
with simplifying assumptions to limit the computational costs. 
For example, GTO may be helpful in addressing the often over-
looked allocation of C to mycorrhizal fungi that supply N in a 
C–N trading relationship with the plants that may span from 
mutualism to parasitism (Kummel and Salant 2006).

How do the optimal response and game-theoretic 
approaches compare in practice?

As discussed above, the advantage of using an OR approach 
compared with GTO is the lower complexity and computational 
cost obtained by omitting explicit environmental feedback, i.e., 
not explicitly addressing the effect of a strategy on the plant’s 
(abiotic and biotic) environment. On the other hand, environ-
mental feedback such as competition may be an important 
driver of plant behavior, in which case an OR may fail unless it 
implicitly accounts for the environmental feedback. Because of 
the relatively widespread use of the simpler OR approach in 
comparison to GTO in forest modeling, a potentially interesting 
question is how different are their predictions in practice?

In theory, an OR approach is insufficient and GTO is required 
to model allocation when the feedback environment has more 
than one dimension, e.g., when there is competition for both 
light and soil nutrients. King (1993) compared a GTO model 
with an OR model, where both models maximize stem wood 
production but only the GTO model accounted for root compe-
tition for N. In particular, root allocation differed greatly 
between the two approaches, a result also predicted by a more 
comprehensive model based on AD (Dybzinski et  al. 2011). 
Both these models assume an N uptake–root relationship that 
leads to almost complete uptake of the potentially available soil 
N. Thus, an individual can increase its N uptake almost exclu-
sively at the expense of its neighbors, which promotes very 
strong root competition. However, in reality the competition 
intensity may vary among forests and it has not been evaluated 
how the intensity of competition in forests influences the differ-
ence between an OR and a GTO model in practice.

In order to evaluate the effect of competition intensity for 
predicted root allocation, we constructed a simple tree 
growth and allocation model based on elements from the 
models by King (1993) and Franklin et al. (2009) described 
in Appendix A. The degree of root competition was evaluated 
as the relative difference in marginal N uptake per root 
between a non-competitive (OR) version of the model and a 
GTO version, which includes root competition (but otherwise 
is identical to the OR version). This measure of competition is 
similar to a relative competition index (RCI, Grace 1995). The 
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effect of root-competition intensity was then evaluated by 
comparing model results based on parameters representative 
of an observed N uptake–root growth relationship from the  
Oak Ridge National Laboratory (ORNL) FACE experiment 
(Franklin et al. 2009) to a more competitive relationship, rep-
resenting shallower soil depth (Figure 3). For each model and 
the two soil depths, allocation to fine roots, wood and foliage 
was modeled in response to soil N availability and in response 
to C availability for photosynthesis, not specifying the under-
lying cause (e.g., atmospheric [CO2], light intensity or stoma-
tal conductance).

The difference in predicted allocation between the GTO and 
OR approaches increases with the intensity of root competition 
(which is not accounted for in the OR model), which is strongly 
influenced by soil depth (Figure 4e and f). This root-competi-
tion effect has a maximum at rather low soil N availability and 
vanishes at high soil N availability, whereas it increases mono-
tonically with C availability for photosynthesis. Allocation and 
root-competition intensity is affected by C availability and N 
availability to a similar extent but following different functional 

shapes. However, the observed competitive intensity in ORNL 
FACE was relatively low, resulting in an overall small modeled 
root-competition effect on allocation (Figure 4a–c). Only a 
substantially smaller soil depth significantly increased the com-
petitive effect on allocation (Figure 4d–f). Increased C avail-
ability increases wood allocation most strongly for large soil 
depths and high soil N availability, suggesting that rising CO2 
will enhance stem wood C sequestration particularly in forests 
with deep and N-rich soils. Although a proper evaluation of this 
result is beyond the scope of this paper, it illustrates a poten-
tially important use of GTO in accounting for effects of soil 
depth on C allocation.

Our analysis shows that the intensity of competition can 
strongly affect modeled allocation and thus the difference in the 
results between a GTO model that includes this effect and an 
OR model that does not. A comprehensive evaluation of the 
importance of root competition in forests is beyond the scope 
of this paper. However, in the intensively studied Oak Ridge and 
Duke FACE sites, stand N uptake increased almost linearly with 
increased fine-root production in response to elevated CO2 
(Franklin et al. 2009), which suggests a relatively minor root-
competition effect. A small root-competition effect explains why 
the OR model by Franklin et al. (2009) was able to predict the 
observed responses in these FACE experiments, despite not 
accounting for root competition. In contrast, there are forests 
where root competition is more pronounced, e.g., in nutrient-
poor dry conditions (Montgomery et  al. 2010), which may 
accentuate the differences between OR and GTO models. In 
general however, the OR model by Franklin et al. (2009) pro-
duces qualitatively similar allocation relationships to the GTO 
model by King (1993) and the AD model by Dybzinski et al. 
(2011; see below), such as a trade-off between root and wood 
allocation and increasing root allocation at decreasing N avail-
ability. These general patterns are supported by a meta-analysis 
of a large range of experimental data (Litton et al. 2007).

If indeed the competition intensity is the key limitation of 
using an OR model for C allocation in forests, this can be used 
to identify in which types of forests an OR model is sufficient 
and when GTO models should be preferred. Based on the 
results presented here, we suggest that factors influencing 
below-ground density dependence should be important, such 
as soil volume, as has been shown for annual plants (O’Brien 
and Brown 2008). In addition, the distribution and mobility of 
resources should be important for the intensity of competition 
and thus for the selection of the modeling approach. Because 
competition should be stronger for more mobile soil resources 
than for less mobile resources (Casper and Jackson 1997), the 
predictions of GTO and OR approaches may differ more in 
water-limited forests and less in phosphorus-limited forests 
compared with N-limited forests.

In conclusion, despite the theoretical differences, OR and 
GTO approaches predict similar allocation patterns in forests 
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Figure 3. ​ Comparison of GTO and OR models for different soil depths 
used for evaluation of the effect of root competition on carbon (C) 
allocation, shown in Figure 4. In both models (defined in Appendix A), 
growth is limited by light, carbon availability for photosynthesis and 
soil nitrogen (N) availability. Both models are based on maximization 
of stem growth but employ different assumptions for root-competi-
tion : no root-competition (OR model, (a) and (c)) and root competition 
(GTO model, (b) and (d)). Each model is evaluated for shallow soil (c) 
and (d) and deep soil (a) and (b). Shallow soil leads to a more com-
plete exploration of the soil volume and more overlap among roots 
than in the deep soil, which leads to a stronger competition for N in the 
presence of root competition. Thus shallow soil amplifies the differ-
ence between the model predictions with root competition and with-
out root competition, as shown in Figure 4.
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where root competition for soil resources is weak, as observed 
in the ORNL and Duke FACE experiments. However, stronger 
root competition is likely to be common, which would amplify 
the difference between the modeling approaches.

Evolving allocation: AD

In forest modeling, OR and GTO models are mainly used to 
predict allocation plasticity in response to environmental vari-
ables such as resource availability, while assuming that the 
fitness proxy that governs allocation plasticity remains fixed. 
In contrast, adaptive dynamics theory (AD; e.g., Dieckmann 
and Law 1996, Metz et al. 1996, Geritz et al. 1998, Meszéna 
et al. 2001, McGill and Brown 2007) takes a step further by, 
instead of assuming a fitness proxy, letting fitness and the 
allocation strategy emerge dynamically, through modeling the 
evolution process driven by the underlying ecology. In such 
models, evolution gradually modifies an allocation strategy so 
as to increase its success relative to the currently existing 
strategy (or strategies). In an AD model, the success of strate-
gies is modeled explicitly in terms of their population dynam-
ics, based on considering the whole life cycle of the modeled 
organism. Although in theory several different types of out-
comes of this process are possible (Geritz et al. 1997, McGill 

and Brown 2007), for C allocation in trees under natural con-
ditions, a likely result is an allocation ESS (potentially involving 
a mixture of several coexisting strategies). As in GTO models, 
the ESS is optimal in the sense that it cannot be invaded by an 
alternative strategy.

The main advantage of AD compared with GTO and OR 
models is that the fittest strategy arises as an emergent prop-
erty of the model, avoiding the problem of having to select an 
appropriate fitness proxy a priori. Like in GTO models, but 
unlike in OR models, the feedback environment in an AD model 
is also emergent, so competition and other interactions are 
readily accounted for. In addition, whereas the OR approach 
leads to a single optimal strategy (at least in a spatially homo-
geneous environment), the use of AD allows ESS mixtures of 
continuous strategies that each originate as an emergent prop-
erty of the model.

The limitations of using AD in forest modeling lie mainly in 
the complexity and computational demand incurred by an 
explicit modeling of population dynamics, in particular when 
the latter is structured with regard to size or other physiologi-
cal states. In allocation modeling, the degree of complexity will 
further depend on how the allocation strategy is represented: 
two salient options include values (scalars) for each considered 

Modeling carbon allocation in trees  657

Figure 4. ​ Effect of root competition and competition intensity on modeled forest carbon (C) allocation. Model predictions of allocation (a–d) and 
competition intensity (e and f) are based on two optimization models that both maximize individual wood production but differ in their assumptions 
of root competition for soil nitrogen (N). As explained in Figure 3 and Appendix A, the GTO model (solid lines) accounts for root-competition effects 
while the OR model (dashed lines) does not. Optimal allocation of carbon to foliage and wood and fine roots is shown in response to soil N avail-
ability (a, b) and C availability for photosynthesis (c, d). (e and f) show root-competition intensity, i.e., relative difference in marginal gain in N uptake 
per C allocated to roots for a competitive individual (GTO model) compared with a non-competitive individual (OR model), in response to soil N 
availability (solid line) and C availability (dashed line). Top figures (a, c, e) are based on parameters representative of observations in ORNL FACE, 
while bottom figures (b, d, f) are based on the same parameters except that soil depth has been reduced by a factor of 4.5 to increase root competi-
tion. In modeling variable soil N availability, C availability was fixed at 1000 g C m−2 year−1. In modeling variable C availability, soil N availability was 
fixed at 0.1 g N g root C−1 year−1. Other parameters and the models are described in Appendix A.

 at A
ustralian N

ational U
niversity on A

ugust 8, 2012
http://treephys.oxfordjournals.org/

D
ow

nloaded from
 

http://treephys.oxfordjournals.org/


Tree Physiology Volume 32, 2012

organ or a full reaction norm specifying phenotypically plastic 
allocation responses to a continuum of environmental 
situations.

Due to the importance of plasticity for C allocation of trees, 
it may be desirable to model the potentially complex interplay 
between evolutionary and plastic changes in allocation. Such a 
separation is feasible in AD models, by evolving a multivariate 
reaction norm for allocation that accounts for the key environ-
mental factors influencing allocation plasticity (e.g., by follow-
ing the approach of Ernande and Dieckmann 2004). However, 
perhaps due to the daunting complexity of such an allocation 
model, to our knowledge this possibility has not yet been 
pursued.

The only AD model of forest allocation that to our knowledge 
has been published (Dybzinski et al. 2011; Figure 5) does not 
differentiate between effects of evolution, community compo-
sition and plasticity on allocation. Instead, this model demon-
strates how an AD model can be simplified based on an 
equilibrium assumption for the population size and age struc-
ture and simplification of height-structured competition based 
on the perfect-plasticity approximation for the spatial arrange-
ment of tree crowns (Strigul et al. 2008). These simplifications 
allow results to be derived without a need for explicitly model-
ing the interactions among individuals or size classes. 
Consequently, the model yields tractable solutions, despite its 
basis in AD. The results of this model point to the importance 
of competition for root allocation and its trade-off with wood 
allocation (Figure 6), in line with the results by King (1993) 
and the GTO model presented above. More generally, the 
derived patterns of allocation to leaves, roots and stem are 
consistent with a meta-analysis of forest allocation (Litton et al. 
2007) and with predictions resulting from an OR model 
(Franklin et al. 2009). Interestingly, the AD basis of Dybzinski 

et al.’s (2011) model, and its representation of height-structured 
competition, allowed a novel interpretation of the transition 
from closed-canopy to open-canopy forests as a result of 
increasing soil N limitation reducing the ESS for canopy height 
and leaf area index.

A statistical view of plant behavior: 
entropy-based approaches

The hypothesis of maximum entropy production (MEP) offers a 
novel thermodynamic perspective on plant behavior. Viewed 
from this perspective, living systems are examples of a wider 
class of far-from-equilibrium dissipative structures—which 
include non-living systems such as the Earth’s climate—that 
import free energy from their environment and export it in a 
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Figure 5. ​ The AD forest model by Dybzinski et al. (2011). (a) Trees are classified as canopy trees, which experience full sunlight, and understory 
trees, which are shaded by the canopy trees and experience a constant understory light level. Understory trees become canopy trees when they 
reach the canopy height, which emerges dynamically from the model as the height at which the crowns of the tallest trees completely cover the 
horizontal space (the perfect plasticity approximation for light competition). Nitrogen (N) uptake of each tree is a function of its root mass relative 
to the total root mass of all trees and the soil N availability, i.e., all trees compete for the same N. (b) The allocation strategy (determining carbon 
allocation to roots, foliage, stems) affects individual size, growth and fecundity as well as the competition for light and N among trees via the feed-
back environment. The ESS allocation strategy is the strategy that maximizes fitness, in the sense that it cannot be invaded by a different strategy 
in the feedback environment that it gives rise to. By assuming a steady-state population size structure, the ESS allocation strategy can be found by 
maximizing the lifetime reproductive success without explicit simulation of population dynamics.

Figure 6. ​ Fraction of NPP allocated to wood versus fine roots pre-
dicted by the Dybzinski et al. (2011) model compared with measured 
data. The model predictions are ESSs across a gradient from low to 
high soil N availability (black line). Circles represent data from the 
publicly available FLUXNET database (Luyssaert et al. 2007). Stands 
represented by open circles are dominated by gymnosperms, 
whereas those represented by filled circles are dominated by 
angiosperms.
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higher entropy (lower free energy) form. According to MEP, 
when subjected to given constraints (both external and inter-
nal), these systems will organize themselves into steady states 
that maximize the rate of increase in the entropy of their 
environment.

While MEP has made successful predictions of, for example, 
planetary climates, fluid turbulence, crystal growth morphology 
and biological design (Dewar et  al. 2006, Martyushev and 
Seleznev 2006, Kleidon et  al. 2010), its theoretical basis 
remains unclear. However, one proposed statistical interpreta-
tion of MEP is that it describes the most probable steady state 
of complex, non-equilibrium systems under a given set of con-
straints (e.g., Dewar 2009), in the same sense that the bulk 
properties of matter in equilibrium are those which can be real-
ized microscopically in the greatest number of ways (corre-
sponding to a state of maximum entropy). In its application to 
biological systems, MEP then replaces ‘survival of the fittest’ 
with ‘survival of the likeliest’.

Dewar (2010) showed how various goal functions tradition-
ally used as proxies for fitness in OR models applied at differ-
ent levels (leaf, canopy, whole plant) can be replaced by 
chemical entropy production on different timescales and levels 
of organization. Thus MEP resembles an OR approach in which 
the goal function (fitness proxy) is replaced by entropy pro-
duction in the part of the system that is assumed to be in 
steady state at the timescale of interest. Maximum entropy pro-
duction can also replace the goal function in a GTO model 
(e.g., in the model used in our OR–GTO comparison example 
above; see Figure 1f).

In a forest stand, chemical entropy production (i.e., free 
energy dissipation) occurs as high free energy chemical spe-
cies (e.g., photosynthates) are converted to lower free energy 
forms (e.g., CO2). The entropy production depends on the 
boundaries of the system that is assumed to be in steady 
state, the fluxes of matter across the system boundaries, and 
the chemical potentials associated with those fluxes. In its 
application to King’s (1993) model of a forest stand, foliage 
and fine-root dry matter are assumed to be in a steady state 
(Figure B1). Appendix B shows how the rate of entropy pro-
duction is calculated for this system. The resulting entropy 
production (Eq. (B3)) depends on the relative differences 
among the chemical potentials of the chemical species (pho-
tosynthates, dry matter and CO2) crossing the system bound-
ary. A qualitative analysis of realistic ranges for these chemical 
potentials (Appendix B) suggests that MEP would predict 
optimal root allocation values intermediate between those 
from maximization of wood growth and NPP maximization 
(Figure 7). The results in Figure 7, and the more general 
agreement between allocation predictions by MEP and OR 
models (Dewar 2010), suggest that entropy production repre-
sents a biologically realistic goal function for OR models 
(under the relevant steady-state condition), and one that may 

be derived on more objective grounds than some of the fit-
ness proxies currently in use.

The statistical interpretation of MEP as the most probable 
behavior under given constraints has its basis in another, more 
fundamental entropy-based concept—maximum entropy, or 
MaxEnt (Jaynes 1957, Dewar 2009)—which provides a com-
mon theoretical framework for both equilibrium and non-equi-
librium behavior. MaxEnt has been used to unify other 
ecological patterns, such as species abundance patterns and 
self-thinning (Pueyo et al. 2007, Dewar and Porte 2008, Harte 
2011). MaxEnt predicts not only the most probable plant 
behavior (e.g., MEP) under given environmental and internal 
constraints, but also the frequency distribution of different eco-
logical or physiological strategies (e.g., allocation patterns) 
about the most probable strategy. In fact, MaxEnt predicts the 
most spread-out frequency distribution, thus accounting for 
the observed coexistence of many different strategies within a 
given environment, among which the most probable one is 
dominant.

The practical importance of entropy-based approaches 
(MEP and MaxEnt)—like OR approaches—lies in their poten-
tial to make realistic predictions of plant behavior and ecologi-
cal patterns directly from a tractably reduced number of 
environmental and internal constraints, without the need to 
simulate the underlying population dynamics in great detail. 
Potentially therefore, MEP and MaxEnt models are much less 
computationally demanding than more detailed approaches 
based on modeling population dynamics, such as AD. But if 
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Figure 7. ​ Rescaled entropy production (σ, Appendix B) versus fine-
root biomass for three values of λ, a dimensionless number (given 
by Eq. (B4)) that depends on the chemical potentials of photosyn-
thate, dry matter and CO2. σ has been scaled to the same units as 
dry matter production (kg m−2 year−1; see Eq. (B5)). For 0 < λ < 1, 
maximum entropy production predicts optimal fine-root biomass 
and production values that are intermediate between those pre-
dicted by the maximization of total production (NPP, case λ = 0) and 
maximization of wood production (Gw, case λ = 1). The plots were 
generated using the forest stand model and parameter values of 
King (1993).
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MEP and MaxEnt do not explicitly represent the underlying pro-
cesses and feedbacks driving evolution (such as competition) 
in all their detail, then why (and when) can we expect it to give 
reasonable predictions for strategies (such as allocation) that 
are the result of evolution?

The answer requires a fuller appreciation of what MaxEnt is 
(and is not). In view of its basis in information theory, MaxEnt is 
not really a dynamical principle (e.g., like Newton’s law of grav-
ity) but rather an inference method for making predictions 
based only on the information represented by the given set of 
constraints (environmental and internal), and nothing else 
(Dewar 2009). The fact that MaxEnt and MEP do indeed 
appear to make reasonable predictions using only a few con-
straints—e.g., without simulating the dynamics of individual 
birth, growth, competition and reproduction in all its detail—
suggests that those dynamic details that were not included in 
the constraint set are largely governed by stochastic rather 
than deterministic dynamics, and their effects average out, i.e., 
they represent irrelevant information. Therefore, the predictive 
success of MaxEnt depends entirely on whether we have put in 
the relevant environmental and (deterministic) internal con-
straints (e.g., what part of the tree or forest is in steady state). 
Disagreement with observations signals a missing constraint, 
such as significant underlying adaptive (deterministic) 
dynamics.

The underlying stochasticity which underpins the success 
of MaxEnt and MEP contrasts with evolution-based models, 
where the interactions and dynamics are often assumed to 
be sufficiently deterministic, and the environment sufficiently 
predictable, for one or a few distinct ESSs to crystallize. 
However, MaxEnt and MEP do not deny the existence and 
relevance of adaptive evolution. It appears that some dynamic 
deterministic details (e.g., competition for light, as discussed 
above) at the individual scale are indeed necessary to explain 
observed allocation patterns at the stand scale. Comparing 
an entropy-based approach with observations constitutes an 
efficient method of exposing those features of the individual 
population dynamics that are relevant at the community 
scale. In addition, further insights into the interplay and rela-
tive importance of adaptive and stochastic evolutionary pro-
cesses can be obtained by combining these two aspects of 
evolution in the same model (Iwasa 1988, Barton and Coe 
2009).

In summary, the potential of MEP and MaxEnt for improving 
computational efficiency in predictive models, for averaging 
out stochasticity and for explaining the coexistence of many 
strategies (i.e., biodiversity) implies that the use of entropy-
based approaches in forest modeling is worth exploring fur-
ther. In particular, further elaboration of the strengths and 
limitations of MEP and MaxEnt in relation to evolution-based 
approaches would be valuable for guiding future forest model 
development.

What is the best way to model allocation?

Of the approaches discussed in this study, in an evolutionary 
perspective, AD constitutes the most theoretically comprehen-
sive basis for predicting allocation. However, the overall accu-
racy of a forest model depends not only on the representation 
of the fundamental underlying principle—e.g., if allocation is 
predicted via AD or by maximization of a fitness proxy—but 
also on how well the physiological mechanisms and population 
dynamics are described. There is always a practical limitation 
to the complexity of a model, due to computational costs, or in 
order to keep the model behavior transparent, or due to accu-
mulation of uncertainty with increasing number of parameters. 
Thus, when selecting the controlling principle of a model, not 
only its theoretical accuracy matters but also the complexity it 
induces and whether it allows for sufficient matching complex-
ity in other parts of the model. Balancing the complexities of 
different parts in forest models may result in a tendency to a 
trade-off between the complexity of the controlling principle 
and the complexity of the reaction norm. For example, the trait-
evolution model by Falster et  al. (2011) addresses evolution 
rather explicitly based on AD, whereas allocation is determined 
by allometric scaling (only size dependent). In contrast, the 
steady-state forest OR model by Mäkelä et al. (2008) employs 
maximization of stand productivity (NPP as fitness proxy) as a 
simple controlling principle while allocation to stem, foliage and 
roots are all responsive to soil N availability (multivariate reac-
tion norm). The contrasting priorities in the partitioning of com-
plexity between these two models reflects the divergent 
research questions they address, i.e., the short-term plastic 
allocation responses of existing individuals versus the very 
much longer-term process of trait evolution. Thus, ultimately 
the research question and timescale addressed determine 
which allocation modeling approach is preferable.

Model testing and improvement

From model tuning to scientific progress

Although we have suggested some guidelines for identifying 
approaches that are appropriate to predict allocation for differ-
ent purposes, it is evident that more research is warranted to 
further increase an understanding of allocation and how it can 
best be modeled. For a given research question, evaluation of 
alternative approaches or variants of the same basic methods 
leads to more scientific progress than testing of a single model 
(Hobbs and Hilborn 2006). For example, in the majority of 
plant and forest OR-based modeling studies, the consequences 
of a single fitness proxy were tested against empirical data and 
success was declared because the correspondence (r2) 
between modeled and measured data was reasonable. While 
these studies represent substantial progress in terms of 
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conceptual development, physiological parameters and numer-
ical predictions of plant behavior, they rarely quantify the scien-
tific progress in terms of the value of the particular controlling 
principle (e.g., OR or GTO) applied. The problem is that differ-
ent principles (e.g., fitness proxies) often give very similar 
results (Anten and During 2011) and a different principle might 
be better than the one tested. Thus, to yield quantifiable and 
conclusive progress in terms of improving the controlling prin-
ciples in allocation models, alternative hypotheses (e.g., fitness 
proxies or evolving traits) should be compared for a given 
research question and dataset.

However, comparison of alternative models may be compli-
cated by differences in model complexity and the number and 
interdependencies of the parameters estimated. For example, 
increasing the number of free parameters increases wiggle 
room and improves the model fit to data (r2), but it does not 
necessarily mean that the model’s predictive power has 
increased. Instead, alternative models can be compared using 
methods that are independent of model differences in the num-
ber of parameters and the model structure, such as cross vali-
dation (e.g., Hastie et al. 2001). However, even the parameter 
estimation of a single forest allocation model can be a challenge 
due to model complexity. Often it is difficult to find a unique set 
of best-fit parameters using common parameter-optimization 
algorithms because the prediction error function (e.g., least 
squares error) has multiple local minima. Bayesian calibration is 
a method that suffers less from this problem, while also provid-
ing a range of useful measures regarding the model parame-
ters, including probability distributions and correlation 
coefficients between parameters (Van Oijen et  al. 2005). In 
addition to alternative hypotheses and statistical evaluation 
methods, comprehensive empirical data are obviously essential 
for model improvement, as discussed in the next section.

What empirical data do allocation modelers need?

Empirical data and experiments are critical to the development 
of allocation models in at least three interrelated ways. First, 
empirical information provides a window into the relationships, 
mechanisms and trade-offs that are to be described mathemat-
ically in an allocation model. Second, empirical information pro-
vides the data to numerically parameterize an allocation model, 
which is necessary both to make quantitative predictions and 
to understand the implications of models not amenable to ana-
lytical solution. Third, empirical information provides the data 
with which to test those quantitative predictions. In a make-
believe world of unlimited resources for research, allocation 
models would benefit from empirical information that is simul-
taneously comprehensive (covering all of the parameters and 
relationships relevant to allocation), accurate (replication suffi-
cient to ensure that sample distributions match the true popu-
lation distributions) and general (measuring all the species and 
habitats where an allocation model is expected to be relevant). 

But in the real world, empiricists must necessarily balance and 
compromise the degree to which the data they collect are 
comprehensive, accurate and general. Below, we discuss the 
advantages and disadvantages of these compromises for the 
purpose of improving allocation models.

At one extreme, empiricists may study a single site compre-
hensively and accurately, as has happened in the relatively 
small number of FACE sites (Ainsworth and Long 2005). From 
the empiricists’ perspective, the high cost and obvious rele-
vance of FACE experiments merit their close scrutiny, and 
many researchers are drawn to the sites and thus contribute a 
large volume of site-specific data to the literature. Mechanistic 
allocation models, which often include parameters that are sel-
dom measured at other sites (e.g., effects of elevated CO2 on 
allocation and photosynthesis), can benefit from this abun-
dance of data. Not only are the rarely measured parameters 
and processes accounted for, but they are linked to the more 
commonly measured parameters and processes, which gives 
the modeler confidence in the coherence in the complete set of 
parameters. For example, Franklin et al. (2009) used compre-
hensive data from two closed-canopy forest FACE sites to 
inform, parameterize and test an optimization (OR) model that 
predicted the differing allocation responses to CO2 and fertil-
ization observed in the experiments. The potential drawback to 
using comprehensive data from a small number of sites with an 
allocation model is no different than the potential drawback of 
using such data in a strictly empirical study: it is possible that 
the site or sites are a poor representation of the population 
(e.g., the world’s forests) and thus that the lessons learned 
may not generalize. Of course, in the case of costly FACE 
experiments, this potential drawback is unavoidable, but should 
be kept in mind nevertheless.

At the other extreme, empiricists may spread their research 
efforts out across many sites, potentially sacrificing compre-
hensiveness and site-specific accuracy at the altar of generality. 
For example, a large subset of the global FLUXNET network of 
eddy covariance towers measures forest carbon allocation to 
foliage, wood and fine roots (Jung et al. 2007), the three most 
basic pools of carbon in allocation models. With an AD alloca-
tion model parameterized from other sources, Dybzinski et al. 
(2011) tested model predictions against this general dataset. 
While illuminating, such large and general datasets suffer from 
a lack of certain key parameters. Most obviously, measuring 
resource availabilities (e.g., light, nitrogen, phosphorus and 
water), which are often the most important drivers in allocation 
models, would make such datasets much more valuable for 
allocation modelers. The potential drawback to using large-
scale data with an allocation model is no different than the 
potential drawback of using such data in a strictly empirical 
study: the presence of unaccounted-for confounding variables 
may obscure or, worse, reverse mechanistic trends at smaller 
scales (e.g., Simpson’s paradox; Simpson 1951).

Modeling carbon allocation in trees  661

 at A
ustralian N

ational U
niversity on A

ugust 8, 2012
http://treephys.oxfordjournals.org/

D
ow

nloaded from
 

http://treephys.oxfordjournals.org/


Tree Physiology Volume 32, 2012

Acknowledgments

Joel Brown is acknowledged for helpful discussions.

Funding

O.F., J.J., U.D. and Å.B. were funded by the International Institute 
for Applied Systems Analysis (IIASA), in the framework of the 
Greenhouse Gas Initiative (GGI). O.F. received funding from 
Vinnova, Sweden. R.E.M. received funding from the Australian 
Research Council.

References

Ainsworth, E.A. and S.P. Long. 2005. What have we learned from 15 
years of Free-Air CO2 Enrichment (FACE)? A meta-analytic review of 
the responses of photosynthesis, canopy properties and plant pro-
duction to rising CO2. New Phytol. 165:351–371.

Anten, N.P.R. and H.J. During. 2011. Is analysing the nitrogen use at 
the plant canopy level a matter of choosing the right optimization 
criterion? Oecologia 167:293–303.

Barton, N.H. and J.B. Coe. 2009. On the application of statistical phys-
ics to evolutionary biology. J. Theor. Biol. 259:317–324.

Cannell, M.G.R. and R.C. Dewar. 1994. Carbon allocation in trees: a 
review of concepts for modelling. Adv. Ecol. Res. 25:59–104.

Casper, B.B. and R.B. Jackson. 1997. Plant competition underground. 
Annu. Rev. Ecol. Syst. 28:545–570.

Chen, J.L. and J.F. Reynolds. 1997. A coordination model of whole-plant 
carbon allocation in relation to water stress. Ann. Bot. 80:45–55.

Craine, J.M. 2006. Competition for nutrients and optimal root alloca-
tion. Plant Soil 285:171–185.

Davidson, R.L. 1969. Effects of soil nutrients and moisture on root/
shoot ratios in Lolium perenne L. and Trifolium repens L. Ann. Bot. 
33:571–577.

Dewar, R.C. 2009. Maximum entropy production as an inference algo-
rithm that translates physical assumptions into macroscopic predic-
tions: don’t shoot the messenger. Entropy 11:931–944.

Dewar, R.C. 2010. Maximum entropy production and plant optimization 
theories. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365:1429–1435.

Dewar, R.C. and A. Porte. 2008. Statistical mechanics unifies different 
ecological patterns. J. Theor. Biol. 251:389–403.

Dewar, R.C., D. Juretić and P. Županović. 2006. The functional design 
of the rotary enzyme ATP synthase is consistent with maximum 
entropy production. Chem. Phys. Lett. 430:177–182.

Dewar, R.C., O. Franklin, A. Mäkelä, R.E. McMurtrie and H.T. Valentine. 
2009. Optimal function explains forest responses to global change. 
Bioscience 59:127–139.

Dieckmann, U. and R. Law. 1996. The dynamical theory of coevolution: 
a derivation from stochastic ecological processes. J. Math. Biol. 
34:579–612.

Dybzinski, R., C. Farrior, A. Wolf, P.B. Reich and S.W. Pacala. 2011. 
Evolutionarily stable strategy carbon allocation to foliage, wood, and 
fine roots in trees competing for light and nitrogen: an analytically 
tractable, individual-based model and quantitative comparisons to 
data. Am. Nat. 177:153–166.

Ernande, B. and U. Dieckmann. 2004. The evolution of phenotypic 
plasticity in spatially structured environments: implications of intra-
specific competition, plasticity costs and environmental characteris-
tics. J. Evol. Biol. 17:613–628.

Falster, D.S. and M. Westoby. 2003. Plant height and evolutionary 
games. Trends Ecol. Evol. 18:337–343.

Falster, D.S., Å. Brännström, U. Dieckmann and M. Westoby. 2011. 
Influence of four major plant traits on average height, leaf-area 
cover, net primary productivity, and biomass density in single-
species forests: a theoretical investigation. J. Ecol. 99:148–164.

Franklin, O. 2007. Optimal nitrogen allocation controls tree responses 
to elevated CO2. New Phytol. 174:811–822.

Franklin, O. and G.I. Ågren. 2002. Leaf senescence and resorption as 
mechanisms of maximizing photosynthetic production during can-
opy development at N limitation. Funct. Ecol. 16:727–733.

Franklin, O., R.E. McMurtrie, C.M. Iversen, K.Y. Crous, A.C. Finzi, D.T. 
Tissue, D.S. Ellsworth, R. Oren and R.J. Norby. 2009. Forest fine-
root production and nitrogen use under elevated CO2: contrasting 
responses in evergreen and deciduous trees explained by a com-
mon principle. Glob. Change Biol. 15:132–144.

Geritz, S.A.H., J.A.J. Metz, É. Kisdi and G. Meszéna. 1997. Dynamics of 
adaptation and evolutionary branching. Phys. Rev. Lett. 78:2024–2027.

Geritz, S.A.H., É. Kisdi, G. Meszéna and J.A.J. Metz. 1998. Evolutionarily 
singular strategies and the adaptive growth and branching of the 
evolutionary tree. Evol. Ecol. 12:35–57.

Gersani, M., J.S. Brown, E.E. O’Brien, G.M. Maina and Z. Abramsky. 
2001. Tragedy of the commons as a result of root competition. J. 
Ecol. 89:660–669.

Gower, S.T., S. Pongracic and J.J. Landsberg. 1996. A global trend in 
belowground carbon allocation: can we use the relationship at 
smaller scales? Ecology 77:1750–1755.

Grace, J.B. 1995. On the measurement of plant competition intensity. 
Ecology 76:305–308.

Harte, J. 2011. Maximum entropy and ecology: a theory of abundance, 
distribution, and energetics. Oxford University Press, Oxford.

Hastie, T., R. Tibshirani and J. Friedman. 2001. The elements of statistical 
learning. Data mining, inference, and prediction. Springer, New York.

Heino, M., J.A.J. Metz and V. Kaitala. 1998. The enigma of frequency-
dependent selection. Trends Ecol. Evol. 13:367–370.

Hobbs, N.T. and R. Hilborn. 2006. Alternatives to statistical hypothesis 
testing in ecology: a guide to self teaching. Ecol. Appl. 16:5–19.

Ise, T., C.M. Litton, C.P. Giardina and A. Ito. 2010. Comparison of mod-
eling approaches for carbon partitioning: impact on estimates of 
global net primary production and equilibrium biomass of woody 
vegetation from MODIS GPP. J. Geophys. Res. G Biogeosci. 115. 
G04025, doi:10.1029/2010JG001326.

Iversen, C.M., J. Ledford and R.J. Norby. 2008. CO2 enrichment 
increases carbon and nitrogen input from fine roots in a deciduous 
forest. New Phytol. 179:837–847.

Iwasa, Y. 1988. Free fitness that always increases in evolution. J. Theor. 
Biol. 135:265–281.

Jaynes, E.T. 1957. Information theory and statistical mechanics. Phys. 
Rev. 106:620–630.

Jung, M., G. Le Maire, S. Zaehle, S. Luyssaert, M. Vetter, G. Churkina, P. 
Ciais, N. Viovy and M. Reichstein. 2007. Assessing the ability of 
three land ecosystem models to simulate gross carbon uptake of 
forests from boreal to Mediterranean climate in Europe. Biogeosci. 
Discuss. 4:1353–1375.

King, D.A. 1990. The adaptive significance of tree height. Am. Nat. 
135:809–828.

King, D.A. 1993. A model analysis of the influence of root and foliage 
allocation on forest production and competition between trees. Tree 
Physiol. 12:119–135.

Kleidon, A., Y. Malhi and P.M.E. Cox. 2010. Maximum entropy produc-
tion in ecological and environmental systems: applications and 
implications. Philos. Trans. R. Soc. Lond. B Biol. Sci. (Theme Issue) 
365:1295–1455.

Kummel, M. and S.W. Salant. 2006. The economics of mutualisms: 
optimal utilization of mycorrhizal mutualistic partners by plants. 
Ecology 87:892–902.

662  Franklin et al.

 at A
ustralian N

ational U
niversity on A

ugust 8, 2012
http://treephys.oxfordjournals.org/

D
ow

nloaded from
 

http://treephys.oxfordjournals.org/


Tree Physiology Online at http://www.treephys.oxfordjournals.org

Lacointe, A. 2000. Carbon allocation among tree organs: a review of 
basic processes and representation in functional-structural tree 
models. Ann. For. Sci. 57:521–533.

Landsberg, J.J. 2003. Modelling forest ecosystems: state of the art, 
challenges, and future directions. Can. J. For. Res. 33:385–397.

Landsberg, J.J. and R.H. Waring. 1997. A generalised model of forest 
productivity using simplified concepts of radiation-use efficiency, 
carbon balance and partitioning. For. Ecol. Manag. 95:209–228.

Le Roux, X., A. Lacointe, A. Escobar-Gutiérrez and S. Le Dizès. 2001. 
Carbon-based models of individual tree growth: a critical appraisal. 
Ann. For. Sci. 58:469–506.

Litton, C.M., J.W. Raich and M.G. Ryan. 2007. Carbon allocation in for-
est ecosystems. Glob. Change Biol. 13:2089–2109.

Luyssaert, S., I. Inglima, M. Jung, et al. 2007. CO2 balance of boreal, 
temperate, and tropical forests derived from a global database. 
Glob. Change Biol. 13:2509–2537.

Mäkelä, A. 1985. Differential games in evolutionary theory: height 
growth strategies of trees. Theor. Popul. Biol. 27:239–267.

Mäkelä, A., H.T. Valentine and H.-S. Helmisaari. 2008. Optimal co-allo-
cation of carbon and nitrogen in a forest stand at steady state. New 
Phytol. 180:114–123.

Martyushev, L.M. and V.D. Seleznev. 2006. Maximum entropy produc-
tion principle in physics, chemistry and biology. Phys. Rep. 
426:1–45.

McCarthy, M.C. and B.J. Enquist. 2007. Consistency between an allo-
metric approach and optimal partitioning theory in global patterns of 
plant biomass allocation. Funct. Ecol. 21:713–720.

McGill, B.J. and J.S. Brown. 2007. Evolutionary game theory and adap-
tive dynamics of continuous traits. Annu. Rev. Ecol. Evol. Syst. 
38:403–435.

McMurtrie, R.E. and R.C. Dewar. 2011. Leaf-trait variation explained by 
the hypothesis that plants maximize their canopy carbon export 
over the lifespan of leaves. Tree Physiol. 31:1007–1023.

McMurtrie, R.E., R.J. Norby, B.E. Medlyn, R.C. Dewar, D.A. Pepper, P.B. 
Reich and C.V.M. Barton. 2008. Why is plant-growth response to 
elevated CO2 amplified when water is limiting, but reduced when 
nitrogen is limiting? A growth-optimisation hypothesis. Funct. Plant 
Biol. 35:521–534.

Meszéna, G., É. Kisdi, U. Dieckmann, S.A.H. Geritz and J.A.J. Metz. 
2001. Evolutionary optimisation models and matrix games in the 
unified perspective of adaptive dynamics. Selection 2:193–210.

Metz, J.A.J., S.A.H. Geritz, G. Meszéna, F.J.A. Jacobs and J.S. Van 
Heerwaarden. 1996. Adaptive dynamics, a geometrical study of 
the consequences of nearly faithful reproduction. In Stochastic 
and Spatial Structures of Dynamical Systems. Eds. S.J. Van Strien 
and S.M. Verduyn Lunel. North-Holland, Amsterdam, 
pp 183–231.

Montgomery, R.A., P.B. Reich and B.J. Palik. 2010. Untangling positive 
and negative biotic interactions: views from above and below ground 
in a forest ecosystem. Ecology 91:3641–3655.

O’Brien, E.E. and J.S. Brown. 2008. Games roots play: effects of soil 
volume and nutrients. J. Ecol. 96:438–446.

Ostle, N.J., P. Smith, R. Fisher, et al. 2009. Integrating plant-soil interac-
tions into global carbon cycle models. J. Ecol. 97:851–863.

Perrin, N. 1992. Optimal resource allocation and the marginal value of 
organs. Am. Nat. 139:1344–1369.

Pueyo, S., F. He and T. Zillio. 2007. The maximum entropy formalism 
and the idiosyncratic theory of biodiversity. Ecol. Lett. 
10:1017–1028.

Purves, D. and S. Pacala. 2008. Predictive models of forest dynamics. 
Science 320:1452–1453.

Reynolds, J.F. and J. Chen. 1996. Modelling whole-plant allocation in 
relation to carbon and nitrogen supply: coordination versus optimi-
zation: opinion. Plant Soil 185:65–74.

Scheiter, S. and S.I. Higgins. 2009. Impacts of climate change on the 
vegetation of Africa: an adaptive dynamic vegetation modelling 
approach. Glob. Change Biol. 15:2224–2246.

Schymanski, S.J. 2008. Optimality as a concept to understand and 
model vegetation at different scales. Geogr. Compass 
2:1580–1598.

Shinozaki, K.Y., K. Hozumi and T. Kira. 1964. A quantitative analysis of 
plant form—the pipe model theory. I. Basic analyses. Jpn. J. Ecol. 
14:97–104.

Simpson, E.H. 1951. The interpretation of interaction in contingency 
tables. J. R. Stat. Soc. B (Methodol.). 13:238–241.

Strigul, N., D. Pristinski, D. Purves, J. Dushoff and S. Pacala. 2008. 
Scaling from trees to forests: tractable macroscopic equations for 
forest dynamics. Ecol. Monogr. 78:523–545.

van Kuijk, M. and N.P.R. Anten. 2009. Whole-canopy nitrogen-use effi-
ciency of pioneer species in early secondary forest succession in 
Vietnam. Ecol. Res. 24:811–820.

Van Oijen, M., J. Rougier and R. Smith. 2005. Bayesian calibration of 
process-based forest models: bridging the gap between models 
and data. Tree Physiol. 25:915–927.

Vincent, T.L. and H.R. Pulliam. 1980. Evolution of life history strategies 
for an asexual annual plant model. Theor. Popul. Biol. 17:215–231.

West, G.B., B.J. Enquist and J.H. Brown. 2009. A general quantitative 
theory of forest structure and dynamics. Proc. Natl Acad. Sci. USA 
106:7040–7045.

Appendix A: Allocation model addressing the 
effect of root competition

This model is used to evaluate the effect of root competition 
for soil nitrogen (N) on the allocation to roots (fine roots), foli-
age and wood. No novel concepts or assumptions are used in 
the model; it is based on elements from the models by King 
(1993) and Franklin et  al. (2009). We adopt the common 
assumption in these models that the trees adjust allocation to 
maximize wood production (for trees with yet insignificant 
reproductive production). The representation of root competi-
tion is based on the model by King (1993) while the soil N 
uptake function and parameters are taken from Franklin et al. 
(2009). In order to focus on the effects of root competition 
and improve tractability, we use a simpler equation for carbon 
(C) assimilation than in the models by King (1993) and Franklin 
et al. (2009).

Nitrogen uptake by roots

Net N uptake (U, Eq. (A1)) is assumed to be a function of fine-
root production (R), half-saturation R (d, assumed proportional 
to soil depth, i.e., effective soil depth usable for root N uptake), 
N : C ratio of roots (cR) and soil N availability (Nav = N uptake 
per R at a small R; Franklin et al. 2009):

	 U
N R

R d
c R= + −av

R( / ) 1
� (A1)

R includes all C use by the roots (growth, respiration and exu-
dation). Competitive interaction as modeled in King (1993) 

Modeling carbon allocation in trees  663

 at A
ustralian N

ational U
niversity on A

ugust 8, 2012
http://treephys.oxfordjournals.org/

D
ow

nloaded from
 

http://treephys.oxfordjournals.org/


Tree Physiology Volume 32, 2012

implies that R of one focal individual (Ri) can change indepen-
dently of its competitors’ R (Ro). The mean R for a total of n 
competing individuals then becomes

	 R
n R R

n
= − +( )1 o i � (A2)

The N uptake of a focal individual under competition (Ui, Eq. 
(A3)) is given by inserting Eq. (A2) in Eq. (A1) and multiplying 
by the fraction root production of the focal individual relative to 
total root production:

	 U
N R

R n R nd
c Ri

av i

o i
R i= − + + −

(( ( ) ) / )1 1
� (A3)

We derived a measure of the intensity of root competition (RCI, 
Eq. (A4)) as the relative difference in marginal uptake per R 
between the competitive model (Eq. (A3)) and the non-com-
petitive model (Eq. (A1)) for U:

	 RCI
d d

d d
i i= ∂ ∂ −( / ) ( / )

( / )
U R U R

U R
� (A4)

Carbon assimilation by the canopy

Net canopy C uptake (NCP = canopy photosynthesis − canopy 
respiration, Eq. (A5)) is a function of effective C availability 
(Cav) and canopy N (Nc), which is proportional to both photo-
synthetic capacity and maintenance respiration (r Nc, Franklin 
et al. 2009):

	 NCP av c

c c
c= + −C N

N k
rN � (A5)

In Eq. (A5), kc is the half-saturation Nc of NCP. Cav does not corre-
spond to any particular CO2 concentration but represents the total 
effect of the different factors controlling C assimilation efficiency 
of the photosynthetic machinery (Nc), i.e., atmospheric [CO2], 
photosynthetically active radiation and stomatal conductance.

Carbon and nitrogen balance of growth

The carbon balance of the trees (Eq. (A5)) implies that the 
total C used for net wood growth (G), foliage turnover (Nc/
(tccc) and root production equals NCP:

	 G
N
t c

R
C N
N k

r N+ + = = + −c

c c

av c

c c
cNCP � (A6)

In Eq. (A6), tc is leaf lifespan.
The nitrogen balance of the trees is

	 G c
N
t

R c UG R+ + =c

c
� (A7)

In Eq. (A7), cG is the N : C ratio of wood.

Net wood growth (G) as a function of R, Nav and Cav is 
derived numerically by using Eqs (A6) and (A7) to eliminate Nc 
and solving for G. In this derivation, U is replaced by Eq. (A1) or 
Eq. (A3) to model G of non-competing roots G(R, Cav, Nav) or 
competing roots G(Ri, Ro, Cav, Nav), respectively.

Optimal allocation

Following King (1993) and Franklin et al. (2009), allocation is 
optimized to maximize G. In this model G is maximized by opti-
mization of root allocation (R), while allocation to wood (G) and 
foliage are functions of R. The optimal R with and without root 
competition is derived by numerically solving the below equa-
tions (Eqs. (A8) and (A9)) for R:

	 ∂
∂ = =G R R C N
R

R R
( , , , )

,i o av av

i
o i0 � (A8)

	 ∂
∂ =G R C N
R

( , , )av av 0 � (A9)

Equation (A8) means that the optimization (differentiation) of R 
for each tree is made individually, i.e., with respect to root pro-
duction of a focal tree (Ri) and not the competing trees (Ro). At 
the same time, all trees behave in the same way, i.e., Eq. (A8) 
is then solved for R = Ri = Ro.

Parameters

Parameter values (Table A1) are representative of the results in 
Franklin et  al. (2009), i.e., a young even-aged sweetgum 
forest.

Appendix B: Entropy production of a forest stand 
described by the King (1993) model

Entropy production (i.e., free energy dissipation) occurs within 
the steady-state subsystem enclosed by the dashed box in 
Figure B1, as high free energy chemical species (e.g., photo-
synthates) are converted to lower free energy forms (e.g., 
CO2). In the steady state, the rate of entropy production within 
the dashed box is equal to the rate of entropy export (σ, 
J K−1 m−2 year−1) across the boundary, given by, e.g., Dewar 
(2010):

	 σ = − − − +P R G L L
T

µ µ µ µP R W W f r L( ) � (B1)

where T (K) is the temperature, assumed uniform on the 
boundary (other symbols are defined in the legend of 
Figure  B1). In Eq. (B1) each boundary flux F contributes an 
entropy export equal to F multiplied by −μ/T, where F is defined 
as positive in the outward direction and μ is the chemical 
potential of the corresponding chemical species. Since foliage 
and fine roots are assumed to be in a steady state, we have 
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G G L Lf r f r+ = +  so that wood productivity is 
G G G L LW f r f rNPP NPP= − − = − − , where NPP is total dry 
matter productivity. Also if we assume a fixed carbon-use effi-
ciency β , then P = NPP / β  and R = −NPP ( ) /1 β β. 
Substituting these expressions into Eq. (B1) then gives

	 T L Lσ = − − −







− + −NPP P R
W f r L W

µ β µ
β µ µ µ( )

( )( )
1

�(B2)

If we now make the simplifying assumption that all chemical 
potentials and the temperature T are constant in time, then Eq. 
(B2) implies

	 σ ∝ − +NPP f rλ( )L L � (B3)

where

	 λ β µ µ
µ β µ βµ= −

− − −
( )

( )
L W

P R W1 � (B4)

is a dimensionless constant. Note that shifting each µi  by a 
constant amount in Eq. (B1) does not affect σ in the steady 
state, since P R G L L− − − − =W f r 0. Therefore, we can 
rewrite Eq. (B4) more simply as

	 λ β µ µ
µ βµ= −

−
( )L W

P W
� (B5)

where the chemical potentials are now measured relative to μR.
The value of λ is a dimensionless constant that depends on 

the chemical potentials (Gibbs free energy, J kg−1) of foliage 
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Table A1. ​ Symbols and parameters.

Symbol Value Unit Description

Variables

Cav g C m−2 year−1 Effective C availability, equal to NCP at saturating Nc

G g C m−2 year−1 Net wood production
Nav g N gC−1 year−1 Soil N availability, defined as N uptake per R for small R
Nc g N m−2 Canopy N
NCP g C m−2 year−1 Net canopy C uptake
R, Ri, Ro g C m−2 year−1 Fine-root production of a mean tree, a focal tree among competitors 

and competitors, respectively
RCI – Relative competition intensity
U, Ui g N m−2 year−1 N uptake of a mean tree and a focal tree among competitors, 

respectively
Parameters
cc, cG, cR 0.03, 0.003, 0.02 g N g C−1 N : C ratio of foliage, wood and fine roots, respectively
D 450, 100 g C m−2 year−1 Half saturation R as observed in Franklin et al. (2009) and for a 

smaller soil depth, respectively
kc 4 g N m−2 Half saturation canopy N
N 5 – Number of trees competing for soil N
R 30 g C g 

N−1 year−1
Respiration rate per N

tc, tr 1, 1 Y Lifespan of foliage and fine roots, respectively

Figure B1.  Entropy balance of a forest stand in which photosyn-
thates, foliage and fine root dry matter are in a steady state, as 
assumed in King (1993). The dashed box indicates the steady-state 
subsystem. P, gross canopy photosynthesis; R, respiration for plant 
maintenance and dry matter growth (including wood); Gi, dry matter 
production of compartment i; Li, litter production of compartment i. 
Following King (1993), all fluxes are in kg DM m–2 year–1 (DM = dry 
matter equivalent). For boundary fluxes, the associated chemical 
potentials (μi, J kg–1) are indicated in parentheses: μP (leaf photo-
synthate), μW (photosynthate at sites of wood growth), μR (respired 
CO2), μL (foliage and fine root dry matter). Entropy production (i.e. 
free energy dissipation) occurs as high free energy chemical spe-
cies (e.g. photosynthates) are converted to lower free energy forms 
(e.g. CO2). The rate of entropy production within the dashed box 
(equal to the rate of entropy export across the boundary) is given 
by Eq. B1; each outward-directed boundary flux F contributes a term 
F ∙ (−μ/T) where T is temperature.
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and fine-root litter (μL), of leaf (source) photosynthate (μP) and 
of photosynthate near the (sink) sites of wood growth (μW). μW 
here is the chemical potential of sink photosynthate rather than 
of newly synthesized wood biomass, because in Figure B1 it 
corresponds to matter that is physically transported across the 
system boundary (i.e., photosynthate) rather than to wood bio-
mass at the sites of wood production. The latter sites lie just 
outside the system boundary because wood biomass is not 
assumed to be in a steady state.

For λ = 0 and λ = 1, σ is proportional to NPP and 
NPP f r− −L L  = GW, respectively; for these two cases, therefore, 
MEP is equivalent to maximizing total productivity (NPP) and 
wood productivity (GW), since foliage and fine-root dry matter are 
assumed to be in a steady state so that Lf + Lr balances foliage 
and fine-root productivity. Thus, over the range 0 < λ < 1, MEP 

predicts optimal behavior that is intermediate between max-NPP 
and max-GW, as illustrated in Figure 7 for the King (1993) model.

Which values of λ are realistic? In general, we expect that 
μP > μW since the concentration (and hence free energy con-
tent) of photosynthate is greater in source tissues (foliage) 
than in sink tissues (wood). We also expect that μL > μP (i.e., 
foliage and fine-root dry matter has higher free energy than 
photosynthate) because dry matter production is an active 
process driven by the free energy generated by plant respira-
tion. Therefore, μL > μW and also μP > βμW (since β < 1), and so 
from Eq. (B5), λ > 0. The case λ = 0 (maximization of NPP) is 
thereby excluded because this would correspond to μL = μW. 
From Eq. (B5), the case λ = 1 (maximization of GW) corre-
sponds to the condition μL = μP/β, which certainly satisfies the 
inequality μL > μP; therefore, max-GW is consistent with MEP.
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