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Large sampling intervals can affect reconstruction of Kramers–Moyal coefficients from data. A new
method, which is direct, non-stochastic and exact up to numerical accuracy, is developed to estimate
these finite time effects. The method is applied numerically to biologically inspired examples. Exact finite
time effects are also described analytically for two special cases. The approach developed will permit
better evaluation of Langevin or Fokker–Planck based models from data with large sampling intervals. It
can also be used to predict the sampling intervals for which finite time effects become significant.
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1. Introduction

Characterisation of a stochastic process X(t) by computing the
Kramers–Moyal coefficients

D(n)(x0, t) = lim
τ→0

1

n!τ
〈[

x(t + τ ) − x0
]n∣∣x(t) = x0

〉
. (1)

from time series data has been recently proposed and devel-
oped [1]. The first two Kramers–Moyal coefficients are known
as the drift and diffusion coefficients, respectively. They provide
an intuitive description of the process, being analogous to effec-
tive position-dependent force and noise, or ‘temperature’, respec-
tively [2]. If the process can be generated by a Langevin (or equiv-
alently, Fokker–Planck) equation, they provide a complete char-
acterisation; furthermore, all higher coefficients will be zero [3].
Unlike many other methods of time series analysis, the Kramers–
Moyal approach recovers coefficients with arbitrary nonlinearity,
up to the resolution of the bin size chosen in the reconstruc-
tion.

The Kramers–Moyal approach has previously been applied to
neuroscience [1], cardiology [4], traffic engineering [2], finance
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[5,6] and turbulence [7]. These applications frequently assume ho-
mogeneity, in the sense that the Kramers–Moyal coefficients are
time-invariant, so that the ensemble average in Eq. (1) can be
replaced by a time average. Homogeneity will also be assumed
throughout this article.

The definition (1) requires an infinitesimally small τ , but the
smallest τ available in an experiment is the sampling interval.
If the sampling interval is not ‘small enough’, estimates of the
Kramers–Moyal coefficients with this finite sampling interval may
not be accurate. (Sometimes, even if shorter sampling intervals
are available their use may not be desirable as they may uncover
short-time correlations and other dynamics [8].) These finite sam-
pling interval effects may be abbreviated to ‘finite time effects’
throughout this Letter.

Renner et al. [8] numerically investigated this dependence of
the Kramers–Moyal coefficients on the sampling interval, Gradišek
et al. [9] presented analytical expressions, and Sura and Barsugli
[10] approximated error terms, but Ragwitz and Kantz [11] were
the first to correct for finite sampling interval. To do so they cal-
culated a partial [12] expansion of the Kramers–Moyal coefficients
to first order in the sampling interval (second order in the condi-
tional moments). An exchange with Friedrich et al. ensued [12,13],
with Friedrich et al. providing an infinite series expansion for the
finite time correction.
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Fig. 1. Schematic of the biologically-inspired examples used in this Letter: (a) free
diffusion on a sphere, or ‘tethered diffusion’; (b) biased diffusion on a sphere; and
(c) compound diffusion on a sphere.

These investigations focused on correcting experimentally es-
timated Kramers–Moyal coefficients for finite time effects. Exper-
imental results and theoretical models could also be compared
by introducing finite time effects into the theoretically predicted
Kramers–Moyal coefficients. A trivial way of doing so is directly
simulating the corresponding Langevin equations with a small
time step, then undersampling to calculate the finite time coef-
ficients. Kleinhans et al. [14,15] used such an approach combined
with optimisation procedures to estimate model parameters. Such
a method is computationally intensive, requiring an average over
many stochastic trajectories.

This Letter presents a new method of predicting finite sampling
interval effects on Kramers–Moyal coefficients. It is both exact (up
to numerical accuracy), unlike the first set of approaches above,
and non-stochastic, unlike those of Kleinhans et al. By correcting
the theoretical predictions for finite time effects, like Kleinhans et
al., the method allows for the comparison of theoretical predictions
and experimental data.

The rapidly growing collections of data available with recent
advances in quantitative biology beckons use of Kramers–Moyal
analysis, for biological systems are often well-modelled by an over-
damped and Brownian environment. For example, one phase in the
‘walking’ of naturally occurring molecular motors such as myosin-V
and kinesin is believed to be a tethered diffusion state, where one
‘head’ of the bipedal motor is unbound and searching for the next
binding site [16–18]. This system will be used to illustrate the re-
sults and procedures obtained in this Letter. The unbound head
can be modelled as undergoing diffusion on a sphere with cen-
tre on the neck juncture and with radius equal to the length of
the tether. This case will be referred to as ‘free diffusion on a
sphere’. However, the neck juncture itself is not fixed, for its tether
is flexible about its preferred orientation [19]. The motion of the
juncture will be modelled as diffusion on a sphere with a po-
tential: ‘biased diffusion on a sphere’. Combining these models, a
more precise treatment of the unbound head would have it un-
dergoing free diffusion on a sphere about a point which is itself
undergoing biased diffusion on a sphere: ‘compound diffusion’. In
all cases it is assumed the experiment can only measure in one
linear dimension, inclined at angle θ0 from the direction of the
potential minimum (where there is a potential). These models are
summarised in Fig. 1.

In Section 2 Friedrich et al.’s infinite series formula is reviewed,
which then leads to the main result of this Letter. Section 3 cal-
culates the finite time effects for analytical special cases, while
Section 4 provides numerical examples. These examples are chosen
for their relevance to possible biophysical uses of Kramers–Moyal
analysis. Points of a general nature are made in Section 5, and con-
cluding remarks in Section 6.

2. Derivation

Assume that the transition probability density P (x, t|x′, t) of a
stochastic process x(t) obeys a Fokker–Planck equation,

∂ P (x, t|x′, t′)
∂t

= L̂(x)P (x, t|x′, t′), (2)

where the Fokker–Planck operator is

L̂(x) = − ∂

∂x
D(1)(x) + ∂2

∂x2
D(2)(x).

Denote the Kramers–Moyal coefficients (1) calculated with fi-
nite sampling interval τ from this process by

D(n)
τ (x0) ≡ 1

n!τ
〈[

x(t + τ ) − x0
]n∣∣x(t) = x0

〉
. (3)

This can also be written as

D(n)
τ (x0) ≡ 1

n!τ
∞∫

−∞
(x − x0)

n P (x, t0 + τ |x0, t0)dx, (4)

which since homogeneity is assumed is independent of t0. Substi-
tuting the formal solution to the Fokker–Planck equation (2)

P (x, t + τ |x0, t) = eL̂(x)τ δ(x − x0),

results in

D(n)
τ (x0) = 1

n!τ
∞∫

−∞
(x − x0)

neL̂(x)τ δ(x − x0)dx (5)

= 1

n!τ eL̂†(x)τ (x − x0)
n
∣∣
x=x0

. (6)

Here

L̂†(x) = D(1)(x)
∂

∂x
+ D(2) ∂2

∂x2

is the adjoint of the operator L̂ over the inner product (g,h) =∫ ∞
−∞ g(x)h(x)dx. Friedrich et al. [12] expand the symbolic ex-

ponential and obtain the finite-order correction of Ragwitz and
Kantz [11].

Eq. (6) has an alternative interpretation, by a route Zwanzig [20]
calls the ‘Heisenberg approach’ in analogy to the complementary
formulations of quantum mechanics. This interpretation is that the
solution of the partial differential equation

∂W (x, t)

∂t
= L†(x)W (x, t) (7)

at (x0, τ ), with initial condition W (x,0) = (x − x0)
n , gives D(n)

τ (x0)

(up to a factor n!τ ). Eq. (7) will be referred to as the adjoint
Fokker–Planck equation; note it is different to, and should not be
confused with, the Kolmogorov backward equation [3].

Therefore, knowing the continuous-time D(1)(x) and D(2)(x),
the effect of finite sampling interval can be predicted exactly (up
to numerical accuracy) without direct simulation of the Langevin
equations. This is the main result of this article.

To reiterate, the procedure proposed for predicting the effects
of a finite sampling interval τ is to:

(i) Predict the continuous-time Kramers–Moyal coefficients D(n)(x)
analytically or numerically, from a theoretical model;
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(ii) Solve Eq. (7) with initial condition W (x,0) = (x − x0)
n up to

time t = τ ;
(iii) Report W (x0, τ )/n!τ as the solution for D(n)

τ (x0);
(iv) Repeat steps (ii) and (iii) for all the required points x0 in the

domain of D(n)
τ (x0); then

(v) Repeat steps (ii)–(iv) for all the required orders n of the
Kramers–Moyal coefficients (usually n = 1 and 2 for the drift
and diffusion coefficients, respectively).

One other obvious non-stochastic approach is to compute
Eq. (5) by solving the Fokker–Planck equation (2), but this in-
volves a Dirac-delta initial condition. For some special cases, this
initial condition could be treated analytically. Indeed, this is the
method by which Ragwitz and Kantz [11] obtained their approx-
imate corrections. In general, however, where numerical methods
are required, the Dirac-delta initial condition would present signif-
icant difficulties.

3. Analytic special cases

In some cases the adjoint Fokker–Planck equation (7) can be
solved analytically. One of the simplest scenarios is a linear drift
D(1)(x) = −kx, corresponding to a quadratic potential well, and
a constant diffusion D(2)(x) = D . This is the Ornstein–Uhlenbeck
process in one dimension [3]. With initial condition W (x,0) =
x − x0, the solution is W (x, τ ) = xe−kτ − x0, so the finite time drift
coefficient measured at finite sampling interval τ is

D(1)
τ (x) = − x

τ

(
1 − e−kτ )

. (8)

With initial condition W (x,0) = (x−x0)
2, the solution is W (x, τ ) =

(xe−kτ − x0)
2 + D

k (1 − e2kτ ). Therefore the finite time diffusion co-
efficient is

D(2)
τ (x) = 1

2τ

[
x2(1 − e−kτ )2 + D

k

(
1 − e−2kτ )]

. (9)

These solutions can also be obtained by substituting the transition
probability density for the Ornstein–Uhlenbeck process, which is
known in closed form [3], directly into Eq. (4).

As τ increases, the finite time drift coefficient for the 1-D
Ornstein–Uhlenbeck process remains linear but decreases in gra-
dient, while a quadratic component appears in the diffusion. This
causes the diffusion estimate to be larger at the edges of a po-
tential well than at the centre, as also noted and discussed by
Ragwitz and Kantz [11]. Gottschall and Peinke [21] recently ob-
tained expansions of Eqs. (8) and (9) to first order in sampling
interval, observing the same quadratic component in the diffusion.

Free diffusion on the surface of a sphere of radius r, as sketched
in Fig. 1(a), can be represented in polar co-ordinates (θ,φ) by the
Langevin equations [22]

dθ = D cot θ dt + √
2D dwθ ,

dφ =
√

2D

sin θ
dwφ,

written in the Itō convention. Projected onto a rectangular co-
ordinate x = r cos θ , these reduce to the Langevin equation [23]

dx = −2Dx dt −
√

2D
(
r2 − x2

)
dw, (10)

corresponding to drift and diffusion coefficients D(1)(x) = −2Dx
and D(2)(x) = D(r2 − x2). With initial condition W (x,0) = x − x0,
the solution to the adjoint Fokker–Planck equation (7) is W (x, τ ) =
xe−2Dτ − x0, so the finite time drift coefficient is

D(1)
τ (x) = − x (

1 − e−2Dτ
)
. (11)
τ

With initial condition W (x,0) = (x−x0)
2, the solution is W (x, τ ) =

x2e−6Dτ − 2x0xe−2Dτ + x2
0 − r2(e−6Dτ − 1)/3. Therefore the finite

time diffusion coefficient is

D(2)
τ (x) = 1

2τ

[
x2(1 + e−6Dτ − 2e−2Dτ

) + r2

3

(
1 − e−6Dτ

)]
. (12)

For free diffusion on a sphere, the gradient of the drift coef-
ficient (11) again simply decreases with τ . Notice that the diffu-
sion (12), however, undergoes a much more qualitatively signifi-
cant change: it changes from convex to concave as τ increases.
This change occurs at τ = ln(1/2 + √

5/2)/2D ≈ 1/4D .
As a general rule of thumb, if the sampling interval is of order

1/k (for Ornstein–Uhlenbeck) or 1/4D (free diffusion on a sphere),
or larger, one should be concerned about finite sampling interval
effects. Also, a concave diffusion is an indicator there may be finite
time effects.

In both examples the original D(1) and D(2) are recovered in
the limit τ → 0.

4. Numerics

In general, to obtain the finite time Kramers–Moyal coefficients
the solutions to Eq. (7) must be computed numerically. Two exam-
ples of such computations follow, using the procedure outlined in
Section 2.

Biased diffusion on a sphere [Fig. 1(b)] can be modelled by the
Langevin equations, in polar co-ordinates (θ,φ), by [22]

dθ = (−∂θ U + D cot θ)dt + √
2D dwθ ,

dφ = − ∂φU

sin2 θ
dt +

√
2D

sin θ
dwφ. (13)

A harmonic potential U = kθ2/2 will be used; for k = 0 the
free diffusion on a sphere of the previous section is recovered.
The system was projected onto one-dimensional (continuous-time)
Kramers–Moyal coefficients by the method of Lade [23]. This di-
mension was the rectangular co-ordinate at angle θ0 from the
preferred angle of orientation (θ = 0), that is, x = cos θ0 cos θ +
sin θ0 sin θ cosφ.

The finite time D(1)
τ (x) and D(2)

τ (x) were then estimated for
a variety of τ with the procedure outlined in Section 2. The ad-
joint Fokker–Planck equation was numerically solved with a sim-
ple forward-time centred-space scheme and extrapolated bound-
ary conditions. For comparison, the drift and diffusion coefficients
were also computed, as per Eq. (3), from direct simulation of the
Langevin equations (13). The results are shown in Fig. 2.

The same decrease in gradient of the drift as in the Ornstein–
Uhlenbeck process occurs. Since the drift is roughly displacement
divided by sampling interval τ , and since the displacement of the
projection x between measurements is limited (by the radius of
the sphere), it makes sense that the estimated drift decreases with
increasing τ . Unlike the Ornstein–Uhlenbeck process, there is some
curvature due to geometrical effects. The zero crossing point re-
flects the position of the potential minimum at x = cos θ0. The
diffusion undergoes a loss of features and convergence to an up-
right quadratic shape as in the Ornstein–Uhlenbeck process. As ob-
served by Ragwitz and Kantz [11], this shape is because at large τ ,
nonzero drift can lead to overestimation of diffusion, and the drift
is larger at large position x. In both drift and diffusion curves, there
are errors in the direct numerical estimates due to the singularities
in the Langevin equation (13) at θ = 0 and π .

As a second example, compound diffusion on a sphere [Fig. 1(c)]
was simulated, where a point undergoes free diffusion on a sphere
(10) with respect to a point that is itself undergoing biased diffu-
sion on a sphere (13). Results are in Fig. 3.
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Fig. 2. Finite time (top) drift and (bottom) diffusion coefficients for biased diffusion
on a sphere, predicted semi-analytically from the method of Section 2 (solid lines)
and by direct numerical simulation (markers). The parameters were k = 1, θ0 = π/4,
D = 1 and sampling interval τ → 0 (circles), τ = 1 (triangles) and τ = 5 (squares).
The direct numerical results were not plotted where there were insufficient data.

Here some interesting geometric effects [23] in the continuous-
time (τ → 0) drift and diffusion coefficients are present but
which become ‘washed out’ once again to linear drift and upright
quadratic diffusion for large τ .

5. Discussion

The characteristic quadratic shape obtained in Section 3 for the
diffusion coefficient at large sampling intervals is clearly observ-
able in Farahpour et al. [24] and Ghasemi et al. [6], and was used
by them in fitting the results of their analyses. If one assumes
their process was actually Ornstein–Uhlenbeck, using their sam-
pling intervals and the analytic solutions (8)–(9) one can solve for
k and D in each case, and find a good match with their numer-
ical drift and diffusion curves. Note that, given τ , this problem
is overdetermined: the functional forms leave three simultaneous
equations from which to determine k and D . Thus the processes
investigated by those authors (specifically, the logarithmic incre-
ments) are well modelled in continuous time by the above simple
Ornstein–Uhlenbeck process.

The drift and diffusion coefficients observed in some cascade
analyses of time series [5,25,26] also display patterns similar to the
above, with the scale size standing in for sampling interval. For Ja-
fari et al. [26] the trends match almost exactly with k = 0.0055,
D = 2.9 × 10−4 and τ = �x/8 with length scale �x given as in
the legends to their Fig. 2. For Kimiagar et al. [25] the direc-
tions of the trends do not match as precisely, while Friedrich et
al. [5] only graph for one τ . In these two cases the finite time drift
and diffusion coefficients seem to match those expected for the
Ornstein–Uhlenbeck model above, but there is no explicable map-
ping from length scale �x onto τ .
Fig. 3. Finite time (top) drift and (bottom) diffusion coefficients for compound dif-
fusion on a sphere, predicted semi-analytically from the method of Section 2 (solid
lines) and by direct numerical simulation (markers). The parameters were k = 1,
θ0 = π/4 (for the biased diffusion), D = 1 (for both parts of the compound) and
sampling interval τ → 0 (circles), τ = 1 (triangles) and τ = 5 (squares). The direct
numerical results were not plotted where there were insufficient data.

Several of these authors [6,25,26] then perform Langevin simu-
lations with their numerical drift and diffusion coefficients, which
have been shown above to be suffering from finite time effects. But
in all cases they observe excellent agreement with the reference
time series. We claim this is because the finite time drift and dif-
fusion coefficients in general provide for better simulation of the
time series if the same time step as the original sampling interval is
used, a subtlety these authors overlook. For example, in the sim-
ple Euler–Maryuama [27] algorithm, D(1)

τ by construction provides
an unbiased estimate for x(t + τ ) from x(t).

It was assumed that the evolution of the time series can be
fully described by the Fokker–Planck equation (2) and the drift
and diffusion coefficients. This is valid if the process is Markovian.
Projections of a larger-dimensional system, such as those used in
Section 4, are in general not Markov, even when the original sys-
tem is [20]. However, it has been shown that the projections of
Section 4 are approximately Markov [23], and the excellent agree-
ment with direct numerical simulations in that section confirms
that the method worked successfully. Also, the method could easily
be extended to other evolution operators L̂ than the Fokker–Planck
operator, in the event that this operator is not appropriate.

The numerical method outlined above, preferably with more
sophisticated methods of numerical solution, could be inverted it-
eratively to find theoretical model parameters from experimentally
measured finite time coefficients, as in the stochastic approach of
Kleinhans et al. [14,15].

Given a known model for a system, the approach proposed
in this Letter can be used to predict the effect of finite exper-
imental sampling intervals on the estimation of Kramers–Moyal
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coefficients, without direct simulation of the stochastic Langevin
equations. Experimental observations of the Kramers–Moyal coeffi-
cients could then be used to support or reject the model.

Given a time series, a quick test to see whether finite time ef-
fects may occur could be to check whether the sampling interval
approaches any characteristic periods of the system. This would oc-
cur if the differences in the time series over a single time step are
‘large’ compared to the full extent of the time series’ fluctuations.
To check whether the Kramers–Moyal coefficients change with an
undersampling is another simple test.

6. Conclusions

An alternative interpretation of an existing formula (6) was
proposed, which permits exact, non-stochastic prediction of finite
sampling interval effects on the estimation of Kramers–Moyal co-
efficients. Special analytical cases were presented, which showed
general features of finite sampling interval effects. The approach
was then implemented numerically, for examples of particular rel-
evance to biophysics. The results were in good agreement with
direct stochastic simulation. Previously published Kramers–Moyal
analyses showed features possibly explicable as finite time effects,
in particular, concave diffusion curves. The method proposed may
permit better evaluation of Langevin or Fokker–Planck based mod-
els with data that has large sampling intervals, or to predict the
sampling intervals for which finite time effects should become sig-
nificant.
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