
Profiling Methodology and Performance Tuning of the Met Office Unified Model for
Weather and Climate Simulations

Peter E. Strazdins�, Margaret Kahn�, Joerg Henrichs�, Tim Pugh�, Mike Rezny�

� School of Computer Science, The Australian National University,
Email: Peter.Strazdins@cs.anu.edu.au
� NCI National Facility, Australia,
Email: Margaret.Kahn@anu.edu.au

� Oracle,
Email: joerg.henrichs@oracle.com
� Bureau of Meteorology, Australia

Email: T.Pugh@bom.gov.au
� Monash Weather and Climate, Monash University,

Email: Michael.Rezny@monash.edu

Abstract—Global weather and climate modelling is a
compute-intensive task that is mission-critical to government
departments concerned with meteorology and climate change.
The dominant component of these models is a global atmo-
sphere model. One such model, the Met Office Unified Model
(MetUM), is widely used in both Europe and Australia for this
purpose.

This paper describes our experiences in developing an
efficient profiling methodology and scalability analysis of the
MetUM version 7.5 at both low scale and high scale atmosphere
grid resolutions. Variability within the execution of the MetUM
and variability of the run-time of identical jobs on a highly
shared cluster are taken into account. The methodology uses
a lightweight profiler internal to the MetUM which we have
enhanced to have minimal overhead and enables accurate
profiling with only a relatively modest usage of processor time.

At high-scale resolution, the MetUM scaled to core counts
of 2048, with load imbalance accounting a significant fraction
the loss from ideal performance. Recent patches have removed
two relatively small sources of inefficiency.

Internal segment size parameters gave a modest performance
improvement at low-scale resolution (such as are used in
climate simulation); this however was not significant a higher
scales. Near-square process grid configurations tended to give
the best performance. Byte-swapping optimizations vastly im-
proved I/O performance, which has in turn a large impact on
performance in operational runs.

Keywords-weather prediction, climate modelling, parallel
computing, performance analysis, high performance comput-
ing.

I. INTRODUCTION

The Met Office Unified Model (MetUM, hereafter referred

to as simply ‘UM’) [1] is a global atmospheric model

developed by the UK Met Office (MetO), which has been

in operational use since the early 1990s. Its name signifies

that it can be used for both weather and climate prediction.

As well as in the UK, the UM is used for both of these

purposes in South Korea, India, South Africa, and New

Zealand; recently it has also been adopted by the Bureau

of Meteorology (BoM) in Australia [2].

When configured for modelling the whole earth’s atmo-

sphere, the UM models the atmosphere using a rectangular

grid with variable distance between grid points to account

for the curvature of the earth. The N512L70 grid has

���� � ��� � �� grid points in the east-west, north-south

and vertical dimensions, respectively. This grid and the

N320L70 (��� � �	� � ��) are typically used for weather

prediction; smaller grids such as the N96L38 (������
��)

are used for climate prediction. In general, the doubling

of the horizontal resolution has an 8-fold effect on the

computational work. This is because the timestep also may

need to be halved, as a restriction of the model is that mass

may not be transported (e.g. through advection) across more

than one grid point upon each simulated timestep.

For current operational use in weather prediction, the

BoM uses UM codes (version 6.4) on a global earth grid

at a resolution of N144L50. For 2011, it is desired to use

at first an N320L70 grid and by later an N512L70 grid for

greater accuracy (forecast ‘skill’) [3]; 24 hours of model

simulation time in 500 seconds using fewer than 1000 cores

on an Intel/Infiniband cluster or less is the operational target.

Such a short run time is required for timely delivery of

forecasts and ’ensemble’ simulations. Ensemble simulations,

where for example 24 simulations, each with their input data

perturbed, are performed to generate a representative sample

of the possible future atmospheric states for probability as-

sessment. It should be noted that the operational simulation

time for weather prediction is typically 10 days; a 24 hour

target is deemed sufficient to project to this time. The version

of UM to be used is 7.5 (released by the UK Met Office

in April 2010) [4], which contains the first implementation

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.283

1321

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.283

1317

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.283

1317

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.283

1317

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.283

1317

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.283

1322

2011 IEEE International Parallel & Distributed Processing Symposium

1530-2075/11 $26.00 © 2011 IEEE

DOI 10.1109/IPDPS.2011.283

1322

of multi-threaded MPI code [5] and is optimized for IBM

Power processors.

The Australian Community Climate and Earth System

Simulation (ACCESS) project [6] is a joint venture between

CSIRO, BoM and five Australian Universities. The project

is founded on the principle that, by using a common model

infrastructure, larger climate science questions can be tack-

led by the national community. ACCESS is scheduled to

contribute to the fifth Intergovernmental Panel on Climate

Change in 2011. Here an N96L38 grid is typically used,

with the computationally dominant component UM being

coupled to ocean, land surface and sea ice models. The target

core count is 96 for the UM, and 25 cores for the other

models. Next generation short-term UK climate models are

scheduled to use an N216L85 grid, projected to scale up to

an N320L70 grid in 2012 [7].

Thus, large amounts of supercomputer time in sites across

Australia and beyond will soon be committed to running the

UM. Without an understanding of its performance, users are

likely to run the code on ‘out-of-the-box’ configurations,

potentially making poor use of available resources.

This paper reports our experiences in profiling and tuning

UM 7.5 code performance at the N96L38, N320L70 and

N512L70 grid resolutions, with the motivation of under-

standing and improving performance in order to meet the

above targets. We used the vayu cluster at the National

Computing Infrastructure (NCI) National Facility [8], which

is an Intel/Infiniband cluster.

This paper is organized as follows. Section II describes

the Unified Model and its code structure. It also describes its

internal timer module, which becomes an important tool in

our performance evaluation methodology. Section III gives

relevant details of the vayu cluster, and the constraints we
have for this project on its usage. Section IV describes our

preliminary experiences in performance analysis of the UM

on the vayu cluster. From a clearer understanding of the

properties and limitations of both, a performance evaluation

methodology is proposed in Section V. Results involving a

scaling analysis are given in Section VI and those involving

parameter tuning are given in Section VII. Related work is

discussed in Section VIII, with concluding remarks from our

experiences being given in Section IX.

II. THE UNIFIED MODEL

Part of the Unified Model’s widespread appeal is its

flexibility, allowing it to be used for both weather and

climate prediction (short and long timescales). It can be

configured to run over regional and global models, and can

be coupled with ocean and other earth system models [9].

A UM benchmark is configured using the Unified Model

User Interface (UMUI). This produces a directory containing

the source code and data files. According to the config-

uration, compilation is conditional (using cpp directives).
Preprocessing is used to select at compile time one from

Figure 1. Surface temperature input data of the model (date 27/05/10)

a number of different algorithms for major sections of the

model, and to select architectural parameters (e.g. little vs.

big-endian). Once built, it is difficult to run the executable

for input data substantially different (e.g. a different grid

resolution) than what it was configured for.

Like other atmospheric models, many of the components

of UM are highly data-dependent; thus, any benchmark must

use realistic atmospheric data.

For global atmosphere simulation, the main input data file

is a ‘dump file’ containing a snapshot of all the atmospheric

state. Figure 1 gives the surface temperature from the input

data file used for the N320L70 grid; this file is approximately

1.5 GB in size. When used in production, the models dump

statistics on the atmosphere’s state over the simulation; this

is handled by Spatial and Temporal Averaging and Storage

Handling (STASH) sub-system. Other input files include

configurations for the STASH, specification of the short-

wave and long-wave radiation parameters, and namelist files

for configuring other aspects of the simulation (these last

have approximately one thousand parameters).

When running on a grid of � � � distributed memory

processors, the horizontal dimensions of the grid are divided

evenly over the processor grid. As well as its own block

column of points, each processor will also have a ‘halo’ of

surrounding grid points.

A. UM Code Structure

The UM 7.5 codes consist of approximately 900,000 lines

of Fortran 90 source code. Reflecting the long evolution

of the model, predominately Fortran 77 features are used.

The code is pre-processed via cpp; this is mainly used for
code declarations which are often repeated, such as common

block declarations and ‘standard’ sub-lists of parameter

names used for subroutine calls.

1322131813181318131813231323

The top-level control routine for the model is called

um_shell() [9]. This initializes the parameters used for
the simulations (namelist files initializing common blocks

and environment variables). The main simulation routine,

u_model() is then called. This allocates the major arrays,
and reads in the data files. It then iterates over the required

timesteps, controlling I/O and transfer of data to model

couplers (if required). At each iteration, the atm_step()
routine is called, which undertakes the simulation of the

atmosphere (both dynamics and physics) over a single

timestep.

For large grids, the computationally dominant part of this

process is applying a solver to the Helmholtz pressure-

temperature equation for acoustic wave dynamics: this is

performed using a Generalized Conjugate Residual (GCR)

iterative solver on a tridiagonal ‘linear system’. This system

is essentially that of the vertical dimension, but replicated

across all horizontal mesh points.

The dominant communication patterns in this part of the

computation are collective communications (row, column

and global), principally barriers and reductions. Other parts

have these and also a significant amount of point-to-point

communication from the eight neighboring horizontal points

(NS, EW and diagonals); these form the so-called ‘halo

exchanges’.

B. Internal Profiler

UM includes a profiling module which may be activated

through namelist configuration [4]. It times parts of the ma-

jor sub-routines computation using high-resolution wallclock

and CPU timer functions. As well as recording the time

for a whole subroutine (called an ‘inclusive timer’), it also

measures parts of the subroutine excluding the calls that it

makes which are also timed (called a ‘non-inclusive’ timer).

u_model() is the top-level non-inclusive timer; the sum
of all non-inclusive timers thus gives the time of the call to

u_model(), which is effectively the total execution time
for the simulation. Approximately one hundred of each kind

of timer are profiled. For the timers that are called globally,

all processors are synchronized at the start of a timer call.

As well as giving time totals for each such timer (sub-

routine), it also records the number of calls made. Statis-

tics of the time totals across all processing elements are

also gathered; these include the mean, median, maximum

and minimum times across each process (PE). A ‘parallel

speedup’ for each subroutine is also provided; this is defined

to be the total CPU time divided by the maximum wall time1.

The output is sorted in terms of wallclock times.

Figure 2 indicates these statistics for a 9 timestep UM

simulation on an N512L70 grid; the read_dump() sub-
routine, which reads the dump file, is called only once; most

1This is not meaningful on systems where MPI wait time is included in
the CPU time, such as vayu.

others are called 9 times. It can be seen that execution time

is dominated by the Helmholtz solver.

An estimate of load imbalance can be obtained from

the differences between the maximum and average of each

timer across all processors. This will be an underestimate

in the sense that the waiting time in communication due

to load imbalance within a function will not be included;

nonetheless, it still provides a useful lower bound.

The overhead of the timer routine itself is also recorded

(it has been negligible in all our experiments). However,

this does not include the synchronization at the start of the

timer call; this however does get included in the time of the

enclosing (‘non-inclusive’) timer.

The timer output is given at the end of a run; it is also

possible to get timer output on a number of intermediate

regions by inserting the appropriate timer routine calls in

the source code.

III. THE vayu CLUSTER

The vayu cluster has 1492 nodes consisting of Sun

X6275 blades, each with two quad-core 2.93 GHz Intel

X5570 Nehalem processors and cache sizes of 32KB (per

core) / 256KB (per core) / 8MB (per socket). The available

physical memory per node is 24 Gbytes, excepting 48 nodes

which have 48 Gbytes. The interconnect is single plane QDR

Infiniband, with a measured MPI latency of 2.0�s and uni-

directional bandwidth of 2600 MB/s per node [8]. The nodes

are configured with a CentOS 5.4 Linux distribution with the

2.6.32 kernel.

Parallel jobs are launched using a locally modified version

of the Portable Batch System (PBS). Maximum walltime

and virtual memory limits must be specified upon submis-

sion. The scheduler (by default) allocates 8 consecutively

numbered MPI processes to each node allocated to the job.

Where possible, contiguous sequences of nodes are allocated

to a job to minimize interference between jobs. Jobs may

be suspended, e.g. to make room for a job requiring a large

number of cores. A typical snapshot of the main job queue

(taken noon in mid-December) is:

1216 running jobs (465 suspended),
280 queued jobs, 11776 cpus in use

Run-time files used in our benchmarks such as the dump

file and output from runs are on a Lustre file system. Our

‘project’ was restricted to use no more than 2048 cores and

was allocated a few thousand CPU hours of cluster usage.

IV. PRELIMINARY EXPERIENCES ON THE N320L70

BENCHMARK

Our initial experiments were run with a UM N320L70

benchmark compiled with the Intel Fortran compiler

11.1.072 and using OpenMPI 1.4.1 with processor affinity

enabled. In order to simplify profiling, STASH output was

disabled. Due to memory constraints, it was not possible to

run the benchmarks on fewer than 2 nodes.

1323131913191319131913241324

ROUTINE MEAN MEDIAN SD % of mean MAX (PE) MIN (PE)
1 PE_Helmholtz 206.97 206.98 0.05 0.02% 207.02 (7) 206.85 (48)
2 SL_Full_wind 27.54 24.09 6.91 25.09% 44.78 (3) 23.99 (12)
3 ATM_STEP 36.39 38.53 9.46 25.99% 44.60 (44) 12.35 (2)
4 SL_Thermo 25.38 26.60 3.45 13.58% 31.15 (3) 21.05 (44)
5 READDUMP 24.18 24.36 1.12 4.62% 24.37 (58) 15.76 (0)
6 Convect 16.64 18.14 2.22 13.34% 18.87 (0) 12.48 (63)
7 LW Rad 10.19 10.21 0.20 1.96% 10.65 (14) 9.72 (40)
8 Atmos_Physics2 7.66 6.85 1.92 25.07% 11.72 (53) 5.20 (33)
9 LS Rain 5.23 4.91 1.48 28.22% 9.70 (2) 2.68 (40)

10 SW Rad 5.41 7.11 3.27 60.47% 8.90 (59) 1.09 (0)

Figure 2. Extract of timer output: wallclock time statistics for an N512L70 benchmark with 64 processes for a 1.5 simulated hour run

To profile individual subroutines, a tool such as Oracle

Solaris Studio collect, in conjunction with MPI profiling
and hardware performance counters, would have been ideal.

This would in principle enable a performance analysis based

on both communication and memory hierarchy issues. How-

ever, the Linux kernel available at that time did not support

performance counters. While we were able to successfully

use collect for the N96L38 benchmark for walltime

profiling, we were unable to do so for the N320L70, due

to the sheer size of the generated data.

The MPI profiling tool IPM [10] was also attempted; this

only completed successfully on 256 or fewer cores. For a 5

hour simulation on a ����� process grid, IPM reported that

44% of communication time was spent in MPI, dominated

by MPI_Barrier() (14%), MPI_Scatterv() (9% -

called only from a subroutine called q_pos_ctl()), and
MPI_allReduce() (7%).
It became evident that the size and complexity of the

N320L70 benchmark would require a more lightweight

approach. The UM internal profiler, as described in Sec-

tion II-B, was employed. To conserve usage quotas, the

simulations were generally limited to 2 simulated hours (12

timesteps).

A. Variability Analysis

We observed a variability in run times of up to 50% for

repeated jobs; however, these were bimodal, with a number

of ‘fast’ runs clustered around 5–10% of each other. Within

each run, each iteration of atm_step() also showed

some variability, with iterations �, where ���
 �, taking

significantly more than the others, and iteration 0 taking

between 2 and 5 times more than them all. The former effect

is due to this benchmark having been configured to do extra

processing at the start of each simulated hour.

Figure 3 illustrates this phenomenon for two hours sim-

ulated time runs. A few runs of up to five hours were

attempted; there were no qualitative differences between the

second and subsequent hours.

The causes for time variability between runs were almost

entirely due to factors affecting the whole of the com-

putation. The most likely causes are to cross-application

 0

 2

 4

 6

 8

 10

 0 2 4 6 8 10 12

atm
_s

tep
()

tim
es

GC
R

ite
ra

tio
ns

iteration

GCR iters
run 1 (t=54)
run 2 (t=53)
run 3 (t=59)
run 4 (t=47)
run 5 (t=52)

Figure 3. Variation in walltime (s) in consecutive calls to atm_step()
for two simulated hours of an N320L70 benchmark on a �� � �� grid.
Iterations in GCR solver are on scale from 0 to 50

contention [11] (other current jobs heavily communicating

the same switch(es) as the UM job) and operating system-

related causes (page coloring, NUMA effects and interrupts).

Unfortunately, none of these effects was under our control

at the time.

The read_dump() routine took between 25 and 29

seconds of the total; this routine scales negatively. Within

atm_step(), the only routine to scale negatively was
q_pos_ctl()2, taking between 12 and 15 seconds of the
total run-time (at 32 nodes).

The minimal job time for Figure 3 was � 	��; this can be

extrapolated to give � ���s for a 24 hour run, corresponding

to about 75 CPU hours.

After modifying the UM internal profiler to record on

which call to a particular routine was the most expensive,

we saw that the first call was generally the most expensive

when there was significant variations, and indeed this was

the case with q_pos_ctl(). From code inspection, this

routine used gather and scatter communications (and was the

only routine to do so to a significant extent); we conjectured

that the first call had extra overhead in setting up OpenMPI

connections. The second possible reason was that upon the

first iteration, memory-mapped pages in physical memory

2This routine corrects the moisture content field, which can become
negative from previous calculations. Conservation of the overall level of
moisture should be preserved, especially for climate simulations.

1324132013201320132013251325

from the previous job were being flushed

We repeated the tests, adding the OpenMPI flag -mca
mpi_preconnect_mpi 1 and using the memhog utility
at the start of the job to flush out out memory-mapped pages

before u_model() was called. The first iteration was now
only within a factor of two of the average, with the impact

of q_pos_ctl() reduced by a factor of about one half.
Finally, the effect of the variation between non-hourly

iterations of atm_step() deserves some comment. The

most obvious cause is differences in the number of iterations

required for the Helmholtz solver. These are listed in the

bottom row of Figure 3 (they are the same for every run);

they correlate only weakly to the observed times per call.

V. PROFILING METHODOLOGY

From the above experiences, and taking into account the

resource limitations for our project, we designed a profiling

methodology based on the following principles:

1) The profiling infrastructure should have minimal effect

on runtime.

2) The profiling be as efficient as possible, i.e. consume

a minimum of resources while providing an accurate

prediction of long-term simulations.

3) The methodology should take into account (as far as

possible) the variability of the vayu system.
Our methodology is thus to:

� take at least 5 timings for each configuration (process

grid and any other tunable parameters). The minimum

will generally be taken as the true timing, as it repre-

sents the run with the least interference. When varying

parameters of the simulation, a single run from each

setting is submitted to the cluster and repeat runs do

not start until the previous has completed. The rationale

behind this is that, if there comes a ‘quiet’ period,

all settings will have a chance to run under those

conditions.

� examine the scalability of the major subroutines and

estimate the degree of load imbalance.

� run the simulation for a minimal number of timesteps in

order to be able to project the performance of the target

run-time. This was done by dividing the simulation into

an initial period (reading dump file and first 6 iterations)

and a ‘warmed period’ (the next 12 iterations).

The warmed period should be over an integral number

of simulated hours, in order to take into account the

hourly variability observed in Section IV. Two hours

appear sufficient to smooth out the effects of other

sources, such as the variability of the execution time

of individual timesteps.

� reduce the overhead of profiling, and measure (or esti-

mate) its extent. This is particularly important over the

‘warmed period’ which is used to make the projections.

� individually time each iteration within u_model(),
for later analysis.

Accordingly, we modified the UM internal profiler to

measure the warmed and total periods. To reduce overhead

(in the warmed period), the global synchronizations invoked

when a timer started were limited to those routines which

exceeded a certain threshold of the fraction of walltime

in the initial period. We chose a threshold of 3%, which

resulted in a factor of approximately ten in the reduction of

the number of synchronizations. This number was recorded,

and at the end of the simulation, a number of consecutive

synchronizations were timed in order to get an estimate of

the synchronization overhead. The load imbalance estimate

for the warmed period was then calculated as the averaged

time (over each process) spent in synchronizations during

that period, minus the estimated overhead.

As a defensive programming measure, total times for

the execution and the warmed period were independently

recorded. These correlated to within less than 1% of the sum

of the non-inclusive timers.

It turned out that suppressing synchronizations for certain

functions was far more complicated to implement efficiently

than it at first appeared. This is because some processes

invoke timers for subroutines (e.g. polar filtering) that other

processes do not. A compromise was to let process 0 decide

which timers should be suppressed, and this information was

broadcast to other process at the beginning of the warmed

period.

VI. SCALABILITY ANALYSIS

This section gives profiling and scalability analysis for the

UM on both the N320L70 and N512L30 grids.

q_pos_ctl() was identified in Section IV as being a

bottleneck; rather than attempting to optimize it, we subse-

quently obtained from the MetO the recent Parallel Suite 24

(PS24) patches, which had addressed this problem. These

were then merged into the UM 7.5 codes. The benchmarks

were configured to select an algorithm for q_pos_ctl()
which conserved the moisture field for the same level; this

avoided some of the expensive collective communications in

the original code. The codes were built under the conditions

described in Section IV.

The original and PS24 codes both used the same dump

files for both the N320L70 and N512L70 benchmarks. Each

timestep corresponded to 12 simulated minutes in both cases.

However, it was observed that the PS24 codes did not have

any periodic pattern in the time taken for each timestep. This

is unlike the original codes in which every sixth timestep

took appreciably longer, as described in Section IV-A.

Figure 4 gives the speedups corresponding to the

N512L70 benchmark on the PS24 codes. The runs are over

three simulated hours and generate no STASH output. The

grid configurations were chosen to be near-square (either a

1:1 aspect ratio, or 1:1.5 where this was not possible). As-

suming the degree of communication north-south and east-

west is similar, a near square configuration should optimize

1325132113211321132113261326

 8

 16

 32

 64

 128

 128 256 512 1024 2048

S
pe

ed
up

 (o
ve

r 1
6

co
re

s)

Number of Cores

job - min (t16=2324)
u_model - min (t16=2307))

warm - min (t16=1464)
warm - av (t16=1603)

ideal

Figure 4. Scaling of UM 7.5 + PS24 patches on the N512L70 benchmark.
‘t16’ is the time in seconds for 16 cores

the surface to volume effects in the grid decomposition, and

hence minimize nearest-neighbor communication.

For less than 128 cores, the scaling was linear or very

slightly super-linear; to amplify scaling effects at higher

cores counts, these results were omitted from Fig 4.

The job times, time for the call to u_model() and

the warmed period times are given. The latter is given for

both the minimum and average times. Despite there being a

difference of at least 15%, due to factors described in Section

IV-A, the averaged times show similar scaling behavior as

the minimum. The time to call u_model() scales more

poorly, due to the shortness of the simulated time period,

and the effect of calling read_dump() and the ‘warming’
of the benchmark.

An analysis of the difference between the job

u_model() times for 1024 cores (100s vs 87s) yielded

the following breakdown: 2s to launch process 0, 4s to

launch all processes, 6s to read the namelist files and 1s to

exit UM and ‘cleanup’ standard output files. It can be noted

from Figure 4 that this difference increases with increasing

core counts.

Figure 5 gives the speedups corresponding to the warmed

period for all four benchmarks. While all N320L70 bench-

marks are still scaling above 1000 cores, the N512L70

benchmarks scale slightly better 3. This is not surprising

in the sense that the N512L70 grid will have a factor of 1.6

better surface-to-volume ratio than the N320L70. It can be

seen particularly from the N320L70 curves that the PS24

codes scale better.

Table I shows the execution profile for the N512L70

benchmarks at 1536 cores for the ‘non-inclusive timers’

corresponding to the major subroutine. No routine scales

perfectly; hence there is potential for worthwhile perfor-

mance improvement in all. PE_Helmholtz is the dom-

3The missing points for the non-PS24 codes above 1500 cores are due
to bus errors.

 8

 16

 32

 64

 128

 128 256 512 1024 2048

S
pe

ed
up

 (o
ve

r 1
6

co
re

s)

Number of Cores

N512+PS (t16=1464)
N320+PS (t16=481)

N512 (t16=1793)
N320 (t16=493)

ideal

Figure 5. Scaling of the minimum ‘warmed’ time of UM 7.5 with and
without PS24 patches on the N320L70 and N512L70 benchmarks. ‘t16’ is
the time in seconds for 16 cores

Table I
N512L70 SUBROUTINE WALL-TIME PROFILE WITH �� � �� � ���	

CORES. ‘�’ IS THE SPEEDUP (OVER 16 CORES), ‘% �� ’ IS % OF WARMED

PERIOD TIME, ‘% IM.’ IS FRACTION OF TIME DUE TO LOAD IMBALANCE

function UM7.5 UM7.5+PS24
� % �� % im. � % �� % im.

PE_Helmholtz 59.4 51 0 61.6 48 0
atm_step 15.1 11 27 11.4 25 20
q_pos_ctl 0.8 12 0 5.4 0 10
SL_Full_wind 50.8 10 47 49.1 13 46
SL_Thermo 52.7 6 20 53.3 9 19
Convect 28.0 9 54 66.2 5 37
SF_EXPL 6.7 6 69 35.4 1 75
Atmos Physics2 12.9 5 71 52.9 1 28
: total: 52.1 100 17 55.8 100 30

inant routine. The parts of atm_step() that are not part
of the other listed functions also have poor scaling, with

significant load imbalance. Considering that 96 is the ideal

scaling at this point, the overhead of SL_Full_wind
appears to be almost entirely in load imbalance. It is also

high in Convect and SF_EXPL; this probably due to
latitudinal variations, which is difficult to avoid with a fixed

decomposition.

read_dump() at 1536 cores on the N512L70 grid has
an execution time of 24s, corresponding to an inverted

speedup of 0.18! It has an absolute execution time of � �
�.

While it is only called once per simulation, it is also a target

for optimization.

Overall, load imbalance effects are quite significant (recall

that our methodology gives an underestimate of the real

load imbalance). It can also be seen that the PS24 patches

have significantly better performance in q_pos_ctl() and
SF_EXPL.
Figure 6 shows the load-imbalance distribution of proces-

sor nodes over hours 2 and 3 of an N320L70 simulation

1326132213221322132213271327

666666666666666666666666
999999999999999999999999
888999999999999999999999
888988889999999888999999
888888888889887777778888
887777778888777777777788
887777777788777766677778
666666666677666555556667
222222223333322200002222
333322223344222233333344
555555556666666555556655
111122221222222200112222
000011223333333223333322
222223334444444444444443
555555666666666666666666
555555555555555555555555

Figure 6. Visualization of load imbalance for an N320L70 simulation on
a �	 � �� processor grid (‘0’ = 0%, ‘9’ = 15% of run-time)

using the dump in Figure 1. The data is from time spent in

MPI barriers in the updated timer module; thus a large value

indicates the process had less work to do. Lighter loads over

the high northern latitudes indicate both the effects of extra

processing in the equatorial regions due to convection.

A. Methodology Evaluation

To evaluate the profiling methodology of Section V,

some 24 hour simulations were performed on the both

the N512L70 benchmark with PS24 patches, and on the

N320L70 benchmark without the PS24 patches (recall that

the later showed more variability in the time to execute a

timestep). We chose our ‘operational target’ core count of

960 cores in a near-square aspect ratio.

Defining � to be the job time, ����� to be the warmed

time (after the 1st simulated hour), and ���� to be the time

for the second and third simulated hours, the formula ��

� � ����� � ���
���� gives the projected runtime from runs

using the above methodology. The following table gives this

data for three runs.

��� � ����� ���� ��

�
�����
�� ����� ��

����

�������� ��� ����	 ���� ����	

�������� ��� ����� ���� �����

For the N320L70 run 1, there was an anomaly at timestep

55, taking 7.9s; on run 2, there was one at timestep 134 of

4.2s (the average timestep is about 1.2s). If these anomalies

were removed, the above results shows that the timings for

the second and third simulated hours are a quite accurate

predictor of the full simulation time.

It was found that the overhead of the profiler (synchro-

nization overhead, gathering data) was less than 1% of the

warmed time period in all cases. The printing output phase

 4

 8

 16

 32

 64

 128

 64 128 256 512 1024 2048

S
pe

ed
up

 (o
ve

r 1
6

co
re

s)

Number of Cores

p aff. (t16=1603)
none (t16=2043)

p+m aff. (t16=1807)
ideal

Figure 7. Scaling of averaged ‘warmed time’ with none, process and
process+NUMA affinity for the PS24 codes on the N512L70 benchmark.
‘t16’ is the time in seconds for 16 cores

began to take more than this for over 512 cores; however,

this had no effect on the ‘warmed time’ measurements.

B. Analysis of Process and NUMA Affinity Effects

The previous results used OpenMPI 1.4.1 with process

affinity flags. A locally modified version of OpenMPI 1.4.3,

with both process and NUMA affinity available (by default)

became available after the data in the previous sections was

collected. To analyse the effects of these factors on execution

time and its variability, scaling measurements using the

methodology of Section V was repeated for OpenMPI 1.4.3

and 1.4.1 (without process affinity). The results are shown

in Figure 7.

Both kinds of affinity is overall the fastest; it is 18% faster

(in minimum ‘warmed’ time) than the others at 2048 cores.

Figure 8 indicates the reduction in variability due to

affinity, by taking the normalized error from the average
�

�

���
�������

���
. While the number of measurements (

) are

only sufficient to observe general trends, we can see that

there is no clear correlation with the error with the number

of cores. We can see also that process affinity reduces

variability by 20%, but NUMA affinity reduces this further

by a factor of 4!

VII. TUNING OF THE MODEL

This section describes some experiments in tuning the UM

7.5 codes, based on varying configuration parameters and

compilation details.

A. Segment Size Parameters

The performance of the N96L38 benchmark4 is qualita-

tively different from the larger benchmarks, since a 48-hour

simulation (with each timestep representing 30 minutes) can

4For pragmatic reasons, UM version 7.3 was used for this benchmark.
However, we expect no significant difference between the behavior of the
relevant routines in UM 7.5.

1327132313231323132313281328

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 16 32 64 128 256 512 1024 2048

N
or

m
al

iz
ed

 E
rr

or

Number of Cores

p aff. (avg err=.098)
none (avg err=0.124)

p+m aff. (avg err=0.029)

Figure 8. Normalized average error of the ‘warmed time’ with none,
process and process+NUMA affinity for the PS24 codes on the N512L70
benchmark

Table II
SEGMENT SIZE PARAMETER SETTINGS FOR THE N96L38 BENCHMARK

subroutine setting improvement
def. opt. % subr. % total

short-wave radiation 80 32 14 0.3
long-wave radiation 80 25 25 1.2
convection 80 16 25 2.2

be done in under 5 minutes using only 16 cores. Of more

interest is improving computational performance, since this

resolution is typical of those used for climate runs which

are used for simulations in the order of years.

One of the few performance-related parameters provided

by the UM are segment size parameters for three of the

atmospheric physics functions, which controls the sizes

of segments of atmospheric columns which are processed

together. Their values affects memory hierarchy performance

and by default are tuned for an IBM Power 6 system.

Table II gives the performance improvement of tuning

these parameters for a ��	 process grid. These are based on

the average of 5 runs. These routines originally accounted for

21% of the total run time; the tuning resulted in a relatively

modest total reduction of 3.7%. For a ��� grid, we obtained

identical settings, with similar improvements in walltime.

Figure 9 shows the tuning of these parameters, with again

averages taken over 5 runs. Our methodology was to utilize

the UM internal profile described in Section II-B, and uses

the same segment size for all three parameters on each run.

It may be noted that once the parameter size increases over

16, performance is relatively insensitive to the value of these

parameters.

For the N320L70 benchmark using the PS24 patches, the

effect of all of these routines is however much smaller,

accounting for 6–8% of the run time for core counts ranging

from 16 to 1536. An experiment on an intermediate core

count (384) showed a 1% improvement in the warmed period

time with an optimal parameter setting of 16 in all three

cases. To conserve machine usage, settings were limited to

Figure 9. Segment size parameter tuning of the N96L38 benchmark

multiples of 8 up to 80. The minimum of 5 timings (over

the warmed period) was used for this result.

B. Process Grid Configuration

The results presented in Section VI used near-square

process grid settings. The following table gives the execution

time in seconds for various process grids with 480 cores on

the PS24 patches on the N512L70 grid:

grid: �� � �� �� � �� �� � �� �� � �� �� � ��

� (s): 100.1 97.0 97.4 98.0 98.2

and those for 960 cores are given in the following table:

grid: 16�60 20�48 24�40 30�32 40�24 48�20
� (s): 29.6 30.2 28.8 27.6 27.7 28.0

As before, these results were for 3 simulated runs with

the minimum timing being given. The above results show

that the near-square configurations give slightly better per-

formance.

C. I/O Performance

As noted in Section VI, the read_dump() routine took
a significant amount of the execution time, even compared

with a full simulation run. Part of this inefficiency was

traced to the C byte-swapping code which is required for

I/O on a little-endian machine (the MetO mainly test the

UM on IBM Power machines where this code is not used).

The default configuration from UMUI will have this code

compiled without optimization.

Simply compiling the system with icc -O3 rather

than the default gcc with no optimization reduced

read_dump() execution time by 42% at 16 cores (the

absolute value of the improvement remained constant at

higher core counts).

With STASH output on, the endian swapping has a

dramatic effect on total benchmark performance. For a 24

hour simulation on 800 cores on the BoM cluster (virtually

identical to vayu except having a faster Infiniband switch),
compiling with icc -O3, using a x86-optimized assembler
byte-swap routine and avoiding endian conversion altogether

1328132413241324132413291329

improved total execution time by 42%, 58% and 58% respec-

tively. This brought the simulation time down to 1085s.

VIII. RELATED WORK

One of the few papers in the open literature to analyze the

performance of the UM is [12]. However, this describes the

very first parallelization schemes, almost two decades ago,

and the results do not reflect the current state of the UM.

Also, it concentrates on the data assimilation rather than the

weather simulation aspects of the UM.

The UM developers at the UK Met Office produce internal

reports in the profiling, and scalability of the UM. These

are made available to the UM community. A scalability

analysis of UM 7.6 with the PS24 patches is made in [4]. The

N512L70 benchmark over three simulated days with STASH

output off scaled up to 1536 cores, achieving a speedup of

7.7 over 96 cores; this was on an IBM Power 6 cluster. With

STASH output on, it scaled to 1024 cores, with a speedup

of 5. For climate simulations, with the UM coupled to the

NEMO ocean model by the OASIS3 coupler, the N216L85

model scaled to 18 cores, yielding a speedup of 1.5 over

6 cores. A profile of internal subroutines using the notion

of ‘parallel speedup’ as described in Section II-B was also

given; these showed q_pos_ctl() still scaled the most
poorly. However, the results do not show how important to

the run-time the poorly scaling subroutines were.

An earlier report studies the effect of using OpenMP

within UM 7.4 [5]. Results on an N512L70 benchmark on a

2-core Power 6 system with 2-way hardware threading that

utilizing 2 threads per MPI task with two MPI processes per

core (to take advantage of hardware threading) gave 10%

improvement over pure MPI (one process per core). This

was for 2 nodes; the advantage steadily reduced to 2% at

64 nodes.

There are a number of papers on profiling and perfor-

mance tuning of other atmospheric models. [13] shows linear

scaling up to 24 nodes on a dual-socket quad-core Opteron

and Infiniband cluster; this is in terms of the number of

(large) WRF jobs completed per day. MPI profiles of the

distribution of the number of messages per message size

intervals (for various core counts up to 64) were given.

A comparison between OpenMPI 1.3 and HP MPI 2.2.7

showed linear scaling up to 24 nodes, with OpenMPI having

slightly better scaling and generally 10% greater overall

performance.

A more detailed scaling analysis of WRF is given in

[10]. The benchmarked used a �
�� � ���� � �
 regional

US grid run for 240 timesteps. The performance modelling

tool IPM was used to give separate scaling analysis of

computation vs communication, with the former scaling

super-linearly due to “algorithmic limitations”, and the latter

scaling sub-linearly. The larger part was due to nearest-

neighbor communication in the ‘halo exchanges’, differing

from our result of the majority of the time being spent in

barriers and other collectives due to load imbalance.

CAM is a widely used atmospheric model with a similar

development history to the UM [14]. It also uses a rectan-

gular grid but has more flexible methods for decomposing

data over processes (including decomposing the vertical

dimensions), and supports hybrid MPI / OpenMP paral-

lelism. It also has a general ‘chunking’ scheme for blocks

of atmospheric columns, providing a more generic solution

to the segment sizes for the UM described in Section VII-A.

The runtime selection of a variety of chunk load balancing

schemes and communication protocols (e.g. different MPI

collective and point-to-point algorithms) is also available.

[14] presents a methodology to efficiently traverse the large

parameter space and find an optimal set of values. Results

are given for a variety of systems using a benchmark with

a �
� � ��	 � �� grid. The main result on a IBM p90

cluster represented a speedup of 12 on 512 cores over 16

cores. The metric used was the number of simulated hours

simulated per day. Their chunk size results are similar to

ours in Section VII-A, finding an optimal chunk size of

around 16 for a variety of platforms, and the run-time largely

insensitive provided the chunk size is greater than 10. Load

balancing scheme selection can improve runtime by 10% in

some instances.

However, in all of these works, the results were obtained

over long simulation runs, representing a very large amount

of compute resources required to generate them.

IX. CONCLUSIONS AND FUTURE WORK

The Unified Model has a highly complex code base

with large and expanding user groups around the world.

Atmospheric simulations with large resolution grids using

the UM is a very large computation. Current profiling tools

have difficulty in dealing with these simulations.

Even on a highly timeshared cluster with a high variability

between the execution time for identical jobs, it is still

possible to accurately and efficiently profile the UM on

large benchmarks by using an extended internal subroutine

profiler. By reducing synchronizations within the profiler, it

is possible to reduce profiler overhead to a negligible extent,

while retaining the ability to estimate load imbalance. This is

based on the idea of using small parts of the simulation (after

‘warming’) to project the run-time for a longer simulation.

Care has to be taken to ensure the period is representative,

due to effects such as extra work being done at periodically-

spaced timesteps. Care also has to taken to remove one-time

effects, as these lead to a pessimistic projection of the scaling

behavior.

The UM 7.5 codes scale well up to 2048 cores for the

N512L70 benchmark, with slightly lower scaling for the

smaller N320L70 benchmark. The PS24 patches improved

two subroutines which were scaling poorly; however, there

remains 6 subroutines in which optimization efforts are

1329132513251325132513301330

worthwhile (potential to improve 2% or more the overall

runtime). However, three of these suffer largely from load

imbalance, and might require widespread changes, such as

dynamic load balancing across the north-south direction. As

noted in Section VI, the codes with PS24 patches do not

exhibit any periodic behavior per iteration, and it is possible

to to use a more efficient methodology (i.e. 1.5 hrs simulated

time with a 1 hr simulated time warmed period).

Performance tuning opportunities have largely arisen from

the fact that the UM has been tuned for for Power 6

based platforms. Segment size parameters may be tuned

to bring modest improvements for the N96L38 data grid,

currently used for climate simulations. For larger data grids,

the proportion of time spent in routines affected by these

parameter is reduced, and the advantage becomes negligible.

For moderate to large core counts, near-square processor

grids give slightly better performance. I/O performance is

significant; optimizing or avoiding the associated byte swap

operation gives dramatic performance improvement when

STASH output is enabled. OpenMPI process and NUMA

affinity parameters have also been shown to have a very sig-

nificant affect, in both improving performance and reducing

the variability of measurements.

Future work includes extending the UM internal profiler to

use hardware event performance counters in order to under-

stand better the memory performance of the codes, which

is also expected to have a large impact on performance.

Obtaining a profiling of MPI subroutines at large core counts

is also needed, in order to understand the time spent in

communication (as opposed to load imbalance). We plan to

combine IPM with our extended internal profiler, using the

IPM regions facility to get MPI and hardware event perfor-

mance counters breakdown across the major subroutines. A

more detailed investigation into the constituent components

of the dominant Helmholtz solver is also planned.

The results of Section VII-C indicate we are already

within a factor of two of the ‘operational target’ with the

N512L70 benchmark. Apart from waiting for a cluster based

on the Intel Sandy Bridge processor (for which the target is

intended), the most promising opportunity for optimization

is in using mixed OpenMP / MPI parallelism, and improving

the latter within each nodes. This should reduce MPI com-

munication, due to having fewer MPI processes. The more

detailed profiling methodology mentioned above would be

helpful in predicting whether this has any benefit.

ACKNOWLEDGMENTS

The authors thank Les Logan for preparing the UM 7.5

benchmarks. We thank Les and Martin Dix for technical

advice on the UM. We also thank David Singleton, Robin

Humble and Judy Jenkinson for technical support on the

vayu cluster. In particular, to David Singleton for adding
NUMA affinity to the local version of OpenMPI 1.4.3. We

thank Paul Selwood for performance advice on the UM and

for making available the PS24 patches. We finally thank the

NCI National facility for the usage of the vayu cluster.

REFERENCES

[1] T. Davies, M. J. P. Cullen, A. J. Malcolm, M. H. Mawson,
A. Staniforth, A. A. White, and N. Wood, “A new dynamical
core for the Met Offices global and regional modelling of the
atmosphere,” Q. J. R. Meteorol. Soc, vol. 131, pp. 1759–1782,
2005.

[2] The Unified Model Collaboration. [Online]. Avail-
able: http://www.metoffice.gov.uk/research/collaboration/
um-collaboration

[3] R. Buizza, D. S. Richardson, and T. N. Palmer, “Benefits
of increased resolution in the ECMWF ensemble system and
comparison with poor-man’s ensembles,” Quarterly Journal
of the Royal Meteorological Society, no. 589, pp. 1269–1288,
2003.

[4] A. Malcolm, M. Glover, and P. Selwood, “Scalability of the
Unified Model,” UK Met Office, Tech. Rep., Jun. 2010.

[5] M. Glover, A. Malcolm, and P. Selwood, “OpenMP scaling
tests,” UK Met Office, Tech. Rep., Nov. 2009.

[6] (2010) The Australian Community Climate and Earth-System
Simulator. [Online]. Available: http://www.accessimulator.
org.au/

[7] S. Milton, A. Arribas, M. Bell, and R. Swinbank, “Seamless
Forecasting,” UK Met Office, Tech. Rep., Nov. 2009.

[8] (2010) The NCI Cluster vayu System Details. [Online].
Available: http://nf.nci.org.au/facilities/vayu/hardware.php

[9] UK Met Office, “Unified Model: Basic User Guide (version
7.3).”

[10] N. J. Wright, W. Pfeiffer, and A. Snavely, “Characterizing
Parallel Scaling of Scientific Applications using IPM,” in
Proc. of The 10th LCI International Conference on High-
Performance Clustered Computing, Mar. 2009.

[11] D. Skinner and W. Kramer, “Understanding the causes of per-
formance variability in HPC workloads,” in In International
Symposium on Workload Characterization. IEEE, 2005, pp.
137–149.

[12] B. J. N. Wylie and P. D. Surry, “Meteorological Data
Assimilation: Migration to Massively Parallel Systems,” in
Proc. of Scalable Computing: Cray User Group Conference.
Montreux: Cray Inc, 1993.

[13] G Shainer et al, “Weather Research and Forecast (WRF)
Model: Performance and Profiling Analysis on Advanced
Multi-core HPC Clusters,” in Proc. of The 10th LCI Inter-
national Conference on High-Performance Clustered Com-
puting, Mar. 2009.

[14] P. H. Worley, “Benchmarking using the Community At-
mospheric Model,” in Proc of the 2006 SPEC Benchmark
Workshop, Jan. 2006.

1330132613261326132613311331

