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Abstract

Among the alternative unobserved components formulations within the stochastic state space setting, the dynamic harmonic
regression (DHR) model has proven to be particularly useful for adaptive seasonal adjustment, signal extraction, forecasting and
back-casting of time series. First, it is shown how to obtain AutoRegressive moving average (ARMA) representations for the DHR
components under a generalized random walk setting for the associated stochastic parameters; a setting that includes several well-
known random walk models as special cases. Later, these theoretical results are used to derive an alternative algorithm, based on
optimization in the frequency domain, for the identification and estimation of DHR models. The main advantages of this algorithm
are linearity, fast computational speed, avoidance of some numerical issues, and automatic identification of the DHR model. The
signal extraction performance of the algorithm is evaluated using empirical applications and comprehensive Monte Carlo simulation
analysis.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

During the last two decades, much of the literature on signal extraction has been based on a ‘model-based’ approach,
where a stochastic model is formulated and used to design algorithms that extract important features from the data.
Three directions have emerged: (1) one, termed the ARIMA-model based or “reduced” form model (see Box et al., 1978;
Hillmer and Tiao, 1982; Burman, 1980; Gomez and Maravall, 1996a); (2) a second one, termed optimal regularization
(see Akaike, 1980; Jakeman and Young, 1984; Young, 1991); and (3) a third one that begins by directly specifying the
model for the components within an stochastic state space (SS) setting. This last SS formulation was originated in the
1960s in the control engineering area and has been adopted by the statistical literature in recent years (see Harvey,
1989; West and Harrison, 1989; Young et al., 1988; Young, 1994). In spite of some differences in their specifications,
the models in these approaches are closely related. The relationship and, in some cases, the exact equivalence of these
methods is discussed in Young and Pedregal (1999) within the context of optimal filter theory.

� The GNU/Octave (and MATLAB) toolbox can be freely downloaded from http://www.ucm.es/info/ecocuan/mbb/ldhr/.
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The dynamic harmonic regression (DHR) model developed by Young and co-workers in the 1980s (see Young
et al., 1999) and incorporated in the CAPTAIN Toolbox for Matlab,1 belongs to the unobserved components (UC)
type and is formulated within the SS. Here, the model is represented in the observation equation and the associated
stochastic parameters, that characterize this model, are defined by the stochastic state equations. The DHR model is
based on a spectral approach, under the hypothesis that the observed time series is periodic or quasi-periodic and can
be decomposed into spectral components: e.g. at a fundamental frequency and its associated sub-harmonics. This is an
appropriate hypothesis if a spectrum of the observed time series (e.g. the periodogram or AutoRegressive spectrum)
reveals spectral peaks that relate to these components (Pollock, 2006). By ‘quasi-periodic’, we mean here that the
amplitude and the phase of the periodicity may vary over time.

Basically, the method attempts to: (1) identify the spectral peaks in an empirical spectrum of the time series data;
(2) assign a DHR component to each spectral peak; (3) optimize the hyper-parameters that control the shape of the
modelled spectral peaks, so that the pseudo-spectrum of the DHR model fits the empirical spectrum; and (4) estimate
the DHR components using the Kalman filter and the fixed interval smoothing (FIS) algorithms (Pollock, 2003).

In the univariate case, the DHR model can be written as a UC model of the form:

yt = Tt + St + et ; t = 0, 1, 2, . . . ,

where yt is the observed time series; Tt is the trend or low-frequency component; St is the periodic or quasi-periodic
component which may represent seasonal behaviour; and et is an irregular component defined as a normally distributed
Gaussian sequence with zero mean value and variance �2

e , ({et } ∼ w.n. N(0, �2
e)).

The DHR algorithm, described below, has been used extensively for many years, in both the micro-CAPTAIN
DOS program and the CAPTAIN Toolbox for Matlab. As a time series and forecasting algorithm it has been used in
different areas of research, such as business cycle analysis (García-Ferrer and Queralt, 1998), numerous environmental
applications (e.g. Young, 1999; Young and Pedregal, 1999, etc), industrial turning point predictions (García-Ferrer and
Bujosa-Brun, 2000), and forecasting economic sectorial demand (García-Ferrer et al., 1997), etc.Additionally, the DHR
model is a powerful signal extraction alternative that can compete well with well-known techniques (García-Ferrer and
Bujosa-Brun, 2000) such as the ARIMA-based models like SEATS/TRAMO (Gomez and Maravall, 1996b; Maravall,
1993) and the structural model used in the STAMP program (Koopmans et al., 1995).

In this paper, we propose an alternative algorithm for the identification and estimation of DHR models. The article
is organized as follows. Section 2 outlines the basic results of the former DHR algorithm. Section 3 shows that each
DHR component has a possibly non-stationaryAutoRegressive moving averageARMA representation and presents two
propositions are shown in Appendix A.4. In Section 4 the new LDHR algorithm is derived. In Section 5 a simultaneous
identification and estimation algorithm is proposed. In Section 6 we present some simulation results regarding alternative
identification/estimation cases. Finally, in Section 7 we discuss the implications of the results for existing and future
work.

2. The former DHR algorithm

In the DHR model Tt and St consist of a number of DHR components, s
pj

t , with the general form

s
pj

t = aj t
cos(�j t) + bj t

sin(�j t), (1)

where pj and �j = 1/pj are, respectively, the period and the frequency associated with the jth DHR component; Tt is
the zero frequency term (Tt ≡ s∞

t = a0t ), while the periodic component is St =∑R
j=1 s

pj

t , where j = 1, . . . , R are the
associated periodic frequencies. Hence, the complete DHR model can be written in the form:

ydhr
t =

R∑
j=0

s
pj

t + et =
R∑

j=0

{aj t
cos(�j t) + bj t

sin(�j t)} + et . (2)

The trigonometric terms that define each DHR component s
pj

t are modulated by aj t
and bj t

which are assumed to be
stochastic time variable parameters that follow a generalized random walk (GRW) process (see e.g. Young et al., 1999,

1 Downloadable from http://www.es.lancs.ac.uk/cres/captain/.

http://www.es.lancs.ac.uk/cres/captain/
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and the prior references therein): this includes the random walk (RW), integrated random walk (IRW) and smoothed
random walk (SRW) as special examples. Here, however, we consider a modified interpretation of the GRW model and
where the variations can be characterized as an AR(2) stochastic process, normally with one or two unit roots

(1 − �jL)(1 − �jL)ajt = �jt

(1 − �jL)(1 − �jL)bjt = �jt

}
where

[
�j

�j

]
t

= �j t
∼ w.n. N(0, �2

j I), (3)

where �j t
is uncorrelated with �i	 for i �= j and any t, 	; and 0��j , �j �1. In this manner, therefore, non-stationarity

is allowed in the various components. It is clear that the DHR model can be considered as a straightforward extension
of the classical harmonic regression model, in which the gain and phase of the harmonic components can vary as a
result of estimated temporal changes in the parameters aj t

and bj t
. The main difference between the DHR model and

related techniques, such as Harvey’s structural model (Harvey, 1989) lies in the formulation of the UC model for the
periodic components and the method of optimizing the hyper-parameters discussed below.

The method for optimizing the hyper-parameters of the model (i.e., the variances �2
dhr = [�2

0, �
2
1, . . . , �

2
R]′ of the

processes �j , j = 0, . . . , R, and the variance �2
e of the irregular component) was formulated by Young et al. (1999) in

the frequency domain, and is based upon expressions for the pseudo-spectrum of the full DHR model:

fdhr(�, �2) = �2
e +

R∑
j=0

�2
j Sj (�), �2 = [�2

e, �
2
dhr ]′, (4)

where �2
j Sj (�) are the pseudo-spectra of the DHR components spj , and �2

e is the variance of the irregular component
(Young et al., 1999, p. 377).

A simple manipulation of (4) allows us to write

fdhr(�, [�2
e, NVR]) = �2

e ·
⎡⎣1 +

R∑
j=0

NVRj · Sj (�)

⎤⎦ ,

where NVR is a vector of noise-variance ratios (sometimes termed signal/noise ratios) with elements NVRj=�2
j /�

2
e, j=

0, 1, . . . , R. Young et al. (1999) then propose one final simplification, using the residual variance �̂2 from a fitted
AutoRegressive (AR) model, as an estimate of �2

e . They describe the complete DHR algorithm in the following four
steps:

(1) Estimate an AR(n) spectrum fy(�) of the observed time series and use its associated residual variance �̂2 as the
estimate of �2

e . The AR order is usually identified by the Akaike information criterion (AIC).
(2) Find the linear least squares estimate of the NVR hyper-parameter vector which minimizes the linear least squares

function

J (fy, fdhr ) =
m∑

k=1

[fy(�k) − fdhr(�k, [̂�2, NVR])]2, (5)

where �k ∈ [0 
] are the m points where the pseudo-spectra fy and fdhr are evaluated.
(3) Find the non-linear least squares estimate of the NVR hyper-parameter vector which minimizes the non-linear least

squares function

JL(fy, fdhr ) =
m∑

k=1

[log fy(�k) − log fdhr(�k, [̂�2, NVR])]2 (6)

using the result from step 2 to define the initial conditions.
(4) Use the NVR estimates from step 3 to obtain the recursive forward pass (Kalman filter) and backward pass (FIS

algorithm) smoothed estimates of the DHR components.
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3. A fundamental result on DHR components

In this section, it is shown that each DHR component has a possibly non-stationary ARMA representation (from
now on we will slightly abuse the notation and refer to an ARMA process even when it has autoregressive unit modulus
roots). It is important to remark that this link between ARMA models and DHR component has a major role in the
development of a new linear DHR algorithm, and it also suggests an automatic identification procedure for DHR
models.

From (1) and (3), the trend follows an AR(2) whose pseudo-spectrum is

fT (�) =
�2

�0

(1 − 2�0 + �2
0)(1 − 2�0 + �2

0)
, (7)

and the Nyquist component also follows an AR(2) model with pseudo-spectrum:

fs2(�) =
�2

�R

(1 + 2�R + �2
R)(1 + 2�R + �2

R)
. (8)

For the case of the remaining cyclical and seasonal components, two propositions are shown in Appendix A.4. The
first one states that, for each cyclical and seasonal component spj , there is a sequence of real numbers, �s

pj , such
that its extended Fourier transform FE (i.e., the fraction of the Fourier transform of the numerator and the Fourier
transform of the denominator) is the pseudo-spectrum of spj . The second one shows the existence of an ARMA model
whose pseudo-covariance generating function is �s

pj . Consequently, the pseudo-spectrum of that ARMA model is
the pseudo-spectrum of spj . The pseudo-spectra for these components are given, due to the modulation property (see
Bujosa, 2000), by

fs
pj (�) = FE(�s

pj (z)) = 1
2 [fa(� − �j ) + fa(� + �j )], �j ∈ (0, 
).

It follows that these pseudo-spectra fs
pj (�), 0 < j < R, can be stated as

fs
pj (�) = �2

j /2

(1 + �2
j − 2�j cos(� − �j ))(1 + �2

j − 2�j cos(� − �j ))

+ �2
j /2

(1 + �2
j − 2�j cos(� + �j ))(1 + �2

j − 2�j cos(� + �j ))
. (9)

Finally, the spectrum for the irregular component is �2
e .

The important consequence of the previous results is that we can write the DHR model ydhr
t = et +∑R

j=0 s
pj

t , as a
white noise process {et } plus a sum of (R + 1) ARMA models. The specific ARMA model for each DHR component
depends on the type of GRW process followed by the aj and bj parameters. In all cases, however, the modulus of
the AR roots are always �−1

j and �−1
j (see Eq. (3)). Table 1 shows the corresponding ARMA models for the DHR

components under different AR or GRW specifications, i.e., RW, IRW or SRW. Finally, Table 2 shows the alternative
ARMA specifications for the different components: trend, cyclical and periodic, as well as the Nyquist component.

Table 1
Summary of ARMA models of the components

Component AR and RW �j = 0; 0 <�j �1 SRW and IRW 0��j �1;�j = 1

Trend T AR(1) AR(2)
Nyquist s2 AR(1) AR(2)
Seasonal s4 (�j = 
/2) AR(2) ARMA(4,2)
Cyclical or seasonal spj (pj �= 4) ARMA(2,1) ARMA(4,2)
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Table 2
ARMA specification for the DHR components

AR or GRW model Trend [Tt ] (�0 = 0) Cyclical and seasonal componentsa [spj

t ] (0 <�j <
) Nyquist component [s2
t ] (�j = 
)

General model (0��, ��1) (1 − �0L)(1 − �0L)Tt = �0 t−1 (��
j (L) ∗ ��

j (L))s
pj

t =
(√

�j �j cos(2�j )

�
j ��

j

)
(1 − �1

jL − �2
jL

2)�j t−1 (1 − �RL)(1 − �RL)s2
t = �Rt−1

Random walk (RW) (� = 0, � = 1) (1 − L)Tt = �0 t−1 (1 − 2 cos(�j )L + L2)s
pj

t =√
1 + sin(�j )(1 − cos(�j )

1+sin(�j )
L)�j t−1 (1 + L)s2

t = �Rt−1

Smoothed random walk (SRW) (0 < �< 1, � = 1) (1 − �0L)(1 − L)Tt = �0 t−1 (��
j (L) ∗ ��

j (L))s
pj

t =
(√

�j cos(2�j )

�
j ��

j

)
(1 − �1

jL − �2
jL

2)�j t−1 (1 + �RL)(1 + L)s2
t = �Rt−1

Integrated random walk (IRW) (� = � = 1) (1 − L)2Tt = �0 t−1 (1 − 2 cos(�j )L + L2)2s
pj

t =
(√

cos(2�j )

�
j ��

j

)
(1 − �1

jL − �2
jL

2)�j t−1 (1 + L)2s2
t = �Rt−1

a��
j (L) = [1 − 2�j cos(�j )L + �2

jL
2], ��

j (L) = [1 − 2�j cos(�j )L + �2
jL

2], �
j , y��

j are given in Eq. (A.11), and �1
j = �

j + ��
j ; �2

j = −�
j�

�
j .



1004 M. Bujosa et al. / Computational Statistics & Data Analysis 52 (2007) 999–1024

4. The new linear dynamic harmonic regression (LDHR) algorithm

From the original NVR optimization algorithm (Young et al., 1999) two questions arise. First, the logarithmic
transformation is used because it produces a more clearly located and defined optimum, so facilitating the accurate
computation of the estimated hyper-parameters: hence, the original algorithm uses a non-linear objective function. But,
the computational complexity of the algorithm largely increases. Second, when minimizing the objective functions
in (5) and (6), the regions immediately around the poles must be avoided since the DHR model elements are non-
stationary, so their spectral peaks are poles (in this context, a pole is a point in the real line, say �0, such that f (�)

approaches infinity as � approaches �0). Our new proposal is to simplify this approach by estimating the NVR hyper-
parameters using only an alternative quadratic objective function in the whole frequency domain. To do so, a linear
algebraic transformation of (5), capable of eliminating the poles in fdhr(�, �2) and fy(�), is needed.

4.1. A linear algebraic transformation

In the optimization process, we seek the vector �2 that minimizes

min
[�2]∈RR+2

‖fy(�) − fdhr(�, �2)‖. (10)

But it has been shown that the DHR components could follow non-stationary ARMA processes, so that fdhr(�, �2)

could have poles; and then the norm is not defined. In order to re-state Eq. (10), we need to eliminate the AR roots on
the unit circle. Using the ARMA representation of the DHR components s

pj

t , we can rewrite the pseudo-spectrum of
the DHR model as

fdhr(�, �2) = �2
e +

R∑
j=0

�2
j

�j (e−i�)�j (ei�)

�j (e−i�)�j (ei�)
; (11)

where �j (L) and �j (L) are the AR and MA polynomials of the ARMA model of spj .
We use the periodogram as an spectral estimate of fy(�). Then, if By(L) denotes the AR polynomial fitted to the

observed time series, fy(�) can be substituted by f̂y(�)=Îa(�)·[By(e−i�)By(ei�)]−1, where Îa(�) is the periodogram
of the filtered time series at = By(L)yt . Hence, we can rewrite (10) as

min
[�2]∈RR+2

∥∥∥∥∥∥ Îa(�)

By(e−i�)By(ei�)
−
⎡⎣�2

e +
R∑

j=0

�2
j

�j (e−i�)�j (ei�)

�j (e−i�)�j (ei�)

⎤⎦∥∥∥∥∥∥ . (12)

In order to align the spectral peaks of the DHR components with those of the estimated spectrum f̂y(�), the components
can be chosen so that the full DHR model has all the unit roots of By(L). Then, we can split each polynomial �j (z)

in �j (z) = �j (z) ∗ �j (z), where �j (z) has the unit roots and �j (z) has the remaining roots. Multiplying (12) by

�(�) =∏R
h=0 �h(e−i�)�h(ei�), we have

min
[�2]∈RR+2

∥∥∥∥∥∥∥
Îa(�) · �(�)

By(e−i�)By(ei�)
− �2

e�(�) −
R∑

j=0

�2
j

�j (e−i�)�j (ei�)
∏

j �=h

�h(e−i�)�h(ei�)

�j (e−i�)�j (ei�)

∥∥∥∥∥∥∥ , (13)

(cf. Bell, 1984, Eqs. (1.4)–(1.6)). Hence, the new proposed algorithm minimizes

min
�2∈RR+2

‖�(�) · [f̂y(�) − fdhr(�, �2)]‖. (14)

This objective function is quadratic and can be evaluated solving a linear system over the whole range [−
, 
] because
�(�) · f̂y(�) and �(�) ·fdhr(�, �2) do not have poles. Moreover, Eq. (14) can be minimized by ordinary least squares
OLS to obtain the estimation of �2 = [�2

e, �
2
dhr ]′, so simplifying the estimation algorithm; therefore, it is faster and

more accurate than the analogous optimization of the DHR procedure.
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4.2. Improving the spectral fitting

One problem with the formulation of the optimization problem in the previous section is that, if the order p of By(L)

is large enough, By(L) has additional roots that are not included in the DHR model. These additional roots produce

additional spectral peaks in the estimated spectrum, f̂y(�), but these peaks are not associated with any spectral peak

of the pseudo-spectrum of the DHR model, fdhr(�, �2).
Because the pseudo-spectra are positive definite functions, they cannot be mutually orthogonal. Therefore, the

additional spectral peaks affect the spectral fitting of the DHR components. The magnitude of this influence depends on
the modulus of each additional root and on the location of its corresponding spectral peak. For example, when Young
et al. (1999) add a long period component into the DHR model and use an AR(54) spectrum they find: “The main
problem with this high-order AR(54) spectrum is that ...it injects obviously spurious peaks and distortions ...making
estimation of the NVR parameters more difficult ...”. In order to overcome the problem,Young et al. (1999) concatenate
a low-order spectrum with a high-order spectrum, “using the higher-order AR spectrum to define the lower-frequency
cyclical band of the spectrum, and the lower-order spectrum to specify the higher-frequency seasonal behavior”.

Within the present context, we propose a different approach to handling spurious peaks. In order to avoid the effect
of the additional peaks introduced by the above analysis, we fit these spurious peaks with additional components and
so isolate the spectral fitting of the DHR model from the distortions due to the spurious peaks. Therefore, a two-stage
procedure is proposed.

4.2.1. First stage
In the first stage, the vector of variances �2

dhr is estimated using additional components. For each additional peak
(due to an additional AR root or complex pair of additional AR roots in By(L)) an additional component is included
(the models for these additional components are explained in the next section).

Let fac(�, �2
ac) be the pseudo-spectrum of the sum of the additional components:

fac(�, �2
ac) =

k∑
h=R+1

�2
hSh(�),

where �2
hSh(�) is the pseudo-spectrum of the hth additional component; �2

ac = [�2
R+1, . . . , �

2
k] is the vector of the

variances of the innovations of the additional components; and k+1 is the number of spectral peaks of f̂y(�) associated
to AR roots of By(L).

In this first stage,

min
[�2

dhr ,�
2
ac]∈Rk+1

∥∥∥∥∥∥�(�) ·
⎡⎣f̂y(�) −

R∑
j=0

�2
j Sj (�) −

k∑
h=R+1

�2
hSh(�)

⎤⎦∥∥∥∥∥∥ (15)

is minimized by OLS, and the estimated variances of the innovations of the DHR components �̂2
dhr are obtained.

4.2.2. Second stage
In the second stage, the variance of the irregular component �2

e is estimated by minimizing

min
�2

e∈R

∥∥∥∥∥∥�(�) ·
⎡⎣f̂y(�) −

R∑
j=0

�̂2
j Sj (�) − �2

e

⎤⎦∥∥∥∥∥∥ (16)

by OLS, using the estimated values �̂2
dhr from the first stage. Finally, we compute �̂2 =[̂�2

e, �̂
2
dhr ]′, and ̂NVR=�̂2

dhr/ �̂2
e .

Note that the two-stage algorithm described earlier is completely linear and does not require the avoidance of any region
around the poles.
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5. An heuristic identification algorithm

With the new algorithm described earlier, the variances and the NVR hyper-parameters are estimated by unrestricted
OLS, and so it is possible to obtain estimates that have negative values. If the identification of the DHR model is
incorrect the probability of negative OLS estimated values increases. For this reason, we need a well-identified DHR
model specification, i.e., one that provides a DHR model with a spectrum of similar shape to the shape of the spectrum
of the observed time series. In practice, when negative values are found our algorithm uses non-negative least squares
(NNLS) estimation as suggested by Lawson and Hanson (1974). In this section, we propose a simultaneous identification
and estimation algorithm. To illustrate our procedure we will be using two data sets of different length. Namely, the
logarithm of the monthly Peruvian Exports (PE) from January 1994 to February 2006 (146 observations), and the
logarithm of the Spanish Industrial Production Index (IPI) from January 1975 to March 2002 (336 observations).

5.1. Selecting the DHR components from By(L)

Our identification procedure consists of two steps: firstly, we identify the AR roots of By(L) associated to the
frequencies of the components to be estimated with the DHR model (usually the trend and the periodic components),
and secondly, for each frequency, we choose the DHR model whose �j and �j parameters are equal to the modulus of
the AR roots of By(L) associated to that frequency.

5.1.1. First step
The PE series (see Fig. 4(a)) shows a clear trend and seasonal patterns. For this reason, the “a priori” DHR model

should have DHR components associated to the frequencies �j = 2
j/12, j = 0, . . . , 6, so the model should explain
the oscillation of the time series around Pj =∞, 12, 6, 4, 3, 2.4, 2 periodicities, if these are all clearly identified in the
empirical spectrum.

To illustrate the first step, anAR(34) model is fitted to the PE series (this is theAR order suggested by our identification
algorithm, see Section 5.2 for an explanation). Some of the roots of the AR(34) polynomial By(L) fitted to the series
are close to the Pj periodicities. (See the roots marked by dots in Fig. 1.) These are the AR roots associated to the DHR
components.

In order to decide whether or not an AR root is associated to the jth DHR component of periodicity Pj , we use a
simple criterion. We fix a range of frequencies ±� radians around each �j = 2
/Pj . If the � frequency associated to
an AR root lies inside any range, i.e., if |�j − �|��, then this AR root is associated to the jth DHR component. The
default (heuristic) values, �, used in our program are 2
/600 radians for the seasonal components, and 2
/36 radians
for the trend. The range for the trend component is wider in order to incorporate the roots associated to cyclical periods
in the trend. This allows us to estimate long term cyclical components, typically those longer than three years.

The cases where the above condition is fulfilled are indicated by dots in Fig. 1; these correspond to the roots that lie
inside the regions around each frequency �j (see Table 3). In this example there are two AR unit roots associated to the
trend T and there is one pair of conjugate AR unit modulus roots associated to the seasonal components s12, s6, s4

and s2.4; two conjugate pairs of roots associated to the seasonal s3 and one stationary root associated to s2.

Fig. 1. AR(34)-roots of the AR(34) polynomial By(L) fitted to the PE series.



M. Bujosa et al. / Computational Statistics & Data Analysis 52 (2007) 999–1024 1007

Table 3
Roots of the AR(34) polynomial By(L) used in the identification process (marked by dots in Fig. 1)

Roots Period Norm Component Model

1.00 ±0.00i ∞ 1.00 IRW
}

T
1.00 ±0.00i ∞ 1.00

0.86 ±0.50i 12.038 0.99 s12 RW
0.49 ±0.86i 5.980 1.00 s6 RW
−0.03 ±0.98i 3.922 0.98 s4 RW
−0.44 ±0.77i 3.012 0.89 SRW

}
s3

−0.49 ±0.82i 2.976 0.96

−0.86 ±0.49i 2.398 0.99 s2.4 RW
−0.93 ±0.00i 2.000 0.93 s2 RW

5.1.2. Second step
The most prominent spectral peaks of f̂y(�) are due to the AR roots whose modulus are close to one. If we use

DHR models with the same AR roots, the pseudo-spectrum of the DHR model should have a similar shape to the shape
of the estimated spectrum f̂y(�). Therefore, given the DHR components of the model (step one), the models for the
components are chosen so that, in each case, their �j and �j parameters are equal to the inverse of the modulus of
the AR roots of By(L). When these moduli are close to one (for a default value larger than 0.95), an �j and/or �j

parameters equal to one can be imposed. For the spurious peaks, we use as additional models the corresponding partial
fractions from the expansions of 1/By(L) (see Section 4.2). With the new identification criterion, if an AR(34) is used,
the algorithm identifies an IRW model for the trend, and RW models for the all the seasonal harmonics except s3 and
s2, that follow SRW and AR models, respectively (see Fig. 1 and Table 3). These heuristic rules, about the modulus and
the angle of the roots, seem to work well in most of the cases but, of course, they can be replaced by formal statistical
tests if the user wishes to do so.

5.2. Selecting the order of the By(L)

The identification procedure of the DHR model depends on the estimatedAR polynomial By(L). Since our estimation
procedure is very fast, it is possible to use a wide range of p orders and to identify and estimate one DHR model for
each AR(p) polynomial By(L). Among the alternative DHR models, it is possible to select one of them under certain
criteria. When, for all AR(p) polynomials, the same type of model is identified, a criterion that provides good results
is choosing the DHR model whose estimated variances �̂2

dhr are closer to the median values. When this is not the case
and different models are identified for different AR orders, the recourse is to choose the DHR model whose residual
spectrum, i.e., the transformed difference between f̂y(�) and the sum of pseudo-spectra of the DHR components

�(�) · f̂y(�) − �(�) ·
R∑

j=0

�̂2
j Sj (�),

has the shape closest to the shape of a white noise spectrum (in terms of maximum R2 statistic).
The results obtained with the LDHR and CAPTAIN algorithms are shown in Table 4. The spectra fitted by this

procedure and by SEATS are shown in Fig. 2. Due to the low resolution of the periodogram (the PE series has only
146 data) it is difficult to see the differences between both procedures. Therefore we also provide the spectral fitting of
another example: the Spanish IPI data with 336 observations.

For the PE series, the identifications suggested by CAPTAIN and LDHR differ slightly since a different model is
proposed for the s3 component, and the s2 component is absent in CAPTAIN. Also the orders of the AR polynomials
are different (34 for LDHR and 19 for CAPTAIN) so strict comparisons among the estimated NVRs may be distorted
by differences in the suggested identifications. As regards computational speed, LDHR is almost three times faster
than CAPTAIN. In the case of the IPI series, however, the same DHR model is proposed by both procedures and the
resulting AR(32) order is also identical in both cases. Again LDHR is faster than CAPTAIN and, in general, estimated
NVRs values are higher in LDHR although these differences have negligible consequences in practice.
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Table 4
Estimation results for PE and IPI using both LDHR and CAPTAIN

Component PE series IPI series

LDHR (0.07 secs) CAPTAIN (0.22 secs) LDHR (0.08 secs) CAPTAIN (0.19 secs)

̂NVR DHR model ̂NVR DHR model ̂NVR DHR model ̂NVR DHR model

T 0.00022 IRW 0.00009 IRW 0.0054 IRW 0.0029 IRW
s12 0.00926 RW 0.04757 RW 0.0513 RW 0.0110 RW
s6 0.00103 RW 0.00812 RW 0.0540 RW 0.0104 RW
s4 0.02041 RW 0.01227 RW 0.0802 RW 0.0129 RW
s3 0.00017 SRW 0.00132 RW 0.0481 RW 0.0073 RW
s2.4 0.00428 RW 0.00915 RW 0.0463 RW 0.0085 RW
s2 0.00386 AR – 0.0431 RW 0.0072 RW
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Fig. 2. Spectral fitting of the DHR and SEATS models to the periodogram of the PE series (above) and IPI series (below).

In Fig. 3 we compare the trend filter gain for SEATS and LDHR in both series. The largest differences are observed
for the PE series. While the LDHR trend seems more stable than the corresponding trend in SEATS, the opposite
happens with the seasonal components, see Maravall (1993) (similar evidences also shown in Fig. 4). The homogeneous
behaviour of the harmonics in SEATS, as compared with LDHR, is remarkable (note the differences between s6 and
s4 in the trend filter gain of LDHR). For the case of IPI, however, both procedures show similar homogeneity for
the harmonics but again the trend is slightly more stable (smoother) than the one obtained by SEATS (and again the
opposite happens with the seasonal components).

Fig. 2 shows the spectral fit of both SEATS and LDHR fitted to the periodogram of both PE and IPI series, contrary
to what is observed for PE, visual differences are more obvious. In the case of IPI, the differences are clearly obvious.
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Fig. 3. Trend filter gain of SEATS and LDHR for the PE series (above) and IPI series (below).

Note, however, that the comparison between SEATS and LDHR in this regard is, somehow, unfair since the objective
function in SEATS does not contemplate the fitting of the periodogram.

The estimated DHR components of the PE series are shown in Fig. 4. We have computed the smoothed estimates of
the components using the function e4trend.m (Casals et al., 2000, 2002).2 The largest differences between SEATS
and LDHR are observed when looking at the first difference of the trends (derivative). As found in García-Ferrer and
Bujosa-Brun (2000) for a large number of international IPI data sets, the SEATS’s derivative is much more volatile
(indicative of less smooth trend) than the one obtained by LDHR. Nevertheless, the seasonal components shown in
Fig. 4(c) indicate more stability in the case of SEATS than the one shown by the LDHR’s seasonal components.
However, as Pollock pointed out in a personal communication, this is an inevitable consequence of the narrower
notches in the amplitude response of the trend estimation filter of SEATS, which implies that a more restricted set of
sinusoids participate in the Fourier synthesis of the seasonal fluctuations.

6. Simulation results

Monthly time series are generated using an IRW model (�2
T = 5) for the trend, while the seasonals are modulated

by an RW process (�2
s = 50). Four alternative values for the noise variance are specified (�2

e = 1000, 5000, 10 000, and
50 000) and four sample sizes are used (N = 150, 300, 450, and 600). For each of the 16 cases, 1000 time series are
generated.

The default values used in the identification process are the following: (a) the range of AR models goes from AR(16)
to AR(36); (b) AR roots with modulus larger than 0.95 and associated to the DHR components (see Section 5.1) are
taken as unit modulus roots; and (c) all AR roots with modulus smaller than 0.45 are not associated with any DHR
component.

6.1. Estimation with no identification

Assuming that the true model is known, the LDHR algorithm presented in Section 4 is used to estimate the eight

variances �̂2 = [̂�2
e, �̂

2
dhr ]′. The seven hyperparameters are then calculated as ̂NVR

′ = �̂2
dhr /̂�

2
e . Tables A2 and A3

summarize the main results, showing the median and inter-quartile range (IQR) of the estimated parameters.

2 It is included in a MATLAB toolbox for time series modeling called E4, which can be downloaded at http://www.ucm.es/info/icae/e4.

http://www.ucm.es/info/icae/e4
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Fig. 4. The estimated unobserved components for the PE series with the LDHR algorithm and SEATS. (a) Series and trend; (b) first difference of
trend (c) seasonal component; and (d) irregular component.

As expected, the larger the sample, the lower the bias and dispersion of the estimates of both the variances and noise
variance ratio (NVR) hyperparameters. For high noise levels, the estimation results worsen. In particular, the estimated
variances of the DHR components tend to be larger than the true values, while the opposite happens to the variance
of the irregular component. However, the results are satisfactory since the bias in the estimated NVR values appears
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negligible in terms of its effect on the filtered components, i.e., the final estimation of the trend and the seasonals by the
Kalman filter and FIS algorithms (see Young et al., 1999). The number of times that NNLS is needed to avoid negative
variance estimation is relatively small, and more frequent in situations showing a high noise level. In this regard, note
that medians and inter-quality range (IRQ) values are computed only for OLS estimations. For purposes of comparison,
we have repeated in Table A4 a similar exercise using CAPTAIN. There, we can observe that the level of the noise
has less effect on the estimates, probably due to the fact that in CAPTAIN the variance of the irregular component is
estimated from the residuals of the AR model (see Step (1) of Section 2).

6.2. Identification and estimation

In this case, a more realistic exercise is carried out: here, the true model is assumed to be unknown and, therefore, the
only information provided to the algorithm is the time series data, its periodicity as well as the heuristic default values
suggested in Section 5. A large number of models are considered for the DHR components: namely AR(1), AR(2), RW,
SRW, and IRW specifications. For s2 (by default) only models with one root (AR(1) or RW) are allowed. Otherwise,
real negative roots in the AR polynomial By(L) are assigned to this component and the algorithm tends to identify
AR(2), SRW or IRW, in most cases. For the same reason, only models with at most two (real positive) roots for the
trend are allowed. We refer to ‘unrestricted identification’ when the algorithm chooses, for each DHR component, one
among the former family of models. Conversely, in ‘restricted identification’, only the subset of AR(1) or RW process
for the seasonals are considered.

In order to conserve space, we show only the estimation of DHR components with real AR-roots (trend and S2) and
one DHR component with complex AR-roots (the S4 DHR component), since all results for DHR components with
complex AR-roots are very similar (see Tables A2 and A3). Tables A5 to A8 show the statistics computed only over
the cases of OLS estimations and correct identification (see Table A1). The complete set of tables is available from the
authors upon request.

6.2.1. Restricted identification
The percentage of successful identifications is quite large (see footnote in Table A1) except when the noise level

is high. Note how the number of times that NNLS is required is inversely related to the percentage of successful
identifications. Therefore the NNLS requirement may provide an indication of an incorrect identification.

6.2.2. Unrestricted identification
Here, the results are very similar to those in the previous case. The percentage of correct identifications is quite large

(see footnote in Table A1), although the size of the bias and the dispersion decrease slightly (Tables A7 and A8). Note,
however, that these results apply only to OLS estimates with correct model indentification.

Finally, if the rule ‘only AR roots with modulus larger than 0.95 are taken as unit modulus roots’ is modified by
increasing the critical value to 0.9999, OLS always delivers positive estimates. When the rules of the identification
procedure are changed in this manner, none of the 16 000 replications provide negative estimated values (8 × 16 000
variances estimated by unrestricted OLS are positive, with both the restricted and the unrestricted identification proce-
dures). Obviously, with the new rule, the probability of correct identification is smaller than before. In order to allow
the user to select different alternatives, the toolbox allows for easy modification of these rules.

7. Conclusions

Among the available stochastic unobserved components alternatives, the dynamic harmonic regression (DHR) model
has been used extensively over the past two decades in different areas of research, such as economic, business, en-
vironmental and biological applications. It is a powerful signal extraction and forecasting tool that can compete well
with other known alternatives. The oscillations of each DHR component are modulated by stochastic time-varying
parameters within the family of generalized random walk (GRW) models, which was suggested by the third author
many years ago and subsumes a large number of the more specific characterizations (e.g. RW, IRW SRW processes)
found in the signal extraction literature.

In the first part of this paper, we show that each DHR component has an Autoregressive moving average (ARMA)
representation. In particular, we show that, for each cyclical and seasonal component, there is a sequence of real numbers
such that its extended Fourier transform is the pseudo-spectrum of the component. We have also shown the existence
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of an ARMA model whose pseudo-covariance generating function is, precisely, the aforementioned sequence. The
consequence of these results is that the DHR model can be written as a sum of certain ARMA models, plus a white
noise process.

In the second part of the paper, we propose an alternative algorithm to estimate the model hyper-parameters that
makes use of a linear algebraic transformation in order to eliminate the poles in the original objective function. Once
these poles are removed, simple ordinary least squares can be used for simultaneous identification and estimation of
the hyper-parameters. As a result, the only input information required by the LDHR algorithm is the raw time series
data, the nature of its periodicity, e.g. monthly, quarterly, etc., and the knowledge of the heuristic default values used
in the identification algorithm. This should be an advantage in relation to existing alternatives that require additional
input information from the user.

We make two further comments regarding future developments. First, our results can be easily extended to some
other well-known alternatives mentioned earlier, in as far as they can be treated as special cases of the generalized
random walk specifications. Second, in this paper, we have concentrated on signal extraction and we have not yet tried
to analyse the forecasting performance of the new algorithm. This will be the subject of future research. Given the
similarities of the LDHR and DHR procedures, we might expect similarities in forecasting ability and only when trend
models differ considerably, should we expect the prediction results to be too different.

Finally, it should be noted that the identification and estimation results discussed in Sections 4 and 5 have been
carried out using our toolbox LDHR for GNU/octave.3 This toolbox4 makes use of several functions of the signal
processing and communications (SPC) toolbox for Matlab;5 and the E4toolbox.6
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Appendix A.

A.1. Monte Carlo tables

The times of successful identification, the times the NNLS algorithm is used, and the times the NNLS algorithm is
used when the algorithm correctly identifies the true model are shown in Table A1. In Tables A2 and A3, the estimation
results (when the true model is provided to the algorithm) are shown. For purposes of comparison, Table A4 is similar
to Table A3, but using CAPTAIN. Tables A5–A8 show the results when the algorithm both identifies the model and
estimates the parameters. Tables A2–A8 show the statistics computed only over the cases of OLS estimations and
correct identification.

A.2. Data definition and sources

The source of the Peruvian Exports (PE) data, from January 1994 to February 2006, is Banco Central de Reserva
del Perú, and according to the TRAMO program no outliers or other intervention effects are present this series.

The source of Spanish Industrial Production Index (IPI), from January 1975 to March 2002, is the Spanish Instituto
Nacional de Estadística. Outliers, trayding days and Easter effects have been corrected by TRAMO (Maravall, 2006).

A.3. Inverse (b)−1�

Because we deal with non-stationary models it is necessary to use an inverse of the sequences that provides a
well-defined pseudo-covariance generating function, �T (z). Should we define the cograde of a non-null sequence b

3 http://www.octave.org/.
4 which can be freely downloaded from http://www.ucm.es/info/ecocuan/mbb/ldhr/.
5 http://www.cs.cmu.edu/afs/cs/project/ai-repository/ai/areas/speech/systems/spctools/0.html.
6 http://www.ucm.es/info/icae/e4/

http://www.octave.org/
http://www.ucm.es/info/ecocuan/mbb/ldhr/
http://www.cs.cmu.edu/afs/cs/project/ai-repository/ai/areas/speech/systems/spctools/0.html
http://www.ucm.es/info/icae/e4/
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Table A1
Times of success in identification. Times NNLS algorithm is used. Times NNLS algorithm is used with correct identification

Noise level Estimation only Restricted identification Unrestricted identification

NNLS algorithm NNLS algorithm NNLS algorithm

Right identa Out of total Out of rigid Id. Right identa Out of total Out of right Id.

N = 150 �2
e = 1000 1 946 8 1 580 8 1

�2
e = 5000 0 911 13 0 738 13 0

�2
e = 10 000 1 879 33 2 746 33 2

�2
e = 50 000 7 641 183 6 577 184 4

N = 300 �2
e = 1000 1 982 4 0 663 4 0

�2
e = 5000 0 977 4 0 819 4 0

�2
e = 10 000 0 957 5 0 831 5 0

�2
e = 50 000 18 770 84 8 714 83 7

N = 450 �2
e = 1000 0 996 1 0 620 1 0

�2
e = 5000 0 994 0 0 841 0 0

�2
e = 10 000 0 990 0 0 884 0 0

�2
e = 50 000 21 864 35 12 785 35 11

N = 600 �2
e = 1000 0 998 0 0 636 0 0

�2
e = 5000 0 997 0 0 867 0 0

�2
e = 10 000 0 990 0 0 906 0 0

�2
e = 50 000 24 881 31 13 801 30 12

aAs regards the percentage of successful identifications a small clarification is needed. We are considering correct those identified models those
whose seven components coincide with the simulated ones. So those cases that we have labelled as “incorrect identifications” generally differ very
little from the true model. Typically, only one out of the seven components is slightly different. Since correct identification of the whole model requires
correct identification of eight roots, we can compute the percentage of the 128 000 roots (4 samples sizes×4 noise levels×1000 replications ×8 roots)
that have been incorrectly identified. Such percentage is 1.2% in the case of “restricted identification”, and 2.2% in the “unrestricted identification”
case.

as the biggest integer index that verify j < cograde(b) ⇒ bj = 0, we can define the inverse sequence of a non-null
sequence b with cograde(b) = k as

(bj )
−1� ≡

(
1

b
�
)

j

≡

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 if j < − k

1

bk

if j = −k

−1

bk

∑j−1
r=−k arbj+k−r if j > − k

(for more details see Bujosa et al., 2002).

A.4. Propositions

Proposition 1. For each 0 < �j < 
, there is a sequence �s
pj (L) ∈ C(z) whose extended Fourier transform is the

pseudo-spectrum fs
pj (�) of Eq. (9),

�s
pj (z)

= �2
j

{1 + 2�j�j + �2
j

+ �2
j + �2

j
�2

j } − {�j + �j + �j�
2
j + �2

j
�j cos(�j )}(z + z−1) + {�j�j cos(2�j )}(z2 + z−2)

�j (z) ∗ �j (z−1)
�,

(A.1)

where

�j (z) = [1 − {2(�j + �j ) cos �j }z + {�2
j + �2

j + 4�j�j cos2(�j )}z2 − {2(�j�
2
j + �2

j�j ) cos(�j )}z3 + {�2
j�

2
j }z4].

(A.2)
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Table A2
Estimation with no identification. Estimated variances

Noise level Sample size N

150 300 450 600

1000 Median 968 977 904 946
IQR 827 689 507 473

5000 Median 4279 4688 4676 4789
IQR 2257 1653 1229 1144

10 000 Median 8548 9417 9507 9607
IQR 3967 2918 2244 1902

50 000 Median 43 665 46 971 47 570 48 059
IQR 18 779 12 629 9648 8312

1000 Median 4.4 4.7 4.9 4.8
IQR 3.7 2.5 2.0 1.8

5000 Median 4.8 5.0 5.1 5.0
IQR 4.6 2.9 2.2 2.2

10 000 Median 5.1 5.1 5.2 5.2
IQR 5.0 3.0 2.4 2.2

50 000 Median 8.3 6.8 6.2 5.8
IQR 8.7 4.9 4.1 3.5

1000 Median 47.7 49.3 51.5 50.7
IQR 37.2 25.3 21.2 17.6

5000 Median 60.5 58.7 58.5 57.2
IQR 52.7 35.6 29.1 24.2

10 000 Median 79.0 71.0 67.0 64.5
IQR 75.7 50.8 43.0 34.8

50 000 Median 211.4 163.8 131.4 115.8
IQR 241.5 157.0 134.1 108.3

1000 Median 46.9 49.6 51.4 51.3
IQR 35.3 23.3 19.4 16.8

5000 Median 62.6 57.8 58.9 56.1
IQR 53.4 34.5 30.3 25.9

10 000 Median 78.9 66.4 66.3 62.0
IQR 73.3 45.7 39.2 33.2

50 000 Median 208.9 144.4 120.7 109.8
IQR 242.7 143.4 124.3 104.0

1000 Median 46.8 50.2 51.1 51.7
IQR 34.3 24.3 18.9 17.2

5000 Median 61.6 59.5 58.7 56.6
IQR 50.9 36.1 28.5 27.3

10 000 Median 80.3 69.1 64.8 62.4
IQR 71.2 49.5 38.8 34.7

50 000 Median 211.0 149.6 126.7 106.0
IQR 225.1 145.2 119.5 117.6
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Table A2 (Continued)

Noise level Sample size N

150 300 450 600

1000 Median 45.3 48.2 52.3 51.0
IQR 32.0 23.6 18.8 18.0

5000 Median 59.8 58.4 58.7 56.3
IQR 50.4 35.2 28.6 24.9

10 000 Median 75.7 67.6 65.4 60.6
IQR 67.7 49.0 37.6 32.4

50 000 Median 200.2 143.6 121.1 106.4
IQR 239.5 156.7 113.3 106.8

1000 Median 45.7 48.5 52.0 51.0
IQR 32.1 24.5 20.1 17.4

5000 Median 60.6 57.8 59.5 56.7
IQR 49.8 37.6 28.6 24.4

10 000 Median 77.8 65.9 66.0 60.9
IQR 69.1 49.1 41.1 33.7

50 000 Median 199.6 143.4 126.5 104.9
IQR 212.1 140.8 121.1 103.5

1000 Median 40.2 47.9 49.2 49.8
IQR 39.2 32.2 26.5 23.9

5000 Median 52.6 53.1 53.4 53.7
IQR 53.0 40.2 32.6 28.5

10 000 Median 62.9 58.5 57.7 57.2
IQR 66.8 49.9 41.2 35.0

50 000 Median 139.7 110.5 97.2 86.6
IQR 161.8 121.4 92.7 81.4

Sample size: N, noise level: �2
e , true value in frame box. For the variance of the irregular component, the noise level is the true value.

Proof. We proceed backwards. Substituting 2 cos x by eix + e−ix in (9), factorizing, and then substituting e−ix by z,
we obtain the sequence �s

pj (L)

�
s
pj (z)

= �2
j /2 · [1 − �j ei�j /z][1 − �j ei�j /z][1 − �j ei�j z][1 − �j ei�j z] + [1 − �j ei�j /z][1 − �j ei�j /z][1 − �j ei�j z][1 − �j ei�j z]

[1 − �j ei�j /z][1 − �j ei�j /z][1 − �j ei�j z][1 − �j ei�j z] + [1 − �j ei�j /z][1 − �j ei�j /z][1 − �j ei�j z][1 − �j ei�j z]
�.

(A.3)

Operating and substituting eix + e−ix by 2 cos x, we finally obtain Eq. (A.1). �

Proposition 2. For each 0 < �j < 
, there is an ARMA model whose pseudo-covariance generating function is the
sequence �s

pj (L) ∈ C(z) from Eq. (A.1) of Proposition 1.

Proof. The proof for the AR part is straight forward from Eq. (A.2) and is simply

�j (L) = ��
j (L) ∗ ��

j (L), (A.4)
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Table A3
Estimation with no identification. Estimated noise variance ration NVR (true value in bold)

True value Sample size N

150 300 450 600

5 Median 4.65 5.06 5.48 5.18
IQR 5.84 4.79 3.98 3.41

1 Median 1.11 1.09 1.10 1.03
IQR 1.25 0.71 0.54 0.51

0.5 Median 0.60 0.55 0.56 0.53
IQR 0.64 0.36 0.28 0.27

0.1 Median 0.19 0.15 0.13 0.12
IQR 0.23 0.11 0.09 0.08

50 Median 49.09 52.21 57.25 54.23
IQR 61.07 51.19 44.61 34.63

10 Median 14.27 12.66 12.63 11.79
IQR 15.99 9.89 7.34 5.88

5 Median 9.37 7.52 7.19 6.56
IQR 9.68 6.09 4.88 3.98

1 Median 4.71 3.44 2.73 2.35
IQR 6.07 3.56 2.90 2.45

50 Median 47.69 51.79 55.87 53.98
IQR 61.28 51.79 46.87 35.93

10 Median 15.00 12.27 12.43 11.70
IQR 15.84 9.03 7.35 6.33

5 Median 9.34 6.96 6.95 6.41
IQR 10.44 5.50 4.67 3.98

1 Median 4.78 3.09 2.55 2.25
IQR 5.74 3.16 2.68 2.30

50 Median 48.77 53.00 55.99 55.36
IQR 66.51 48.63 46.72 38.89

10 Median 14.96 12.42 12.60 11.83
IQR 16.15 9.37 7.35 6.28

5 Median 9.16 7.27 7.00 6.47
IQR 10.52 5.76 4.56 3.88

1 Median 4.87 3.12 2.66 2.20
IQR 6.00 3.39 2.64 2.46

50 Median 48.12 51.32 57.83 54.18
IQR 64.40 52.54 46.98 41.03

10 Median 14.18 12.41 12.37 11.77
IQR 14.59 9.67 7.24 6.31

5 Median 8.83 7.03 6.85 6.26
IQR 9.56 6.16 4.69 3.86

1 Median 4.48 3.05 2.54 2.20
IQR 5.71 3.61 2.62 2.34
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Table A3 (Continued)

True value Sample size N

150 300 450 600

50 Median 42.85 51.21 53.43 51.89
IQR 67.03 63.88 59.99 46.73

10 Median 11.63 11.19 11.06 11.06
IQR 15.61 10.88 8.52 7.25

5 Median 6.97 6.09 5.97 5.96
IQR 8.60 5.96 4.88 4.09

1 Median 3.12 2.35 1.98 1.76
IQR 4.07 2.80 2.11 1.76

50 Median 46.97 50.43 58.60 54.62
IQR 65.01 55.43 44.11 39.93

10 Median 13.90 12.27 12.66 11.80
IQR 15.15 10.25 8.14 6.53

5 Median 8.93 6.87 6.89 6.37
IQR 9.34 6.42 5.07 4.12

1 Median 4.58 3.00 2.61 2.19
IQR 5.85 3.26 2.71 2.30

N is the sample size. IRQ means inter-quartile range (NVR and statistics ×1000). I.e., “NVR = 5” means NVR = 0.005 and “median = 4.51” means
median = 0.00451.

where

��
j (L) = [1 − 2�j cos(�j )L + �2

jL
2] = [1 − �j ei�j L][1 − �j e−i�j L]

��
j (L) = [1 − 2�j cos(�j )L + �2

jL
2] = [1 − �j ei�j L][1 − �j e−i�j L].

The proof for the moving average part is much more tedious. We search the moving average (MA) polynomial �j (L)

such that �j (z)�j (z
−1) equals the numerator in (A.3). Substituting z by L, 1/z by F, and operating on the numerator in

(A.3) we can obtain the expression

(1 − �−1
j ei�j L)(1 − �−1

j ei�j L)(1 − �j ei�j L)(1 − �j ei�j L)(�j�j e2i�j )F 2

+ (1 − �−1
j ei�j L)(1 − �−1

j ei�j L)(1 − �j ei�j L)(1 − �j ei�j L)(�j�j e2i�j )F 2. (A.5)

It is not difficult to prove that if x is a root of (A.5) then, 1/x is also a root. It follows that �j (z)�j (z
−1) can be

divided by

(1 − L)(1 − −1L)(1 − �L)(1 − �−1L).

Some characteristics of  and � are known. Because the pseudo-spectra of the DHR models are positive definite none
of the MA roots has unit modulus; and because �j (z) is real, if  is not real and || �= 1, then � = . So, two scenarios
are possible. In the first one, there are two real roots with modulus greater than one and their inverses, in the second
one, there are four complex roots, and for each one of them there are its inverse, its complex pair, and the inverse of its
complex pair.

We need to find the constant � and the coefficients  and � that verify that �j (L)�j (F ) equals (A.5), and

�j (L)�j (F ) = �F 2(1 − L)(1 − −1L)(1 − �L)(1 − �−1L). (A.6)
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Table A4
Estimation with no identification. Results using CAPTAIN: estimated noise variance ratio NVR (true value in bold)

True value Sample size N

150 300 450 600

5 Median 1.58 1.85 1.92 1.98
IQR 1.35 0.89 0.75 0.66

1 Median 0.80 1.09 1.13 1.13
IQR 0.99 0.65 0.50 0.44

0.5 Median 0.53 0.73 0.77 0.79
IQR 0.70 0.48 0.38 0.32

0.1 Median 0.09 0.29 0.33 0.36
IQR 0.28 0.26 0.18 0.16

50 Median 12.92 11.08 10.48 10.20
IQR 6.94 3.83 2.94 2.49

10 Median 11.67 9.29 9.12 8.56
IQR 7.49 3.85 3.09 3.08

5 Median 11.17 8.85 8.09 6.93
IQR 8.68 4.54 3.73 3.11

1 Median 10.69 7.53 6.44 6.07
IQR 10.68 5.27 3.65 2.59

50 Median 10.28 10.71 10.48 9.99
IQR 5.67 4.95 4.53 3.68

10 Median 10.18 7.88 7.75 7.48
IQR 6.36 3.90 2.76 2.40

5 Median 9.70 7.25 7.05 6.62
IQR 6.83 3.71 3.06 2.40

1 Median 9.49 6.47 6.20 5.95
IQR 8.63 4.38 3.44 2.59

50 Median 12.32 11.36 10.43 9.89
IQR 6.68 4.74 3.79 3.24

10 Median 10.46 7.98 7.61 7.53
IQR 7.07 3.85 2.91 2.54

5 Median 9.82 7.65 7.12 6.76
IQR 6.87 3.92 2.94 2.63

1 Median 9.31 6.90 6.29 5.97
IQR 8.21 4.57 3.39 2.77

50 Median 11.03 11.27 10.68 9.84
IQR 5.62 4.58 4.21 3.44

10 Median 9.89 8.08 7.77 7.41
IQR 6.89 3.68 2.70 2.37

5 Median 9.33 7.67 7.31 6.72
IQR 7.06 3.80 3.05 2.55

1 Median 8.92 7.18 6.25 5.94
IQR 7.76 4.52 3.36 2.81
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Table A4 (Continued)

True value Sample size N

150 300 450 600

50 Median 12.31 11.40 10.72 10.01
IQR 5.85 4.43 3.96 3.31

10 Median 11.03 8.25 7.99 7.63
IQR 7.58 3.77 2.71 2.31

5 Median 9.82 7.71 7.42 6.80
IQR 7.65 3.77 3.05 2.39

1 Median 9.16 6.89 6.32 6.10
IQR 8.59 4.28 3.30 2.91

50 Median 8.23 9.02 8.97 8.94
IQR 7.11 4.83 4.07 3.59

10 Median 6.25 5.81 5.73 5.98
IQR 5.93 4.21 3.27 2.89

5 Median 5.32 4.79 4.74 4.88
IQR 5.59 3.68 3.07 2.42

1 Median 4.79 3.53 3.26 3.35
IQR 5.96 3.44 2.62 2.18

N is the sample size. IRQ means inter-quartile range (NVR and statistics ×1000). I.e., “NV R = 5” means NV R = 0.005 and “median = 4.51”
means median = 0.00451.

Therefore, the general form of the MA should be

�j (L) = √
�(1 − �

jL)(1 − ��
jL), (A.7)

where �
j and ��

j are inside the unit circle, and � is a constant.

On the one hand ignoring �F 2 in (A.6), and operating, it can be obtained the polynomial

(L2 − ( + −1)L + 1)(L2 − (� + �−1)L + 1),

or (L2 + �L + 1)(L2 + �L + 1), where � = −( + −1) and � = −(� + �−1). This polynomial is equivalent to:

L4 + (� + �)L3 + (�� + 2)L2 + (� + �)L + 1,

where � and � verify

2 + � + 1 = 0, �2 + �� + 1 = 0. (A.8)

If the fourth order polynomial aL4 + bL3 + cL2 + dL+ e is divided by L4 + (�+�)L3 + (��+ 2)L2 + (�+�)L+ 1
we obtained

where r3 = b − a(� + �); r2 = c − a(�� + 2); r1 = d − a(� + �); r0 = e − a.
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Table A5
Restricted identification. Estimated variances

Noise level Sample size N

150 300 450 600

1000 Median 993 974 903 944
IQR 840 693 505 475

5000 Median 4315 4709 4683 4789
IQR 2325 1610 1239 1137

10 000 Median 8589 9420 9508 9627
IQR 4059 2866 2216 1906

50 000 Median 42 801 46 647 47 800 47 988
IQR 17 726 12 306 10 038 8480

1000 Median 4.4 4.7 4.9 4.8
IQR 3.6 2.5 2.1 1.8

5000 Median 4.8 5.0 5.1 5.0
IQR 4.7 3.0 2.3 2.2

10 000 Median 5.1 5.1 5.2 5.2
IQR 5.0 3.2 2.5 2.3

50 000 Median 7.9 6.8 6.1 6.0
IQR 8.4 5.0 4.3 3.6

1000 Median 46.4 49.9 51.0 51.7
IQR 34.1 23.6 18.9 17.3

5000 Median 60.8 59.1 58.6 56.5
IQR 53.1 35.8 28.2 26.9

10 000 Median 78.7 68.8 65.5 62.2
IQR 68.0 48.8 39.4 36.2

50 000 Median 199.7 155.3 125.0 107.2
IQR 204.9 157.9 135.4 117.0

1000 Median 39.9 48.1 49.1 49.8
IQR 39.6 31.9 26.5 23.1

5000 Median 52.2 53.1 54.0 53.5
IQR 53.8 40.4 32.8 28.7

10 000 Median 64.1 60.4 57.7 57.6
IQR 68.7 51.6 40.4 35.5

50 000 Median 133.7 108.5 99.6 87.2
IQR 151.4 119.1 99.7 82.4

Sample size: N, noise level: �2
e , true value in frame box. For the variance of the irregular component, the noise level is the true value.

Since a necessary condition for the remainder to be zero is

0 = r3 = b − a(� + �)

0 = r2 = c − a(�� + 2)
,

� and � should verify

� = −b ±√
b2 + 4a(2a − c)

−2a
, � = b

a
− �. (A.9)
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Table A6
Restricted identification. Estimated noise variance ratio NVR (true value in bold)

True value Sample size N

150 300 450 600

5 Median 4.38 5.04 5.46 5.16
IQR 5.55 4.76 3.87 3.34

1 Median 1.08 1.08 1.10 1.05
IQR 1.19 0.71 0.54 0.51

0.5 Median 0.59 0.57 0.55 0.53
IQR 0.63 0.37 0.28 0.27

0.1 Median 0.19 0.15 0.13 0.13
IQR 0.23 0.11 0.09 0.08

50 Median 47.01 52.98 55.19 55.74
IQR 63.51 48.54 46.85 38.82

10 Median 14.28 12.38 12.66 11.83
IQR 16.00 9.56 7.17 6.41

5 Median 8.87 7.22 6.99 6.46
IQR 10.26 5.98 4.62 4.15

1 Median 4.48 3.21 2.65 2.24
IQR 5.48 3.53 2.89 2.53

50 Median 41.52 50.62 52.92 51.81
IQR 65.28 63.99 59.65 46.55

10 Median 11.35 11.10 11.26 10.96
IQR 15.11 10.44 8.64 7.34

5 Median 7.03 6.27 5.99 6.03
IQR 9.22 5.96 4.82 4.15

1 Median 2.97 2.23 2.06 1.80
IQR 4.21 2.64 2.26 1.82

N is the sample size. IRQ means inter-quartile range (NVR and statistics ×1000). I.e., “NVR = 5” means NVR = 0.005 and “median = 4.51” means
median = 0.00451.

On the other hand, the roots of Eq. (A.5) are the roots of

e−2i�j − (A + B)e−i�j L + (2 + A · B)L2 − (A + B)ei�j L3 + e2i�j L4

+ e2i�j − (A + B)ei�j L + (2 + A · B)L2 − (A + B)e−i�j L3 + e−2i�j L4,

where A = �j + �−1
j and B = �j + �−1

j .

If we substitute ei�j + e−i�j by �j we can find that

(�2
j − 2)︸ ︷︷ ︸

e

− (A + B)�j︸ ︷︷ ︸
d

L + (4 + 2AB)︸ ︷︷ ︸
c

L2 − (A + B)�j︸ ︷︷ ︸
b

L3 + (�2
j − 2)︸ ︷︷ ︸

a

L4. (A.10)

Therefore, 2a − c = 2(�2
j − 2) − 4 − AB, and −b = −(A + B)�j . Substituting in (A.9) we find that

� =
(A + B)�j ±

√
(A + B)2�2

j + 8(�2
j − 2)(�2

j − 4 − (AB))

−2(�2
j − 2)

.
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Table A7
Unrestricted identification. Estimated variance

Noise level Sample size N

150 300 450 600

1000 Median 1364 1191 1091 1101
IQR 876 648 498 442

5000 Median 4600 4889 4870 4910
IQR 2242 1674 1276 1162

10 000 Median 8912 9521 9508 9730
IQR 3938 2825 2206 1937

50 000 Median 42 285 46 816 47 874 48 092
IQR 17 278 12 510 9907 8899

1000 Median 4.4 4.7 4.9 4.9
IQR 3.6 2.4 2.1 1.8

5000 Median 4.8 5.1 5.1 5.2
IQR 4.7 3.1 2.5 2.2

10 000 Median 5.1 5.3 5.4 5.3
IQR 5.2 3.5 2.9 2.5

50 000 Median 8.1 6.8 6.2 6.1
IQR 8.6 5.2 4.5 3.9

1000 Median 40.8 46.6 48.4 47.8
IQR 34.1 24.1 18.9 18.4

5000 Median 56.0 57.4 56.3 53.6
IQR 56.0 39.4 34.0 30.5

10 000 Median 75.4 67.9 65.1 60.0
IQR 75.8 49.7 45.3 43.5

50 000 Median 187.9 157.9 125.8 112.7
IQR 201.9 159.6 146.3 122.6

1000 Median 32.0 40.6 43.3 44.1
IQR 42.4 32.3 25.5 24.2

5000 Median 45.9 48.2 49.7 48.7
IQR 51.7 40.7 36.0 31.4

10 000 Median 60.5 56.2 55.4 53.9
IQR 65.6 50.7 42.6 38.1

50 000 Median 130.0 106.7 100.7 87.7
IQR 150.4 119.3 103.3 83.4

Sample size: N, noise level: �2
e , true value in frame box. For the variance of the irregular component, the noise level is the true value.

Finally, using Eq. (A.8), we have found that

 = −� ±
√

�2 − 4

2
, � = −� ±√

�2 − 4

2
. (A.11)
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Table A8
Unrestricted identification. Estimated noise variance ratio NVR (true value in bold)

True value Sample size N

150 300 450 600

5 Median 3.27 3.98 4.55 4.51
IQR 4.26 3.09 2.73 2.82

1 Median 1.00 1.06 1.08 1.05
IQR 1.04 0.75 0.58 0.53

0.5 Median 0.57 0.57 0.55 0.54
IQR 0.62 0.41 0.33 0.30

0.1 Median 0.19 0.14 0.13 0.13
IQR 0.23 0.12 0.10 0.09

50 Median 30.88 39.56 44.84 44.04
IQR 37.60 34.08 29.70 29.72

10 Median 11.87 11.73 11.59 10.83
IQR 13.68 9.69 7.89 7.14

5 Median 8.19 6.94 6.81 6.11
IQR 10.40 5.87 4.92 4.77

1 Median 4.21 3.26 2.65 2.32
IQR 5.51 3.74 3.06 2.61

50 Median 25.51 34.30 38.66 40.22
IQR 39.44 40.85 39.23 36.86

10 Median 9.64 9.49 10.18 9.57
IQR 12.56 9.97 8.79 7.61

5 Median 6.43 5.66 5.61 5.45
IQR 8.29 5.99 5.10 4.35

1 Median 2.89 2.17 2.05 1.78
IQR 4.03 2.80 2.34 1.83

N is the sample size. IRQ means inter-quartile range (NVR and statistics ×1000). I.e., “NVR = 5” means NVR = 0.005, “median = 4.51” means
median = 0.00451.

So, given the values of �j , �j y �j , it is possible to calculate  and �. The constant � is

� = �j�j cos(2�j )

�
j�

�
j

, (A.12)

where �
j and ��

j are the roots inside the unit circle (see Eq. (A.7)). �

Combining Eqs. (A.2), (A.7), (A.11), and (A.12) we can write the equivalent ARMA model for the s
pj

t

component as

�j (L)s
pj

t =
(√

�j�j cos(2�j )

�
j�

�
j

)
(1 − �1

jL − �2
jL

2)�j t−1, {�j t } ∼ w.n. N(0, �2
�j

). (A.13)
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Corollary 3. The pseudo-covariance generating function of each cyclical or seasonal component s
pj

t is given by

�s
pj (z) =

(
�2

j

�j�j cos(2�j )

�
j�

�
j

) [1 − �1
j z − �2

j z
2][1 − �1

j z
−1 − �2

j z
−2]

�j (z) ∗ �j (z
−1)

�, (A.14)

where �1
j , �

2
j , 

�
j , y��

j are given in Eq. (A.7), and �j (z) is provided by Eq. (A.2).
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