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ABSTRACT

Aims. The aim of the paper is to give a physical explanation of the absence of the feature in the Calzetti extinction curve.
Methods. We analyze the dust attenuation of a homogeneous source seen through a distant inhomogeneous distant screen. The inho-
mogeneities are described through an idealized isothermal turbulent medium where the probability distribution function (PDF) of the
column density is log-normal. In addition it is assumed that below a certain critical column density the carriers of the extinction bump
at 2175 Å are being destroyed by the ambient UV radiation field.
Results. Turbulence is found to be a natural explanation not only of the flatter curvature of the Calzetti extinction curve but also
of the missing bump provided the critical column density is NH ≥ 1021 cm−2. The density contrast needed to explain both charac-
teristics is well consistent with the Mach number of the cold neutral medium of our own Galaxy which suggests a density contrast
σρ/〈ρ〉 ≈ 6.

Key words. turbulence – dust, extinction – ISM: structure

1. Introduction

The ability of interstellar dust grains to attenuate light through
scattering and absorption can lead to large uncertainties in the
determination of the crucial physical parameters of galaxies.
These parameters not only help determine the evolution of the
galactic system, but are also important for the determination of
the star formation rate as function of red-shift, a key parameter
in understanding the evolution of the universe as a whole. The
dust correction is complicated by several effects as the contri-
bution of scattered light, the geometry, the mixture of the dust
with the sources, and the inhomogeneous structure of the inter-
stellar medium all affect the global attenuation of the galactic
starlight. These effects produce an attenuation curve which may
be quite different from a pure extinction curve derived for an
individual star.

It is maybe not too surprising that the galactic redden-
ing curve E(λ − V)/E(B − V) derived for star-burst galaxies
(Calzetti 2001) shows two significant deviations from the extinc-
tion curve known for the diffuse interstellar medium (ISM) of
our own galaxy. First the reddening at long wavelengths is lower
which points to a larger absolute-to-relative extinction RV and
to flatter extinction curve Aλ/AV and second the 2175 Å feature
which is very prominent in the extinction curves derived for the
Milky Way or the Large Magellanic Cloud (LMC) seems to be
rather weak or absent. The smoothness makes the Calzetti curve
similar to the extinction curve derived for the bar of the Small
Magellanic Cloud (SMC) (Gordon & Clayton 1998). However,
the overall curvature in the optical is steeper in the SMC with an
RV -value even slightly lower (2.74 ± 0.13, Gordon et al. 2003)
in respect to the Milky Way (3.1, Fitzpatrick 1999).

A flatter curvature of a pure foreground extinction points in
general to a larger grain population as is inferred in the case of
the Orion region, for example. A flattening of the effective ex-
tinction curve for extended sources can also be produced by the

in-homogeneity of the dusty interstellar medium. The reason for
this lies in the fact that a non-homogeneous medium is less op-
tically thick than a homogeneous distribution of matter and that
the reduction in the effective extinction increases with optical
thickness. It has been found based on radiative transfer calcu-
lations that a clumpy shell can reproduce the Calzetti curve if
dust properties are consistent with the smooth SMC bulk extinc-
tion curve (Gordon et al. 1997; Witt & Gordon 2000). We have
shown (Fischera et al. 2003) that the overall flatter curvature of
the Calzetti curve can be naturally explained by the turbulent
nature of the ISM (Paper I). The density contrast needed to pro-
duce the flattening is found to be consistent with the velocity
dispersion of the cold neutral medium (CNM) as indicated by
CO observations.

The situation with regard to the absence of the peak at
2175 Å is rather different. It is thought that the peak is caused
by π-electron resonance produced in small carbonaceous par-
ticles which include graphenes, polycyclic aromatic hydrocar-
bons (PAH) and possibly small graphite grains (Li & Draine
2001; Weingartner & Draine 2001; Draine & Li 2007; Fischera
& Dopita 2008). The UV light is thought to excite the skele-
ton vibration modes of the molecules which produce in case
of PAH molecules the broad emission features seen in the near
infrared. The analysis of the diffuse galactic emission (Witt &
Lillie 1973; Lillie & Witt 1976; Morgan et al. 1976) or reflec-
tion nebula (Witt et al. 1982, 1992; Calzetti et al. 1995) suggests
that the feature is predominantly or even completely caused by
absorption. If the observed light contains a considerable amount
of scattered emission the peak strength in the effective extinction
curve would even increase. Simple geometrical effects are there-
fore an unlikely explanation for the absence of the feature in
the Calzetti curve as verified by detailed radiative transfer cal-
culations (Gordon et al. 1997; Witt & Gordon 2000). On the
other hand it has been argued that the Calzetti curve is a result
of an additional clumpy distribution of the stars where young
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stars are strongly mixed with opaque clouds (Granato et al. 2000;
Panuzzo et al. 2007).

A possible origin for the smooth Calzetti curve lies in the de-
struction of the carriers of the peak caused by the strong UV ra-
diation field. This process has been discussed in the context of
star burst galaxies by Dopita et al. (2005), and has been exten-
sively modeled by several authors (Omont 1986; Allamandola
et al. 1989; Léger et al. 1989; Allain et al. 1996a,b; Le Page et al.
2003) A similar interpretation was given for the absence of the
peak in the SMC bar extinction curve. The carriers are thought
to be destroyed by the pervasive UV radiation field caused by
the lower dust content resulting from a ten times (Russell &
Dopita 1992) lower metallicity in the ISM of the SMC (Gordon
& Clayton 1998). The destruction in the ISM cannot be com-
plete as one individual sight line shows a clear extinction bump
(Lequeux et al. 1982; Gordon & Clayton 1998; Gordon et al.
2003). A complete destruction of the carriers also seems to be
in contradiction with the observed emission spectra of starburst
galaxies as they still show the prominent PAH emission features.

This paper is number IV in a series of papers where we an-
alyze the attenuation characteristics caused by a dusty turbulent
medium. In the first paper (Paper I) we addressed the problem if
a turbulent medium can reproduce the flatter curvature of the
Calzetti extinction curve. In the following paper (Fischera &
Dopita 2004) we provided a model of the isothermal turbulent
screen and showed how the statistical properties (the 1-point
and the 2-point statistic) of the column density are related to
the statistical properties of the local densities (Paper II). We
have applied this model (Fischera & Dopita 2005) to analyze
in detail the attenuation caused by a distant turbulent screen
(Paper III). In this current paper we investigate under which cir-
cumstances the 2175 Å absorption feature can be suppressed,
while at the same time not removing all its carriers through
PAH photo-dissociation.

2. Model

In any model, the geometry of the dust with respect to an ex-
tended source of photons is crucial in determining the received
intensity at any wavelength. As in our previous Paper III we will
apply the geometry of a distant turbulent dusty screen.

2.1. The turbulent slab

For the dusty screen we assume an isothermal turbulent medium.
Turbulence produces a broad distribution of the local density ρ
which is because of the dependence of the densities from their
neighboring density values described in the absence of gravity
through a log-normal function. If we consider the normalized
values x̂ = x/〈x〉 where 〈x〉 is the mean the probability distribu-
tion function (PDF) is given by:

p(ln x̂) =
1√

2πσln x̂

exp

⎡⎢⎢⎢⎢⎣− 1

2σ2
ln x̂

(ln x̂ − ln x̂0)2

⎤⎥⎥⎥⎥⎦ (1)

with ln x̂0 = − 1
2σ

2
ln x̂ where σln ρ̂ is the standard deviation of the

log-normal function. The standard deviation of the log-normal
function is directly related to the standard deviation of the nor-
malized values:

σx̂ =
√

eσ
2
ln x̂ − 1 (2)

In case of the local density the density contrast is according to
Padoan et al. (1997) directly related to the Mach number δv/cM

(where δv is the velocity dispersion and c the sound speed) in
the medium with σρ̂ = βM with β = 1/2. For the cold neutral
medium (CNM) in our galaxy the CO measurements for example
imply a Mach number M ≈ 12 which provides σρ̂ ≈ 6.

The log-normal function is very robust and becomes only
skewed in in the presence of self-gravity. This produces higher
probabilities of encountering high densities since those values
are located in the massive clouds which are gravitationally more
stable against the turbulent motion.

The log-normal function Eq. (1) also approximately ap-
plies to the distribution of the normalized column density ξ =
NH/〈NH〉 through an idealized turbulent medium Fischera et al.
(2003). We have shown how the ratio of the standard devia-
tion of the column density and the standard deviation of the
local density depends apart from the thickness Δ of the tur-
bulent slab which is conveniently measured in terms of the
maximum turbulent scale Lmax also on the structure of the lo-
cal density. In the turbulent medium the structure is described
through a simple power law of the local density in Fourier space
P(ρ(k)) = kn where k is the wavenumber. In the limit of a thin
slab (Δ/Lmax � 1) the standard deviations become equal. In the
limit of a thick screen (Δ/Lmax 	 1) the variance of the column
density is inversely proportional to the thickness. Assuming a
simple power law this limit is given by:

σξ = σρ/〈ρ〉

√
n + 3

2n + 4
Lmax

Δ
, (3)

where n < −3. The value n = −11/3 is consistent with
Kolmgorov turbulence. As shown in Paper II the asymptote also
provides accurate results at Δ/Lmax = 1.

In this model the standard deviation of the column density
is not clearly defined as the value depends not only on the tur-
bulence of the medium (Mach number M) but also on the thick-
ness of the slab Δ/Lmax. The same distribution function can be
obtained through different assumptions of the turbulence and the
slab thickness. In this work we consider therefore the distribu-
tion function of the column density assuming different values of
the total mean column density and the standard deviation σln ξ .

2.2. The effective extinction

We assume that the carriers of the 2175 Å bump are being de-
stroyed below a certain column density [NH]crit = ξcrit〈NN〉 but
intact at higher column densities. The corresponding extinction
coefficients in the medium below and above this critical column
density are distinguished as κ(1)

λ and κ(2)
λ , respectively.

The effective or effective extinction of a homogeneous light
source seen through a turbulent, or in general non-homogeneous,
dusty screen is given by the mean of the extinction values

τeff
λ = − ln〈e−τλ〉 (4)

where τλ = κλNH is the optical depth. For the idealized turbulent
screen the effective extinction is then given by:

e−τ
eff
λ =

ycrit∫
−∞

dy e−〈τ
(1)
λ 〉ey p(y)

+ e−Δ〈τλ〉e
ycrit

∫ ∞

ycrit

dy e−〈τ
(2)
λ 〉ey p(y) (5)

where 〈τ(i)
λ 〉 = κ(i)λ 〈NH〉 is the mean extinction and where we use

the abbreviation y = ln ξ and ycrit = ln ξcrit. Further, we have
difference in optical depth Δ〈τλ〉 = 〈τ(1)

λ 〉 − 〈τ(2)
λ 〉.
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Fig. 1. Visualization of the effect caused by PAH destruction below a
critical column density [NH]crit = 1021 cm−2. The density structure is de-
rived using a cube of 2563 Pixel, a power index of n = −10/3 and a max-
imum length scale of 0.4 times the cube size. To the left the column den-
sity for two standard deviations σρ/〈ρ〉 of the local density is shown. The
images to the right for each turbulent cube gives the PAH abundance
along individual sight lines for two assumptions of the extinction AV

through the cube. The white fields correspond to no PAH molecules
while the black fields have the normal PAH abundance necessary to
produce the extinction bump at 2175 Å.

The effect caused by the destruction of PAH molecules be-
low a column density of [NH]crit = 1021 cm−2 is visualized in
Fig. 1 for two different assumptions of the density contrast and
the mean extinction 〈AV〉 through the slab. The density con-
trasts 1 and 6 correspond, assuming a power n = −10/3, to a
standard deviation σln ξ of the log-normal density distribution of
the column density of approximately 0.22 and 1.01.

The turbulence produces a large variety of column densities.
In high turbulent media the medium is compressed to small vol-
umes of high densities which appear in projection as individual
clouds leaving large areas of low column densities. An appre-
ciable fraction of the total projected area is completely free of
the carriers of the 2175 Å absorption feature. As more light is
transmitted in these regions, the size of the bump in the overall
attenuation curve is reduced as well.

On the other hand the carrier abundance of the bump is
higher in a turbulent medium as the dust is now found predomi-
nantly in dense clouds where the carriers become because of the
high column densities save against destruction.

2.3. Extinction curve

For the calculations we adopt the extinction curve as provided
by Fitzpatrick (1999). In the model the feature at 2175 Å is de-
scribed by a Drude model which we subtracted to obtain the
curve for a medium where the carriers are destroyed. For sim-
plicity we assume that the absolute-to-relative extinction does
not depend on the carrier destruction. To analyze the effect of the
destruction on the attenuation curve we consider the extinction
coefficients at peak frequency. The corresponding values without
and with the absorption feature are given by:

κ(1)
0.22 = 5.75/(5.8× 1021) cm−2,

κ(2)
0.22 = 8.78/(5.8× 1021) cm−2. (6)

As peak strength we define
ΔA0.22

E(B − V)
(7)

where ΔA0.22 is the difference of the extinction at peak frequency
with and without absorption feature. In case of the Fitzpatrick
curve this value is c3/γ

2 = 3.30 where c3 = 3.23 is the bump
strength and γ = 0.99 the bump width (Fitzpatrick 1999).

3. Results

First we show that a turbulent medium with the combination
of additional destruction can indeed lead to a reduced feature
at 2175 Å. We will then analyze more quantitative the require-
ments to produce smooth attenuation curves. Approximations of
the effective optical depths are given in Appendix A.

3.1. The attenuation curve

To derive attenuation curves we assume for the critical column
density below which the carriers of the extinction bump are
destroyed [NH]crit = 1021 cm−2. For the dusty screen we as-
sumed several values of the standard deviation σln ξ of the log-
normal distribution of the column density spanning a range from
a smooth (σln ξ = 0.125) to a highly non homogeneous medium
(σln ξ = 2). To show the effect on the extinction value we consid-
ered two mean values 〈AV〉 = 1 mag and 〈AV〉 = 2 mag.

The derived curves are shown in Fig. 2. The important pa-
rameters characterizing the curves are summarized in Table 1
which are the effective absolute-to-relative extinction RA

V =

Aeff
V /E(B − V)eff , the extinction in V-band AV/〈AV〉, and the

peak strength c3/γ
2 which is analyzed more quantitatively in

Sect. 3.2. In addition the table lists the density contrast for cer-
tain assumptions for the power n and the thickness of the screen
relative to the maximum cloud size. The density contrast for
σln ξ = 2 is already more than two times higher than is implied
by CO measurements. In this regard the physical conservative
regime is limited to σln ξ < 2. In systems with higher star for-
mation rates like in star burst galaxies which lead to stronger
turbulence the distributions are possibly wider.

As visualized in Fig. 2, the distant screen becomes more
transparent for wider distributions of the column densities. This
effect is stronger in more optically thick media. In the optical
this produces a flatter effective extinction curve which leads to
a larger absolute to relative extinction RA

V . As shown in Table 1
for the considered parameters a broader distribution of the col-
umn density produces a flatter extinction curve. However, we
note that for extremely broad distributions this behavior is not
valid for opaque screens (〈AV〉 > 1 mag) as is shown in the next
section. As we have shown in our Paper I that the turbulent dis-
tant screen model suggests for the Calzetti extinction curve an
RA

V -value larger than 4. Our best solution provides RA
V ∼ 4.75.

This implies σln ξ > 1 for both extinction values.
To emphasize the effect of the carrier destruction of the

2175 Å bump we considered also a turbulent medium where
the carrier abundance is naturally lower. In case of a smooth
medium the two curves become identical. As can be seen in
Fig. 2, in case of a naturally lower carrier abundance the peak
strength only mildly decreases for broader distributions which
keeps to be prominent feature in the effective extinction curve.
In contrast, if the abundance changes according to the column
density because of destruction the peak weakens strongly for
wider column density distributions. For example, for σln ξ > 1
the peak strength is less than 20% of the intrinsic value (Table 1).
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Fig. 2. Effective Extinction curves (left hand figure) and reddening curves around the extinction bump (right hand figure) for a turbulent distant
screen. The intrinsic extinction curves with and without extinction bump are shown as dashed-dotted and as dashed curve, respectively. The
effective extinction and reddening curves without and with change of the dust properties as function of optical depth are shown either as dotted
curve or solid curves. Added is also the mean extinction curve for the limit of a non turbulent screen (grey curve). It is assumed that the extinction
bump at 2175 Å is absent below a column density NH = 1021 cm−2 which corresponds, assuming RV = 3.1 (Fitzpatrick 1999) and a dust-to-
gas-ratio of NH/E(B − V) = 5.8 × 1021 cm−2 (Bohlin et al. 1978), to AV ≈ 0.53 mag. The curves are labelled with the corresponding standard
deviation σln ξ of the log-normal density distribution of the normalized column density ξ = NH/〈NH〉.

Table 1. Parameters of the attenuation curve.

〈AV〉 = 1 mag 〈AV〉 = 2 mag
σln ξ σρ/〈ρ〉a RA

V
AV
〈AV 〉 c3/γ

2 RA
V

AV
〈AV 〉 c3/γ

2

0.125 0.28 3.13 0.993 1.44 3.15 0.986 2.27
0.250 0.57 3.21 0.972 1.21 3.31 0.947 1.94
0.500 1.19 3.51 0.896 0.74 3.79 0.825 1.26
1.000 2.93 4.29 0.682 0.37 4.79 0.565 0.54
2.000 16.4 5.54 0.320 0.19 6.11 0.239 0.23

Notes. (a) Density contrast based on Eq. (3) assuming n = −10/3 and
Δ/Lmax = 1.

3.2. Peak strength

We have analyzed the effect of the additional destruction of a
turbulent distant screen on the absorption feature by considering
the effective peak strength ΔAeff

0.22/E(B − V)eff where ΔAeff
0.22 is

the difference of the effective extinction at peak frequency of the
complete model and a model where the bump has been removed
from the intrinsic extinction curve. To understand the importance

of additional destruction we also considered a screen where no
further destruction has occurred.

3.2.1. No additional destruction

As found in Paper III the effective extinction curves of the tur-
bulent screen are well determined by the effective absolute-to-
relative extinction RV . For given RV -value we therefore expect a
certain strength of the peak. As Fig. 3 shows, in case of proba-
bility distribution functions (PDFs) of the column densities with
σln ξ � 1 this behavior is quite accurate. For wide PDFs and
high extinction values the RV -value only provides an approxi-
mation of the correct attenuation curves. For example, if we con-
sider a certain RV -value the peak strength increases for broader
PDFs. But still, for σln ξ < 2 the effect is in the order of only
a few percent.

Turbulence not only flattens the extinction curve but also
reduces the peak strength as we have seen in the former sec-
tion. The effects are stronger in more optically thick media but,
as Fig. 3 shows, do not simply increase towards wider PDFs
of the column density. This behavior is only true for media
which are optically thin and for optically thick media with not
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Fig. 3. Peak strength ΔAeff
0.22/E(B − V)eff of the effective extinction curve without (left) and with additional destruction (right) of the carriers as

function of the two parameters 〈AV〉 and σln N/〈N〉 of the turbulent screen. The black curves are lines of constant peak strengths. They are labelled
with the percentage of the peak strength relative to the intrinsic value. In the right figure the carriers are assumed to be destroyed below a critical
column density of [NH]crit = 1021 cm−2. The corresponding RV -values are shown as grey solid lines.

extremely wide PDFs. As shown in Appendix A.2 in the limit
of infinitely broad PDFs the RV -value and the peak strength of
the effective extinction curve become independent on the mean
extinction 〈AV 〉 and the standard deviation of the column den-
sity σln ξ. The asymptotic absolute-to-relative extinction is given
by Reff

V =
√

RV/(
√

RV + 1 − √RV ). For RV = 3.1 we have
Reff

V ≈ 6.67. Likewise, we have a limit of the peak strength
given by 68%. For media which are optically thick the asymp-
totic value does not provide the strongest effect on the flatness
and peaks strength. But still, for the considered parameter range
the peak strength is quite strong with >50%. Turbulence alone
is therefore not able to produce the low peak strength of the
Calzetti curve.

3.2.2. Additional destruction

As a special example to analyze the effect caused by the ad-
ditional destruction of the carriers of the peak on its strength
we considered again a critical column density of [NH]crit =
1021 cm−2. Figure 3 shows a strong reduction of the peak
strength even for less broad PDFs. For mean column densities
well above the critical column densities the peak strength weak-
ens strongly in case of more turbulent media. For 〈AV〉 < 10 mag
and σln ξ > 2 the peak strength is lower than 10% relative to
the intrinsic value. The impact of the destruction on the carriers
weakens for higher extinction values 〈AV 〉.

In case of turbulent screens with mean column densities well
below the critical column density turbulence produces regions
of high column densities where the carriers of the peak can sur-
vive. As the mass is compressed to more opaque clouds in higher
turbulent media the peak strength increases with σln ξ.

For intermediate mean column densities turbulence leads to
an increase at low σln ξ but to a decrease of the peak strength at
high σln ξ.

In the limit of broad PDFs of the column density the peak
strength reaches asymptotically a value which is independent on
the main parameters of the screen, the mean extinction 〈AV〉 and
standard deviation of the log-normal function σln ξ . It solely de-
pends on the critical column density [NH]crit and allows there-
fore a first estimate of the possible effect caused by the addi-
tional destruction on the peak strength. The asymptotic behavior
is analyzed in Appendix A.2. For the critical column density

assumed in Fig. 3 the asymptotic value is 3.3% of the intrin-
sic peak strength. As shown in Appendix A.2 for larger critical
column densities the asymptotic value of the peak strength de-
creases strongly as τ−3/2

1 e−τ1 where τ1 = κ
(1)
0.22[NH]crit. For critical

column densities well below [NH]crit = 1021 cm−2 the asymptotic
peak strength reaches the value of 68% caused by the turbulence
in the limit of broad PDFs as discussed above.

The effect of the critical column density on the peak strength
is more accurately derived in Fig. 4. The figure shows the crit-
ical column density needed to reduce the peak strength to 10%
and 50% of the intrinsic value. To produce a peak strength of
turbulent screens with σln ξ > 1 and 〈AV〉 < 10 mag by more
than 50% the critical column density needs to be at least ∼3 ×
1020 cm−2. To decrease in the same parameter range of the screen
the peak strength to 10% of its intrinsic value the critical column
density needs to be at least ∼2 × 1021 cm−2. As the figure shows
the critical column density cannot be considerably smaller than
1021 cm−2 to produce peak strengths as low as 10%. For exam-
ple, a critical column density of 6 × 1021 cm−2 would require in
case of screens (〈AV〉 > 1 mag) very broad PDFs with σln ξ > 4
which would imply Mach numbers M > 1500 far above the ones
measured in the ISM of our galaxy.

4. Conclusion

The analysis shows that a turbulent distant screen can naturally
explain not only the flatter curvature but also a weak absorption
feature at 2175 Å of the Calzetti-curve if within a certain column
density its carriers are destroyed by the strong UV-radiation in
star-burst galaxies. The feature is efficiently reduced by more
than 80% of its intrinsic value if the following circumstances
are fulfilled for typical extinction values measured for star burst
galaxies (AV ∼ 1 mag):

– The standard deviation of the log-normal distribution must
be larger than σln ξ = 1.

– The critical column density needs to be larger than
[NH]crit > 1021 cm−2.

The condition for the standard deviation of the log-normal distri-
bution of the column density is in agreement with the Mach num-
ber of the cold neutral medium (which implies σρ/〈ρ〉 ∼ 6) if the
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Fig. 4. Critical column density [NH]crit needed to reduce the peak strength ΔAeff
0.22/E(B−V)eff of the effective attenuation curve of a turbulent screen

to 10% (left hand figure) or 50% (right hand figure) of the intrinsic value. The curves are labelled by log NH[1021 cm−2]. The grey curves give the
effective RV -value.

thickness is not sufficiently larger than a few turbulent length
scales.

A fractal density structure can also enhance the probability
for the carriers’ survival as they become located in optical thick
clouds and therefore save against further destruction by a strong
UV-field.

Acknowledgements. Dopita & Fischera acknowledge financial support under
Discovery project DP0984657.

Appendix A: Approximation

If we consider an optically thick medium then turbulence will
lead to regions of low column density through which most of
the light will be transmitted. The effective attenuation curve is
determined by those regions. If the medium becomes on the
other hand highly turbulent the medium is compressed to very
small clouds. The only attenuation occurs in regions of high
column density which determine the attenuation curve. To dif-
ferentiate the two different cases we can consider the column
density NH = 〈NH〉ey where τ = 1 relative to the column den-
sity at maximum position of the log-normal distribution NH =

〈NH〉e−0.5σ2
ln ξ . We distinguish the cases − ln〈τ〉 � −0.5σ2

ln ξ and

− ln〈τ〉 	 −0.5σ2
ln ξ

A.1. Approximation for ln〈τ〉 	 0 .5σ2
lnξ

The deviation of the approximation for ln〈τ〉 	 0.5σ2
ln ξ follows

the procedure presented in Paper III. For sake of simplicity we
ignore the additional dependence on wavelength. In this limit
the integrands of Eq. (5) become narrow functions around the
maxima at ỹi determined by

f ′(ỹi) = −〈τi〉eỹi − 1
σ2

(
ỹi +

1
2
σ2

ln ξ

)
= 0 (A.1)

where ỹ1 is the location of the maximum of the first and ỹ2 the
location of the maximum of the second integrand. Developing
the exponential function in the exponent around these maxima
to a secondary order polynomial funtion

ey ≈ eỹi(1 + (y − ỹi) +
1
2

(y − ỹi)2) (A.2)

for i = 1, 2 leads to the approximate expression of the effective
extinction

e−τ
eff
= e−τ

eff
1

1 + er f (t1)
2

+ e−τ
eff
2

1 − er f (t2)
2

· (A.3)

where

er f (ti) =
2√
π

∫ ti

0
dy e−y

2
(A.4)

is the error function and where

ti =

√
γi

2σ2
ln ξ

(ycrit − ỹi), γi = 1 + 〈τi〉σ2
ln ξe

ỹi . (A.5)

The effective optical depths are given by:

τeff
1 =

1
2

ln γ1 +
1
2
〈τ1〉eỹ1 (1 + γ1), (A.6)

τeff
2 =

1
2

ln γ2 + Δ〈τ〉eycrit +
1
2
〈τ2〉eỹ2 (1 + γ2). (A.7)

In Paper III we have shown that the approximation provides the
correct results also for small fluctuations σln ξ � 1 for all optical
depths. In the limit of small fluctuations we obtain the natural
optical depths of a homogeneous screen as γi → 1 and ỹi → 0.

Figure A.1 shows peak strengths derived using the approxi-
mation. They are compared with accurate calculations. The ap-
proximation becomes more accurate for smaller standard de-
viations and larger extinction values. For optical thick media
(〈AV〉 > 1 mag) the approximation is accurate for σln ξ ≤ 1.

The approximation can be used to estimate if the effective ex-
tinction curve is either a flat curve, so that τeff

λ ≈ τeff,1
λ , or “peak

dominated”, so that τeff
λ ≈ τeff,2

λ . The effective extinction is
“peak dominated” if the critical value lies well below the typical
column densities contributing to the effective extinction e−τeff,2

.
As a simple criterium we can consider ti = 0 for i = 1, 2 which
provides for given mean and critical column density a critical
standard deviation

σcrit,i
ln ξ =

√ −2ycrit

2κ(i)0.22 μm[NH]crit + 1
, ycrit ≤ 0. (A.8)

where κ(i)0.22 μm are the extinction coefficients given in Eq. (6).
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Fig. A.1. Peak strength of the effective extinction curve caused by a distant turbulent screen as function of the mean extinction (〈AV〉) for given
column density contrast (σlnN/〈N〉) (left hand figure) and as function of column density contrast for given mean extinction (right hand figure). The
curves in the right hand figure are labelled with log AV [mag]. The critical column density is assumed to be [NH]crit = 1021 cm−2. The values in the
limit of a non turbulent medium (σ = 0) are shown as grey lines, the value in the the theoretical limit of infinite column density contrast (σ→ ∞)
as dashed line. Also shown as dotted lines are peak strengths derived using the approximation Eq. (A.3).

Table A.1. Critical standard deviations.

〈AV〉 [mag] 1.00 2.00 1.00 2.00
[NH]crit [1021 cm2] 0.50 0.50 1.00 1.00

σcrit,1
ln ξ 1.15 1.42 0.65 0.94
σcrit,2

ln ξ 1.02 1.27 0.56 0.81

The extinction curve is “peak dominated” for t2 � 0 (σln ξ �
σcrit,2

ln ξ ) as the error functions become er f (t1) = er f (t2) = −1. In
the additional limit [NH]crit/〈NH〉 � 1 we obtain the result of
Paper III

τeff,2
λ =

1
2

ln γ2 +
1
2
〈τ2〉eỹ2 (1 + γ2). (A.9)

This solution is trivial for κ(1)
λ = κ

(2)
λ as t1 = t2. The effective ex-

tinction becomes essentially flat for t1 	 0 (σln ξ 	 σcrit,1
ln ξ ).

A number of critical standard deviations are listed for given
mean extinction and critical column density in Table A.1. The
values point to a critical column density [NH]crit ≥ 1021 cm−2 to
obtain a flat extinction curve as lower values would imply wider
PDFs which become unlikely considering the density contrast in
the ISM of our Galaxy.

A.2. Approximation for ln〈τ〉 � 0 .5σ2
lnξ

In the limit − ln〈τ〉 	 −0.5σ2
ln ξ most sight lines through the

turbulent medium are optically thin. It is therefore convenient to
rewrite the equation for the effective optical depth so that

τeff
λ = − ln

{
1 −

∫
dy p(y)

(
1 − e−〈τ〉e

y
)}
. (A.10)

The integral is a small number so that

τeff
λ ≈

∫
dy p(y)

(
1 − e−〈τ〉e

y
)
. (A.11)

In case that y � 0.5σ2 we can replace the PDF of the column
density through a power law distribution:

dy p(y) ≈ dτ
e−σ2/8

√
2πσ

√〈τ〉
3
√
τ

(A.12)

where τ = 〈τ〉 ln y = κ[NH]crit. The equation for the effective
optical depth becomes after an additional partial integration:

τeff ≈
√

2
π

e−σ2/8

σ

√〈τ〉∫ ∞

0
dt t−1/2 e−t (A.13)

where the integral can be identified as the Γ-function with
Γ( 1

2 ) =
√
π.

In the limit of a broad PDF the effective optical depth de-
creases strongly with σln ξ and is proportional to the square root
of the mean optical depth. The ratio of two effective optical
depths becomes not only independent on the width of the PDF
but also independent on the dust content of the screen. As a
special case we can consider the absolute to relative extinction
value RV = AV/(AB − AV ). The corresponding value of a tur-
bulent screen with an infinite broad PDF has then a value of
1/Reff

V =

√
1 + R−1

V − 1. For RV = 3.1 we obtain therefore an

asymptote Reff
V ≈ 6.67. Another example is the peak strength.

If we ignore additional destruction the peak strength in case of
broad PDFs of the column density approaches asymptotically

ΔAeff

E(B − V)eff
=

√
κ(2)

0.22 −
√
κ(1)

0.22√
κB − √κV = 2.23. (A.14)

Compared to the intrinsic value of 3.30 this means a reduction
to 68% in the limit of infinite broad PDFs.

A similar approach leads to the asymptotic behavior of the
peak strength in case of additional destruction. The equation for
the effective optical depth at peak frequency can be rewritten as:

τeff = − ln
{
1 −

∫ ∞

ycrit

dy p(y)
(
1 − e−Δ〈τ〉crit

)
−

∫ ∞

−∞
dy p(y)

(
1 − e−〈τ1〉ey) + ∫ ∞

ycrit

dy p(y)
(
1 − e−〈τ1〉ey)

− e−Δ〈τ〉crit

∫ ∞

ycrit

d p(y)
(
1 − e−〈τ2〉ey) }. (A.15)

The sum over the four integrals is a small number so that we can
make the same simplification as in Eq. (A.11). Replacing the
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Fig. A.2. Peak strength in the limit of a broad PDF with ln〈τ〉 � 1
2σ

2
ln ξ

as function of the critical column density below which the carriers of
the peak are assumed to be destroyed. The intrinsic peak strength as
given by Fitzpatrick (1999) is shown as dashed line. The corresponding
peak strength of a turbulent screen model with no additional destruction
is shown as dotted line. The dashed-dotted and the three dashed-dotted
curves are the approximations in the regime τ1 = κ

(1)
0.22[NH]crit 	 1 and

τ2 = κ
(2)
0.22[NH]crit � 1 given in Eqs. (A.21) and (A.23).

distribution of the column density by the power law distribution
(Eq. (A.12)) provides:

τeff ≈
√

2
π

e−σ2/8

σ

{ √
〈NH〉/[NH]crit

(
1 − e−Δ〈τ〉crit

)
+

√
〈τ1〉 ( f (0) − f (τ1)) +

√
〈τ2〉 f (τ2) e−Δ〈τ〉crit

}
, (A.16)

where

f (τ) =
1
2

∫ ∞

τ

dt t−3/2
(
1 − e−t

)
=

1 − e−τ√
τ
+ Γ

(
1
2
, τ

)
. (A.17)

Γ(a, x) is the incomplete Γ-function

Γ(a, x) =
∫ ∞

x
dt ta−1e−t. (A.18)

For the special case τ = 0 we have f (0) =
√
π.

For the peak strength in the limit of an infinite broad PDF
we obtain:

ΔAeff
0.22

E(B − V)eff
=

1√
π
√
κB − √π√κV

×
{

1√
[NH]crit

(1 − e−Δτcrit )

+
√
κ2 f (τ2) e−Δτcrit − √κ1 f (τ1)

}
. (A.19)

The curve is shown in Fig. A.2. For [NH]crit � 1021 cm−2 the
asymptotic value becomes equal to the peak strength with no fur-
ther destruction. The asymptotic value for [NH]crit = 1021 cm−2

is added in Fig. A.1. In the limit ycrit 	 − ln〈τ1〉 we can replace
the incomplete Gamma function by∫ ∞

x
ta−1 e−t ≈ xs−1e−x

(
1 + (s − 1)x−1

)
(A.20)

which leads to

Δτeff ≈
√

2
π

e−σ2/8

σ
×

√
〈NH〉

[NH]crit

1
2

(
1
τ1
− 1
τ2

)
e−τ1 . (A.21)

At [NH]crit 	 1021 cm−2 the asymptotic peak strength decreases
as τ−3/2

1 e−τ1 .
In the limit ycrit � − ln〈τ2〉 we can use the approximation

f (τ) ≈ √π − √τ (A.22)

which provides:

Δτeff ≈
√

2
π

e−σ2/8

σ

{ √〈τ2〉
[√
π(1 − (τ1 − τ2)) − 2

√
τ2

]
− √〈τ1〉

(√
π − 2

√
τ1

) }
. (A.23)

This approximation provides accurate asymptotic peak strength
below [NH]crit = 1020 cm−2.
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