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Abstract

We consider loss functions for multiclass prediction problems. We show when
a multiclass loss can be expressed as a “proper composite loss”, which is the
composition of a proper loss and a link function. We extend existing results for
binary losses to multiclass losses. We determine the stationarity condition, Breg-
man representation, order-sensitivity, existence and uniqueness of the composite
representation for multiclass losses. We subsume existing results on “classifica-
tion calibration” by relating it to properness and show that the simple integral
representation for binary proper losses can not be extended to multiclass losses.

1 Introduction

The motivation of this paper is to understand the intrinsic structure and properties of suitable loss
functions for the problem of multiclass prediction, which includes multiclass probability estimation.
Suppose we are given a data sample S := (xi,yi)i∈[m] where xi ∈ X is an observation and yi ∈
{1, ..,n} =: [n] is its corresponding class. We assume the sample S is drawn iid according to some
distribution P = PX ,Y on X × [n]. Given a new observation x we want to predict the probability
pi := P(Y = i|X = x) of x belonging to class i, for i ∈ [n]. Multiclass classification requires the
learner to predict the most likely class of x; that is to find ŷ = argmaxi∈[n] pi.

A loss measures the quality of prediction. Let ∆n := {(p1, . . . , pn) : ∑i∈[n] pi = 1,and 0≤ pi≤ 1, ∀i∈
[n]} denote the n-simplex. For multiclass probability estimation, ` : ∆n→Rn

+. For classification, the
loss ` : [n]→ Rn

+. The partial losses `i are the components of `(q) = (`1(q), . . . , `n(q))′.

Proper losses are particularly suitable for probability estimation. They have been studied in detail
when n = 2 (the “binary case”) where there is a nice integral representation [1, 2, 3], and charac-
terization [4] when differentiable. Classification calibrated losses are an analog of proper losses for
the problem of classification [5]. The relationship between classification calibration and properness
was determined in [4] for n = 2. Most of these results have had no multiclass analogue until now.

The design of losses for multiclass prediction has received recent attention [6, 7, 8, 9, 10, 11, 12]
although none of these papers developed the connection to proper losses, and most restrict consid-
eration to margin losses (which imply certain symmetry conditions). Glasmachers [13] has shown
that certain learning algorithms can still behave well when the losses do not satisfy the conditions in
these earlier papers because the requirements are actually stronger than needed.

Our contributions are: We relate properness, classification calibration, and the notion used in [8]
which we rename “prediction calibrated” §3; we provide a novel characterization of multiclass
properness §4; we study composite proper losses (the composition of a proper loss with an invertible
link) presenting new uniqueness and existence results §5; we show how the above results can aid in
the design of proper losses §6; and we present a (somewhat surprising) negative result concerning
the integral representation of proper multiclass losses §7. Many of our results are characterisations.
Full proofs are provided in the extended version [14].
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2 Formal Setup

Suppose X is some set and Y = {1, . . . ,n} = [n] is a set of labels. We suppose we are given
data (xi,yi)i∈[m] such that Yi ∈ Y is the label corresponding to xi ∈X . These data follow a joint
distribution PX ,Y . We denote by EX ,Y and EY |X respectively, the expectation and the conditional
expectation with respect to PX ,Y .

The conditional risk L associated with a loss ` is the function

L : ∆
n×∆

n 3 (p,q) 7→ L(p,q) = EY∼p`Y(q) = p′ · `(q) = ∑
i∈[n]

pi`i(q) ∈ R+,

where Y∼ p means Y is drawn according to a multinomial distribution with parameter p. In a typical
learning problem one will make an estimate q : X →∆n. The full risk is L(q)=EX EY |X `Y(q(X)).

Minimizing L(q) over q : X → ∆n is equivalent to minimizing L(p(x),q(x)) over q(x) ∈ ∆n for all
x ∈X where p(x) = (p1(x), . . . , pn(x))′, p′ is the transpose of p, and pi(x) = P(Y = i|X= x). Thus
it suffices to only consider the conditional risk; confer [3].

A loss ` : ∆n→ Rn
+ is proper if L(p, p)≤ L(p,q), ∀p,q ∈ ∆n. It is strictly proper if the inequality is

strict when p 6= q. The conditional Bayes risk L : ∆n 3 p 7→ infq∈∆n L(p,q). This function is always
concave [2]. If ` is proper, then L(p) = L(p, p) = p′ · `(p). Strictly proper losses induce Fisher
consistent estimators of probabilities: if ` is strictly proper, p = argminq L(p,q).

In order to differentiate the losses we project the n-simplex into a subset of Rn−1. We de-
note by Π∆ : ∆n 3 p = (p1, . . . , pn)

′ 7→ p̃ = (p1, . . . , pn−1)
′ ∈ ∆̃n := {(p1, . . . , pn−1)

′ : pi ≥ 0, ∀i ∈
[n], ∑

n−1
i=1 pi ≤ 1}, the projection of the n-simplex ∆n, and Π

−1
∆

: ∆̃n 3 p̃ = (p̃1, . . . , p̃n−1) 7→ p =

(p̃1, . . . , p̃n−1,1−∑
n−1
i=1 p̃i)

′ ∈ ∆n its inverse.

The losses above are defined on the simplex ∆n since the argument (an estimator) represents
a probability vector. However it is sometimes desirable to use another set V of predictions.
One can consider losses ` : V → Rn

+. Suppose there exists an invertible function ψ : ∆n → V .
Then ` can be written as a composition of a loss λ defined on the simplex with ψ−1. That is,
`(v) = λ ψ(v) := λ (ψ−1(v)). Such a function λ ψ is a composite loss. If λ is proper, we say ` is a
proper composite loss, with associated proper loss λ and link ψ .

We use the following notation. The kth unit vector ek is the n vector with all components zero except
the kth which is 1. The n-vector 1n := (1, . . . ,1)′. The derivative of a function f is denoted D f and
its Hessian H f . Let ∆̊n := {(p1, . . . , pn) : ∑i∈[n] pi = 1,and 0 < pi < 1, ∀i ∈ [n]} and ∂∆n := ∆n \ ∆̊n.

3 Relating Properness to Classification Calibration

Properness is an attractive property of a loss for the task of class probability estimation. However if
one is merely interested in classifying (predicting ŷ ∈ [n] given x ∈X ) then one requires less. We
relate classification calibration (the analog of properness for classification problems) to properness.

Suppose c ∈ ∆̊n. We cover ∆n with n subsets each representing one class:

Ti(c) := {p ∈ ∆
n : ∀ j 6= i pic j ≥ p jci}.

Observe that for i 6= j, the sets {p ∈ R : pic j = p jc j} are subsets of dimension n−2 through c and
all ek such that k 6= i and k 6= j. These subsets partition ∆n into two parts, the subspace Ti is the
intersection of the subspaces delimited by the precedent (n−2)-subspace and in the same side as ei.
We will make use of the following properties of Ti(c).

Lemma 1 Suppose c ∈ ∆̊n, i ∈ [n]. Then the following hold:
1. For all p ∈ ∆n, there exists i such that p ∈Ti(c).

2. Suppose p ∈ ∆n. Ti(c)∩T j(c)⊆ {p ∈ ∆n : pic j = p jci}, a subspace of dimension n−2.

3. Suppose p ∈ ∆n. If p ∈
⋂n

i=1 Ti(c) then p = c.

4. For all p,q ∈ ∆n, p 6= q, there exists c ∈ ∆̊n, and i ∈ [n] such that p ∈Ti(c) and q /∈Ti(c).
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Classification calibrated losses have been developed and studied under some different definitions
and names [6, 5]. Below we generalise the notion of c-calibration which was proposed for n = 2 in
[4] as a generalisation of the notion of classification calibration in [5].

Definition 2 Suppose ` : ∆n→ Rn
+ is a loss and c ∈ ∆̊n. We say ` is c-calibrated at p ∈ ∆n if for all

i ∈ [n] such that p /∈Ti(c) then ∀q ∈Ti(c), L(p)< L(p,q). We say that ` is c-calibrated if ∀p ∈ ∆n,
` is c-calibrated at p.

Definition 2 means that if the probability vector q one predicts doesn’t belong to the same subset
(i.e. doesn’t predict the same class) as the real probability vector p, then the loss might be larger.

Classification calibration in the sense used in [5] corresponds to 1
2 -calibrated losses when n = 2. If

cmid := ( 1
n , . . . ,

1
n )
′, cmid-calibration induces Fisher-consistent estimates in the case of classification.

Furthermore “` is cmid-calibrated and for all i ∈ [n], and `i is continuous and bounded below” is
equivalent to “` is infinite sample consistent as defined by [6]”. This is because if ` is continuous
and Ti(c) is closed, then ∀q ∈Ti(c), L(p)< L(p,q) if and only if L(p)< infq∈Ti(c) L(p,q).

The following result generalises the correspondence between binary classification calibration and
properness [4, Theorem 16] to multiclass losses (n > 2).

Proposition 3 A continuous loss ` : ∆n → Rn
+ is strictly proper if and only if it is c-calibrated for

all c ∈ ∆̊n.

In particular, a continuous strictly proper loss is cmid-calibrated. Thus for any estimator q̂n of the
conditional probability vector one constructs by minimizing the empirical average of a continuous
strictly proper loss, one can build an estimator of the label (corresponding to the largest probability
of q̂n) which is Fisher consistent for the problem of classification.

In the binary case, ` is classification calibrated if and only if the following implication holds [5]:(
L( fn)→min

g
L(g)

)
⇒
(
PX ,Y (Y 6= fn(X))→min

g
PX ,Y (Y 6= g(X))

)
. (1)

Tewari and Bartlett [8] have characterised when (1) holds in the multiclass case. Since there is no
reason to assume the equivalence between classification calibration and (1) still holds for n > 2, we
give different names for these two notions. We keep the name of classification calibration for the
notion linked to Fisher consistency (as defined before) and call prediction calibrated the notion of
Tewari and Bartlett (equivalent to (1)).

Definition 4 Suppose ` : V → Rn
+ is a loss. Let C` = co({`(v) : v ∈ V }), the convex hull of the

image of V . ` is said to be prediction calibrated if there exists a prediction function pred: Rn→ [n]
such that

∀p ∈ ∆
n : inf

z∈C`,ppred(z)<maxi pi
p′ · z > inf

z∈C`

p′ · z = L(p).

Observe that the class is predicted from `(p) and not directly from p (which is equivalent if the
loss is invertible). Suppose that ` : ∆n→ Rn

+ is such that ` is prediction calibrated and pred(`(p)) ∈
argmaxi pi. Then ` is cmid-calibrated almost everywhere.

By introducing a reference “link” ψ̄ (which corresponds to the actual link if ` is a proper composite
loss) we now show how the pred function can be canonically expressed in terms of argmaxi pi.

Proposition 5 Suppose ` : V → Rn
+ is a loss. Let ψ̄(p) ∈ argminv∈V L(p,v) and λ = ` ◦ ψ̄ . Then

λ is proper. If ` is prediction calibrated then pred(λ (p)) ∈ argmaxi pi.

4 Characterizing Properness

We first present some simple (but new) consequences of properness. We say f : C ⊂ Rn → Rn is
monotone on C when for all x and y in C, ( f (x)− f (y))′ · (x− y)≥ 0; confer [15].

Proposition 6 Suppose ` : ∆n→ Rn
+ is a loss. If ` is proper, then −` is monotone.
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Proposition 7 If ` is strictly proper then it is invertible.

A theme of the present paper is the extensibility of results concerning binary losses to multiclass
losses. The following proposition shows how the characterisation of properness in the general (not
necessarily differentiable) multiclass case can be reduced to the binary case. In the binary case,
the two classes are often denoted −1 and 1 and the loss is denoted ` = (`1, `−1)

′. We project the
2-simplex ∆2 into [0,1]: η ∈ [0,1] is the projection of (η ,1−η) ∈ ∆2.

Proposition 8 Suppose ` : ∆n→ Rn
+ is a loss. Define

˜̀p,q : [0,1] 3 η 7→
( ˜̀p,q

1 (η)
˜̀p,q
−1(η)

)
=

(
q′ · `

(
p+η(q− p)

)
p′ · `

(
p+η(q− p)

) ) .

Then ` is (strictly) proper if and only if ˜̀p,q is (strictly) proper ∀p,q ∈ ∂∆n.

This proposition shows that in order to check if a loss is proper one needs only to check the proper-
ness in each line. One could use the easy characterization of properness for differentiable binary

losses (` : [0,1]→ R2
+ is proper if and only if ∀η ∈ [0,1], −`

′
1(η)

1−η
=

`′−1(η)

η
≥ 0, [4]). However this

needs to be checked for all lines defined by p,q ∈ ∂∆n. We now extend some characterisations of
properness to the multiclass case by using Proposition 8.

Lambert [16] proved that in the binary case, properness is equivalent to the fact that the further your
prediction is from reality, the larger the loss (“order sensitivity”). The result relied upon on the total
order of R. In the multiclass case, there does not exist such a total order. Yet, one can compare
two predictions if they are in the same line as the true real class probability. The next result is a
generalization of the binary case equivalence of properness and order sensitivity.

Proposition 9 Suppose ` : ∆n→ Rn
+ is a loss. Then ` is (strictly) proper if and only if ∀p,q ∈ ∆n,

∀0≤ h1 ≤ h2, L(p, p+h1(q− p))≤ L(p, p+h2(q− p)) (the inequality is strict if h1 6= h2).

“Order sensitivity” tells us more about properness: the true class probability minimizes the risk
and if the prediction moves away from the true class probability in a line then the risk increases.
This property appears convenient for optimization purposes: if one reaches a local minimum in the
second argument of the risk and the loss is strictly proper then it is a global minimum. If the loss is
proper, such a local minimum is a global minimum or a constant in an open set. But observe that
typically one is minimising the full risk L(q(·)) over functions q : X → ∆n. Order sensitivity of `
does not imply this optimisation problem is well behaved; one needs convexity of q 7→ L(p,q) for
all p ∈ ∆n to ensure convexity of the functional optimisation problem.

The order sensitivity along a line leads to a new characterisation of differentiable proper losses. As
in the binary case, one condition comes from the fact that the derivative is zero at a minimum and
the other ensures that it is really a minimum.

Corollary 10 Suppose ` : ∆n → Rn
+ is a loss such that ˜̀= ` ◦Π

−1
∆

is differentiable. Let M(p) =
D ˜̀(Π∆(p)) ·DΠ∆(p). Then ` is proper if and only if

p′ ·M(p) = 0
(q− r)′ ·M(p) · (q− r) ≤ 0

}
∀q,r ∈ ∆

n, ∀p ∈ ∆̊
n. (2)

We know that for any loss, its Bayes risk L(p) = infq∈∆n L(p,q) = infq∈∆n p′ · `(q) is concave. If ` is
proper, L(p) = p′ · `(p). Rather than working with the loss ` : V → Rn

+ we will now work with the
simpler associated conditional Bayes risk L : V → R+.

We need two definitions from [15]. Suppose f : Rn→ R is concave. Then limt↓0
f (x+td)− f (x)

t exists,
and is called the directional derivative of f at x in the direction d and is denoted D f (x,d). By
analogy with the usual definition of subdifferential, the superdifferential ∂ f (x) of f at x is

∂ f (x) :=
{

s ∈ Rn : s′ · y≥ D f (x,y), ∀y ∈ Rn}= {s ∈ Rn : f (y)≤ f (x)+ s′ · (y− x), ∀y ∈ Rn} .
A vector s ∈ ∂ f (x) is called a supergradient of f at x.

The next proposition is a restatement of the well known Bregman representation of proper losses;
see [17] for the differentiable case, and [2, Theorem 3.2] for the general case.
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Proposition 11 Suppose ` : ∆n→Rn
+ is a loss. Then ` is proper if and only if there exists a concave

function f and ∀q ∈ ∆n, there exists a supergradient A(q) ∈ ∂ f (q) such that

∀p,q ∈ ∆
n, p′ · `(q) = L(p,q) = f (q)+(p−q)′ ·A(q).

Then f is unique and f (p) = L(p, p) = L(p).

The fact that f is defined on a simplex is not a problem. Indeed, the superdifferential becomes
∂ f (x) = {s ∈ Rn : s′ ·d ≥ D f (x,d),∀d ∈ ∆n} = {s ∈ Rn : f (y)≤ f (x)+ s′ · (y− x), ∀y ∈ ∆n}. If
f̃ = f ◦Π

−1
∆

is differentiable at q̃∈ ∆̃n, A(q) = (D f̃ (Π∆(q)),0)′+α1′n, α ∈R. Then (p−q)′ ·A(q) =
D f̃ (Π∆(q)) · (Π∆(p)−Π∆(q)). Hence for any concave differentiable function f , there exists an
unique proper loss whose Bayes risk is equal to f (we say that f is differentiable when f̃ is differ-
entiable).

The last property gives us the form of the proper losses associated with a Bayes risk. Suppose
L : ∆n→ R+ is concave. The proper losses whose Bayes risk is equal to L are

` : ∆
n 3 q 7→

(
L(q)+(ei−q)′ ·A(q)

)n

i=1
∈ Rn

+, ∀A(q) ∈ ∂L(q). (3)

This result suggests that some information is lost by representing a proper loss via its Bayes risk
(when the last is not differentiable). The next proposition elucidates this by showing that proper
losses which have the same Bayes risk are equal almost everywhere.

Proposition 12 Two proper losses `1 and `2 have the same conditional Bayes risk function L if and
only if `1 = `2 almost everywhere. If L is differentiable, `1 = `2 everywhere.

We say that L is differentiable at p if L̃ = L◦Π
−1
∆

is differentiable at p̃ = Π∆(p).

Proposition 13 Suppose ` : ∆n→ Rn
+ is a proper loss. Then ` is continuous in ∆̊n if and only if L is

differentiable on ∆̊n; ` is continuous at p ∈ ∆̊n if and only if, L is differentiable at p ∈ ∆̊n.

5 The Proper Composite Representation: Uniqueness and Existence

It is sometimes helpful to define a loss on some set V rather than ∆n; confer [4]. Composite losses
(see the definition in §2) are a way of constructing such losses: given a proper loss λ : ∆n→Rn

+ and
an invertible link ψ : ∆n→ V , one defines λ ψ : V →Rn

+ using λ ψ = λ ◦ψ−1. We now consider the
question: given a loss ` : V →Rn

+, when does ` have a proper composite representation (whereby `

can be written as `= λ ◦ψ−1), and is this representation unique? We first consider the binary case
and study the uniqueness of the representation of a loss as a proper composite loss.

Proposition 14 Suppose `= λ ◦ψ−1 : V →R2
+ is a proper composite loss and that the proper loss

λ is differentiable and the link function ψ is differentiable and invertible. Then the proper loss λ

is unique. Furthermore ψ is unique if ∀v1,v2 ∈ R, ∃v ∈ [v1,v2], `′1(v) 6= 0 or `′−1(v) 6= 0. If there
exists v̄1, v̄2 ∈ R such that `′1(v) = `′−1(v) = 0 ∀v ∈ [v̄1, v̄2], one can choose any ψ|[v̄1,v̄2]

such that
ψ is differentiable, invertible and continuous in [v̄1, v̄2] and obtain ` = λ ◦ψ−1, and ψ is uniquely
defined where ` is invertible.

Proposition 15 Suppose ` : V → R2
+ is a differentiable binary loss such that ∀v ∈ V , `′−1(v) 6= 0

or `′1(v) 6= 0. Then ` can be expressed as a proper composite loss if and only if the following
three conditions hold: 1) `1 is decreasing (increasing); 2) `−1 is increasing (decreasing); and 3)
f : V 3 v 7→ `′1(v)

`′−1(v)
is strictly increasing (decreasing) and continuous.

Observe that the last condition is alway satisfied if both `1 and `−1 are convex.

Suppose ϕ : R → R+ is a function. The loss defined via `ϕ : V 3 v 7→ (`−1(v), `1(v))
′ =

(ϕ(−v),ϕ(v))′ ∈ R2
+ is called a binary margin loss. Binary margin losses are often used for classi-

fication problems. We will now show how the above proposition applies to them.
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Corollary 16 Suppose ϕ : R→R+ is differentiable and ∀v ∈R, ϕ ′(v) 6= 0 or ϕ ′(−v) 6= 0. Then `ϕ

can be expressed as a proper composite loss if and only if f : R 3 v 7→ − ϕ ′(v)
ϕ ′(−v) is strictly monotonic

continuous and ϕ is monotonic.

If ϕ is convex or concave then f defined above is monotonic. However not all binary margin losses
are composite proper losses. One can even build a smooth margin loss which cannot be expressed as
a proper composite loss. Consider ϕ(x) = 1− 1

π
arctan(x−1). Then f (v) = ϕ ′(−v)

ϕ ′(−v)+ϕ ′(v) =
x2−2x+2

2x2+4
which is not invertible.

We now generalize the above results to the multiclass case.

Proposition 17 Suppose ` has two proper composite representations `= λ ◦ψ−1 = µ ◦φ−1 where
λ and µ are proper losses and ψ and φ are continuous invertible. Then λ = m almost everywhere.

If ` is continuous and has a composite representation, then the proper loss (in the decomposition) is
unique (λ = µ everywhere).

If ` is invertible and has a composite representation, then the representation is unique.

`1(v)

` 2
(v
)

q

h L(v)q
=
{x : x ·q

=
L(v)}

S`

x = `(v)

`(V )

Given a loss ` : V → Rn
+, we denote by S` = `(V )+

[0,∞)n = {λ : ∃v ∈ V , ∀i ∈ [n], λi ≥ `i(v)} the super-
prediction set of ` (confer e.g. [18]). We introduce a
set of hyperplanes for p ∈ ∆n and β ∈ R, hβ

p = {x ∈
Rn : x′ · p = β}. A hyperplane hβ

p supports a set A at
x ∈ A when x ∈ hβ

p and for all a ∈ A , a′ · p ≥ β or
for all a ∈ A , a′ · p ≤ β . We say that S` is strictly
convex in its inner part when for all p ∈ ∆n, there ex-
ists an unique x ∈ `(V ) such that there exists a hyper-
plane hβ

p supporting S` at x. S` is said to be smooth
when for all x ∈ `(V ), there exists an unique hyper-
plane supporting S` at x. If ` is invertible, we can
express these two definitions in terms of v ∈ V rather
than x ∈ `(V ). If ` : V → Rn

+ is strictly convex, then
S` will be strictly convex in its inner part.

Proposition 18 Suppose ` : V → Rn
+ is a continuous invertible loss. Then ` has a strictly proper

composite representation if and only if S` is convex, smooth and strictly convex in its inner part.

Proposition 19 Suppose ` : V → Rn
+ is a continuous loss. If ` has a proper composite represen-

tation, then S` is convex and smooth. If ` is also invertible, then S` is strictly convex in its inner
part.

6 Designing Proper Losses

We now build a family of conditional Bayes risks. Suppose we are given n(n−1)
2 concave

functions {Li1,i2 : ∆2 → R}1≤i1<i2≤n on ∆2, and we want to build a concave function L on ∆n

which is equal to one of the given functions on each edge of the simplex (∀1 ≤ i1 < i2 ≤ n,
L(0, .,0, pi1 ,0, .,0, pi2 ,0, .,0) = Li1,i2(pi1 , pi2)). This is equivalent to choosing a binary loss function,
knowing that the observation is in the class i1 or i2. The result below gives one possible construction.
(There exists an infinity of solutions — one can simply add any concave function equal to zero in
each edge).

Lemma 20 Suppose we have a family of concave functions {Li1,i2 : ∆2→ R}1≤i1<i2≤n, then

L : ∆
n 3 p 7→ L(p1, . . . , pn) = ∑

1≤i1<i2≤n
(pi1 + pi2)L

i1,i2

(
pi1

pi1 + pi2
,

pi2
pi1 + pi2

)
is concave and ∀1≤ i1 < i2 ≤ n, L(0, .,0, pi1 ,0, .,0, pi2 ,0, .,0) = Li1,i2(pi1 , pi2).
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Using this family of Bayes risks, one can build a family of proper losses.

Lemma 21 Suppose we have a family of binary proper losses `i1,i2 : ∆2→ R2. Then

` : ∆
n 3 p 7→ `(p) =

(
j−1

∑
i=1

`i, j
−1

(
pi

pi + p j

)
+

n

∑
i= j+1

`i, j
1

(
p j

pi + p j

))n

j=1

∈ Rn
+

is a proper n-class loss such that

`i((0, .,0, pi1 ,0, .,0, pi2 ,0, .,0)) =

 `i1,i2
1 (pi1) i = i1
`i1,i2
−1 (pi1) i = i2

0 otherwise
.

Observe that it is much easier to work at first with the Bayes risk and then using the correspondence
between Bayes risks and proper losses.

7 Integral Representations of Proper Losses

Unlike the natural generalisation of the results from proper binary to proper multiclass losses above,
there is one result that does not carry over: the integral representation of proper losses [1]. In the
binary case there exists a family of “extremal” loss functions (cost-weighted generalisations of the
0-1 loss) each parametrised by c ∈ [0,1] and defined for all η ∈ [0,1] by `c

−1(η) := cJη ≥ cK and
`c

1 := (1− c)Jη < cK. As shown in [1, 3], given these extremal functions, any proper binary loss `
can be expressed as the weighted integral ` =

∫ 1
0 `c w(c)dc+ constant with w(c) = −L′′(c). This

representation is a special case of a representation from Choquet theory [19] which characterises
when every point in some set can be expressed as a weighted combination of the “extremal points”
of the set. Although there is such a representation when n> 2, the difficulty is that the set of extremal
points is much larger and this rules out the existence of a nice small set of “primitive” proper losses
when n > 2. The rest of this section makes this statement precise.

A convex cone K is a set of points closed under linear combinations of positive coefficients. That
is, K = αK +βK for any α,β ≥ 0. A point f ∈K is extremal if f = 1

2 (g+ h) for g,h ∈K
implies ∃α ∈R+ such that g = α f . That is, f cannot be represented as a non-trivial combination of
other points in K . The set of extremal points for K will be denoted exK . Suppose U is a bounded
closed convex set in Rd , and Kb(U) is the set of convex functions on U bounded by 1, then Kb(U)
is compact with respect to the topology of uniform convergence. Theorem 2.2 of [20] shows that the
extremal points of the convex cone K (U)= {α f +βg : f ,g∈Kb(U),α,β ≥ 0} are dense (w.r.t. the
topology of uniform convergence) in K (U) when d > 1. This means for any function f ∈K (U)
there is a sequence of functions (gi)i such that for all i gi ∈ exK (U) and limi→∞ ‖ f − gi‖∞ = 0,
where ‖ f‖∞ := supu∈U | f (u)|. We use this result to show that the set of extremal Bayes risks is
dense in the set of Bayes risks when n > 2.

In order to simplify our analysis, we restrict attention to fair proper losses. A loss is fair if each
partial loss is zero on its corresponding vertex of the simplex (`i(ei) = 0, ∀i ∈ [n]). A proper loss is
fair if and only if its Bayes risk is zero at each vertex of the simplex (in this case the Bayes risk is
also called fair). One does not lose generality by studying fair proper losses since any proper loss is
a sum of a fair proper loss and a constant vector.

The set of fair proper losses defined on ∆n form a closed convex cone, denoted Ln. The set of
concave functions which are zero on all the vertices of the simplex ∆n is denoted Fn and is also a
closed convex cone.

Proposition 22 Suppose n > 2. Then for any fair proper loss ` ∈Ln there exists a sequence (`i)i
of extremal fair proper losses (`i ∈ exLn) which converges almost everywhere to `.

The proof of Proposition 22 requires the following lemma which relies upon the correspondence
between a proper loss and its Bayes risk (Proposition 11) and the fact that two continuous functions
equal almost everywhere are equal everywhere.

Lemma 23 If ` ∈ exLn then its corresponding Bayes risk L is extremal in Fn. Conversely, if
L ∈ exFn then all the proper losses ` with Bayes risk equal to L are extremal in Ln.
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We also need a correspondence between the uniform convergence of a sequence of Bayes risk func-
tions and the convergence of their associated proper losses.

Lemma 24 Suppose L,Li ∈Fn for i ∈ N and suppose ` and `i, i ∈ N are associated proper losses.
Then (Li)i converges uniformly to L if and only if (`i)i converges almost everywhere to `.

Figure 1: Complexity of extremal concave functions in two
dimensions (corresponds to n = 3). Graph of an extremal con-
cave function in two dimensions. Lines are where the slope
changes. The pattern of these lines can be arbitrarily complex.

Bronshtein [20] and Johansen [21]
showed how to construct a set of ex-
tremal convex functions which is dense
in K (U). With a trivial change of sign
this leads to a family of extremal proper
fair Bayes risks that is dense in the set
of Bayes risks in the topology of uniform
convergence. This means that it is not
possible to have a small set of extremal
(“primitive”) losses from which one can
construct any proper fair loss by linear
combinations when n > 2.

A convex polytope is a compact convex
intersection of a finite set of half-spaces
and is therefore the convex hull of its
vertices. Let {ai}i be a finite family
of affine functions defined on ∆n. Now
define the convex polyhedral function f
by f (x) := maxi ai(x). The set K :=
{Pi = {x ∈ ∆n : f (x) = ai(x)}} is a cover-
ing of ∆n by polytopes. Theorem 2.1 of [20] shows that for f , Pi and K so defined, f is extremal
if the following two conditions are satisfied: 1) for all polytopes Pi in K and for every face F of Pi,
F ∩∆n 6=∅ implies F has a vertex in ∆n; 2) every vertex of Pi in ∆n belongs to n distinct polytopes
of K. The set of all such f is dense in K (U).

Using this result it is straightforward to exhibit some sets of extremal fair Bayes risks {Lc(p) : c ∈

∆n}. Two examples are when Lc(p) =
n

∑
i=1

pi
ci ∏

j 6=i
J pi

ci
≤ p j

c j
K or Lc(p) =

∧
i∈[n]

1−pi
1−ci

.

8 Conclusion

We considered loss functions for multiclass prediction problems and made four main contributions:

• We extended existing results for binary losses to multiclass prediction problems includ-
ing several characterisations of proper losses and the relationship between properness and
classification calibration;

• We related the notion of prediction calibration to classification calibration;
• We developed some new existence and uniqueness results for proper composite losses

(which are new even in the binary case) which characterise when a loss has a proper com-
posite representation in terms of the geometry of the associated superprediction set; and

• We showed that the attractive (simply parametrised) integral representation for binary
proper losses can not be extended to the multiclass case.

Our results suggest that in order to design losses for multiclass prediction problems it is helpful to
use the composite representation, and design the proper part via the Bayes risk as suggested for the
binary case in [1]. The proper composite representation is used in [22].

Acknowledgements

The work was performed whilst Elodie Vernet was visiting ANU and NICTA, and was supported by
the Australian Research Council and NICTA, through backing Australia’s ability.

8



References

[1] Andreas Buja, Werner Stuetzle and Yi Shen. Loss functions for binary class probability estima-
tion and classification: Structure and applications. Technical report, University of Pennsylva-
nia, November 2005. http://www-stat.wharton.upenn.edu/˜buja/PAPERS/
paper-proper-scoring.pdf.

[2] Tilmann Gneiting and Adrian E. Raftery. Strictly proper scoring rules, prediction, and estima-
tion. Journal of the American Statistical Association, 102(477):359-378, March 2007.

[3] Mark D. Reid and Robert C. Williamson. Information, divergence and risk for binary experi-
ments. Journal of Machine Learning Research, 12:731-817, March 2011.

[4] Mark D. Reid and Robert C. Williamson. Composite binary losses. Journal of Machine
Learning Research, 11:2387-2422, 2010.

[5] Peter L. Bartlett, Michael I. Jordan and Jon D. McAuliffe. Convexity, classification, and risk
bounds. Journal of the American Statistical Association, 101(473):138-156, March 2006.

[6] Tong Zhang. Statistical analysis of some multi-category large margin classification methods.
Journal of Machine Learning Research, 5:1225-1251, 2004.

[7] Simon I. Hill and Arnaud Doucet. A framework for kernel-based multi-category classification.
Journal of Artificial Intelligence Research, 30:525-564, 2007.

[8] Ambuj Tewari and Peter L. Bartlett. On the consistency of multiclass classification methods.
Journal of Machine Learning Research, 8:1007-1025, 2007.

[9] Yufeng Liu. Fisher consistency of multicategory support vector machines. Proceedings of the
Eleventh International Conference on Artificial Intelligence and Statistics, side 289-296, 2007.
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9 Proofs for Composite Multiclass Losses

Here we present proofs that were omitted from the main body of the paper due to lack of space.

Proof of Lemma 1

1. We prove this by contradiction. Suppose p ∈ ∆n such that for all i ∈ [n], p /∈Ti(c). Then

p /∈T1= j1(c)⇒∃ j2 6= j1 such that
p j1
c j1

<
p j2
c j2

p /∈T j2(c)⇒∃ j3 6= j2 such that
p j2
c j2

<
p j3
c j3

and hence by repeating this argument

p /∈T jn(c)⇒∃ jn+1 6= jn such that
p jn

c jn
<

p jn+1

c jn+1

.

Thus we have n+1 indices j1, . . . , jn+1 belonging to [n] and therefore one is repeated ( jk)
and

p jk
c jk

<
p jk
c jk

which is a contradiction.

2. Obvious.
3. If p ∈

⋂n
i=1 Ti(c), then for all j ∈ [n], c j = ∑i pic j = ∑i p jci = p j. Thus p = c.

4. We prove this by contradiction. Suppose p 6= q such that for all c if p∈Ti(c) then q∈Ti(c).
Observe that ∀ j ∈ [n], p ∈T j(p), and so q ∈

⋂n
j=1 T j(q), and hence q = p, a contradiction.

Proof of Proposition 3

(⇒) Suppose that ` is strictly proper. Then for all c ∈ ∆̊n, for all i ∈ [n] such that p /∈Ti(c) and
for all q ∈Ti(c) then p 6= q and thus L(p)< L(p,q) since ` is strictly proper.

(⇐) Suppose that ` is c-calibrated for all c ∈ ∆̊n. Suppose p,q ∈ ∆n and p 6= q. By Lemma 1
(part 4) one can partition p and q into two different classes: there exists c ∈ ∆̊n and i ∈ [n] such that
q ∈Ti(c) and p /∈Ti(c). Hence L(p)< L(p,q) since ` is c-calibrated. Since ` is continuous and ∆n

is closed, the infimum in the definition of L(p) is attained. Since L(p) < L(p,q) for all q 6= p, we
conclude L(p) = L(p, p). Thus ` is strictly proper.

Proof of Proposition 5

We show first that λ is proper. Let p ∈ ∆n, Λ(p, p) = L(p, ψ̄(p)) = L(p,argminv L(p,v)) =
minv L(p,v)≤minq∈∆n Λ(p,q). Thus λ is proper and L(p) = Λ(p).

We now assume that ` is prediction calibrated. Suppose that pred(z = λ (p)) /∈ argmaxi pi.
Then ppred(λ (p)) < maxi pi , thus p′ · z = Λ(p, p) > L(p) = Λ(p) which contradicts the properness
of λ .

Proof of Proposition 6

(`(p)− `(q))′ · (p−q) = p′ · `(p)−q′ · `(p)+q′ · `(q)− p′ · `(q)≤ 0 since p · `(p)≤ p · `(q).

Proof of Proposition 7

We just have to check that ` is injective. If ` is not invertible, there exists p 6= q such that
`(p) = `(q). Then, L(p, p) = L(p,q) which contradicts the supposed strict properness of `.

Proof of Proposition 8

(⇒) Suppose that ` is proper and p,q ∈ ∂∆n. Let L̃p,q denote the conditional risk associated
with ˜̀p,q. Then L̃p,q(η , η̂) =

(
ηq+(1−η)p

)′ ·`(p+ η̂(q− p)
)
= L
(

p+η(q− p), p+ η̂(q− p)
)
≥

L
(

p+η(q− p), p+η(q− p)
)
= L̃p,q(η ,η). Hence ˜̀p,q is proper.
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(⇐) Suppose that ˜̀p,q is proper ∀p,q∈ ∂∆n. Suppose p,q∈∆n. Then there exists p̃ and q̃∈ ∂∆n

such that p = p̃+η(q̃− p̃) and q = p̃+ η̂(q̃− p̃), where η , η̂ ∈ [0,1] (the line passing through
p and q cuts ∂∆n at p̃ and q̃). Then L(p,q) = L̃ p̃,q̃(η , η̂)≥ L̃ p̃,q̃(η ,η) = L(p, p). Hence ` is proper.

Proof of Proposition 9

One can easily prove that the second part of the equivalence implies the first one with h1 = 0.

Thanks to proposition 1 of [16], we know that a binary probability estimation loss `b is proper
if and only if ∀η ≤ η1 ≤ η2 or η ≥ η1 ≥ η2, Lb(η ,η1)≤ Lb(η ,η2) (the assumptions on the statistic
are checked in the binary case with the statistic function Γ : p distribution on {0,1} → E(p)) . We
also know that if ` is proper then ∀p,q ∈ ∂∆n, ˜̀p,q (introduced in Proposition 8) is proper. We
assume that ` is proper, ∀p,q ∈ ∆n, ∀0 ≤ h1 ≤ h2, we introduce the projections p̃, q̃ ∈ ∂∆n of p
and q, then there exists η and µ such that p = p̃+η(q̃− p̃) and q = p̃+ µ(q̃− p̃). We denote
η1 = η + h1(µ −η) and η2 = η + h2(µ −η). And the result of Lambert applied to ˜̀p,q gives us
L(p, p+h1(q− p))≤ L(p, p+h2(q− p)). One can adapt the proof in the case of strict properness.

Proof of Corollary 10

If ` is proper then ∀p ∈ ∆̊n, q 7→ L(p,q) = p′ · ( ˜̀ ◦ Π∆)(q) reaches its minimum at p
and thus p′ ·M(p) = 0. Define fp,q : η 7→ L(p, p + η(q− p)) = p′ · ( ˜̀◦Π∆)(p + η(q− p)).
By Proposition 9 f is decreasing for η < 0 and increasing for η > 0. However,
f ′p,q(η) = p′ ·M(p + η(q − p)) · (q − p) is negative if η < 0 and positive if η > 0. Let
r = p+η(q− p). Then f ′p,q(η) = (r−η(q− p))′ ·M(r)(q− p) =−η(q− p)′ ·M(r) · (q− p), since
r′ ·M(r) = 0, Which proves the second part of the first implication. To prove the other implication,
it suffices to show the order sensitivity property using fp,q and appeal to Proposition 9.

Proof of Proposition 11

(⇒) If ` is proper, p′ · `(q) = q′ · `(q)+ (p− q)′ · `(q) = L(q)+ (p− q)′ · `(q). Thus ∀q ∈ ∆n

there exists A(q) such as L(p,q) = L(q)+(p−q)′ ·A(q). Since ` is proper, ∀p ∈ ∆n, 0≤ L(p, p)−
L(p,q) = L(q)−L(p)+(p−q)′ ·A(q). Then A(q) is a supergradient of L = f (which is concave) at
q, and p′ · `(q) = f (q)+(p−q)′ ·A(q).

(⇐) If there exists a function f concave and ∀q ∈ ∆n, there exists a supergra-
dient A(q) ∈ ∂ f (q) such that ∀p,q ∈ ∆n, p′ · `(q) = f (q) + (p − q)′ · A(q). Then,
L(p, p)−L(p,q) = f (p)− f (q)+(p−q)′ ·A(q)≥ 0. Then ` is proper.

Proof of Proposition 12

A concave function is differentiable almost everywhere [15, theorem 4.2.3]. Thus (3) proves
that two proper losses which have the same Bayes risk are equal almost everywhere. Suppose now
that two proper losses are equal almost everywhere. Then their associated Bayes risks f and g
are equal almost everywhere and continuous (since they are concave). If there exists x such that
f (x) 6= g(x), then since f and g are continuous, there exists ε > 0 such that ∀y ∈ B(x,ε)∩∆n,
f (y) 6= g(y). Yet this contradicts the fact that f and g are equal almost everywhere. Hence the
Bayes risks are equal everywhere.

Proof of Proposition 13

Observe that
∂L(p) = {(s′,0)′+α1, s ∈ ∂ L̃(p̃), α ∈ R}. (4)

Indeed (q̃− p̃)′ · s = (q− p)′ · ((s′,0)′+α1).

(⇐) We first assume that L is differentiable at p. We use the following result from [15, page
203]: If f is a convex function, then ∀ε > 0, ∃δ > 0, y ∈B(x,δ )⇒ ∂ f (y)⊂ ∂ f (x)+B(0,ε).

Assume ε > 0, then since L is differentiable at p, ∃δ̃ > 0, such that

∀q̃ ∈B(p̃, δ̃ ), ∀A(q̃) ∈ ∂ L̃(q̃), ||A(q̃)−DL̃(p̃)|| ≤ ε. (5)
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Then there exists δ such that q ∈B(p,δ ) implies p̃ ∈B(p̃, δ̃ ). Thus using (3) and (5), ∀i ∈ [n],
∀q ∈B(p,δ ), for α1,α2 ∈ R,

`i(q)− `i(p) = L(q)+(ei−q)′ · ((A(q̃)′,0)′+α11)− (L(p)+(ei− p)′ · ((DL(p̃)′,0)′+α21)),

= L(q)−L(p)+(ẽi− q̃)′ ·A(q̃)− (ẽi− p̃)′ ·DL(p̃)+ γ, ∀A(q̃) ∈ ∂ L̃(q̃),

where A(q̃) ∈ ∂ L̃(q̃), and γ = −(ei− q)′ ·α11+(ei− p)′ ·α21 = −α1 +α1q′ ·1+α2−α2 p′ ·1 =
−α1 +α1 +α2−α2 = 0,

= L(q)−L(p)+(ẽi− q̃)′ · (A(q̃)−DL(p̃))+(p̃− q̃)′ ·DL(p̃).

By continuity of L, ||L(q)−L(p)||< ε for small enough δ . Furthermore by (5), ||A(q̃)−DL̃(p̃)|| ≤ 0
and ||p̃− q̃|| ≤ ε . Hence ||`i(q)−`i(p)|| ≤ ε +ε +δ which can be made arbitrarily small by suitable
choice of ε . Thus `i is continuous for all i ∈ [n] and so ` is continuous.

(⇒) Assume that L is not differentiable at p∈ ∆̊n. Thus there exists two different supergradients
at p: A(p̃) and B(p̃). Assume that one of these supergradients, A(p̃), is the one associated to the loss
` in the sense that for all i ∈ [n] `i(p) = L(p)+(ẽi− p̃)′ ·A(p̃).

Suppose that ∀i ∈ [n],

(ei− p)′ · ((A(p̃)′,0)′+α11)≤ (ei− p)′ · ((B(p̃)′,0)′+α21), α1,α2 ∈ R. (6)

Thus ∀q ∈ ∆n ,

∑
i∈[n]

qi(ei− p)′ · ((A(p̃)′,0)′+α11) ≤ ∑
i∈[n]

qi(ei− p)′ · ((B(p̃)′,0)′+α21), ∀q ∈ ∆
n, α1,α2 ∈ R

⇔ (q− p)′ · ((A(p̃)′,0)′+α11) ≤ (q− p)′ · ((B(p̃)′,0)′+α21), ∀q ∈ ∆
n,α1,α2 ∈ R

⇔ (q̃− p̃)′ ·A(p̃) ≤ (q̃− p̃)′ ·B(p̃), ∀q̃ ∈ ∆̃
n. (7)

Since p ∈ ∆̊n we can choose q̃1 and q̃2 ∈ ∆̃n such that q̃1− p̃ = p̃− q̃2 and so the only way (7) can
hold is if

(q̃− p̃)′ ·A(p̃) = (q̃− p̃)′ ·B(p̃).

Since p ∈ ∆̊n is arbitrary, we obtain that A(p̃) = B(p̃), a contradiction and so (6) must be false.

Thus there exists i ∈ [n] such that

(ei− p)′ · ((A(p̃)′,0)′+α11)> (ei− p)′ · ((B(p̃)′,0)′+α21), α1,α2 ∈ R.
Thus

∃i ∈ [n], (ẽi− p̃)′ ·A(p̃)> (ẽi− p̃)′ ·B(p̃). (8)
Let pη := p+η(ei− p) and denote by C(p̃η) the supergradient associated with ` at pη (that is,
`i(pη) = L(pη)+(ẽi− p̃η)

′ ·C)p̃η)). By definition of the supergradient,

L(pη)≤ L(p)+(p̃η − p̃)′ ·B(p̃) and L(p)≤ L(pη)+(p̃− p̃η)
′ ·C(p̃η).

Thus

L(pη) ≤ L(pη)+C(p̃η)
′ · (p̃− p̃η)+B(p̃)′ · (p̃η − p̃)

⇒ C(pη)
′ · (p̃η − p̃)′ ≤ B(p̃)′ · (p̃η − p̃)′

But by definition of pη , p̃η − p̃ = p̃+η(ẽi− p̃)− p̃ = η(ẽi− p̃). Thus for η > 0,

C(p̃η)
′ · (ẽi− p̃) ≤ B(p̃)′ · (p̃− ẽi). (9)

Now `i(pη) = L(pη)+(ẽi− p̃η)
′ ·C(p̃η). Hence (9) implies

`i(pη)≤ L(pη)+(ẽi− p̃)′ ·B(p̃).

However limη↘0 pη = p and by continuity of L,

lim
η↘0

L(pη)+(ẽi− p̃)′ ·B(p̃) = L(p)+(ẽi− p̃)′ ·B(p̃)

< L(p)+(ẽi− p̃)′ ·A(p̃)
= `i(p) by (8).
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Thus limη↘0 `i(pη)< `i(p) and so `i is not continuous at p and so ` is not continuous at p.

Proof of Proposition 14

The proposition is a direct consequence of the characterization of differential binary proper loss.

A differential binary loss λ is proper if and only if −λ ′1(η)
1−η

=
λ ′−1(η)

η
≥ 0, ∀η ∈ (0,1).

Suppose the loss ` can be expressed as a proper composite loss: ` = λ ψ = λ ◦ψ−1 and so
λ = `◦ψ . Therefore for y ∈ {−1,1}, λ ′y(η) = ψ ′(η)`′y(ψ(η)). Then λ is proper and thus

−λ ′1(η)

1−η
=

λ ′−1(η)

η
, ∀η ∈ (0,1) (10)

⇔ − ψ ′(ψ−1(v))
1−ψ−1(v)

`′1(v) =
ψ ′(ψ−1(v))

ψ−1(v)
`′−1(v), ∀v ∈ V

⇔ ψ
′(ψ−1(v)) = 0 or `′−1(v) = `′1(v) = 0 or ψ

−1(v) =
`′−1(v)

`′−1(v)− `′1(v)
, ∀v ∈ V . (11)

Since ψ is differentiable and invertible, ψ ′ cannot equal zero on an interval. By continuity, ψ−1 is
uniquely defined on an interval I when ∀v1,v2 ∈ I, ∃v ∈ [v1,v2], `′1(v) 6= 0 or `′−1(v) 6= 0. If I = R
then ψ is unique and thus λ = `◦ψ is unique.

If `′1(v) = `′−1(v) = 0, ∀v ∈ [v1,v2] then one can choose any ψ|[v1,v2]
differentiable invertible

such that ψ is continuous in v1 and v2 and as `1 and `−1 are constant on [v1,v2], λ (η) = `(ψ(η))
does not depend on ψ and so in any case λ is unique.

Proof of Proposition 15

The loss λ is proper if and only if (10) and −λ ′1(η)≥ 0 and λ ′−1(η)≥ 0. This is equivalent to
there exists an invertible ψ such that (11) holds and

−ψ
′(ψ−1(v))`′1(v)≥ 0 and ψ

′(ψ−1(v))`′−1(v)≥ 0, ∀v ∈ V . (12)

(⇒) Suppose ` has a composite representation with ψ strictly increasing and thus ψ ′(v) > 0 for
all v ∈ V and thus −`′1(v) ≥ 0 and `′−1(v) ≥ 0. Hence `1 is decreasing and `−1 is increasing. By
hypothesis, `′−1(v) 6= 0 or `′1(v) 6= 0. Furthermore ψ ′(v) can not equal zero except at isolated points.

Thus (11) implies ψ−1(v) =
`′−1(v)

`′−1(v)−`
′
1(v)

= 1
1− f (v) and thus f is strictly increasing. (If instead ψ was

strictly decreasing, we can run the same argument to conclude `1 is increasing, `−1 is decreasing
and f is strictly decreasing.)

(⇐) Suppose `1 is decreasing, `−1 is increasing and f is strictly increasing. By setting
ψ−1(v) = 1

1− f (v) , ψ−1 is invertible and (12) holds. The other case is analogous.

Proof of Proposition 17

Λ(p) = infq p′ ·λ (q) = infq p′`(ψ(q)) = infv L(p,v) (since ψ is invertible)

= infv L(p,v) = infv L(p,φ(q)) = M(p).

Then λ and µ are two proper losses which have the same Bayes risk, so these two losses are
equal almost everywhere.

If moreover ` is continuous, λ = `◦ψ and µ = `◦φ are continuous. So λ = µ everywhere.

If moreover ` is invertible, ψ = λ ◦ `−1 and φ = µ ◦ `−1. So ψ and φ are also equal almost
everywhere and as they are continuous, they are equal everywhere. So λ = `◦ψ = `◦φ = µ .

Proof of Proposition 18

(⇐) Let p ∈ ∆n. By strict convexity of the inner part of S`, there exists an unique v ∈ V such
that there exists a hyperplane hβ ∗

p supporting S` at `(v). Define ψ such that for all p ∈ ∆n, ψ(p) is
thus unique previous v. Since hβ ∗

p supports S`, β ∗ = inf{β : hβ
p ∩S` 6=∅}= p′ ·`(v) = p′ ·`(ψ(p)).
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By smoothness of S`, ψ is invertible. Indeed one can build the inverse which for all v, associ-
ated the normalized normal vector to the hyperplane supporting S` at `(v).

By continuity of ` and strict convexity of S` in its inner part, ψ is continuous. Let λ = ` ◦ψ .
Then p′ ·λ (p)= p′ ·(`◦ψ)(p)= infv∈V p′ ·`(v) and by invertibility of ψ , p′ ·λ (p)= infq∈∆n p′ ·λ (q).
Thus λ is proper and since there exists an unique point where hΛ(p)

p supports S` (due to strict
convexity of the inner part), then λ is strictly proper and thus ` has a strictly proper composite
representation.

(⇒) We make use of the following result [23, Theorem 1.3.3]. Suppose A is closed set such
that Å 6=∅ and such that through each boundary point of A there is a support plane to A. Then A is
convex.

Suppose that ` has a strictly composite representation `= λ ◦ψ−1. Observe that `(V ) = λ (∆n).
By invertibility and continuity of ` and ψ , λ is also invertible and continuous. Thus to each points
x of the image of ` there corresponds an unique v and p such that x = `(v) = λ (p). Hence it is
equivalent to prove the properties on Sλ . We now prove two auxiliary claims that hold for all
p ∈ ∆n:

1. ∀β < Λ(p), hβ
p ∩Sλ =∅.

Indeed if there exists z ∈Sλ ∩ hβ
p , there exists q ∈ ∆n such that for all i ∈ [n], λi(q) ≤ zi.

And Λ(p)> β = p′ · z = ∑i∈[n] pizi ≥ ∑ piλi(q) = p′.λ (q) — a contradiction.

2. hΛ(p)
p ∩Sλ = {λ (p)+∑αieiJpi = 0K, αi ≥ 0}.

(⊇) p′ ·λ (p) = Λ(p), and so λ (p) ∈ hΛ(p)
p ∩Sλ . Consequently,

p′ · ( ∑
i∈[n]

αieiJpi = 0K+λ (p)) = ∑
i∈[n]

αi piJpi = 0K+Λ(p) = Λ(p).

Thus ∑αieiJpi = 0K+λ (p) ∈ hΛ(p)
p ∩Sλ .

(⊆) If z ∈ hΛ(p)
p ∩Sλ , there exists q ∈ ∆n, αi ≥ 0 such that z = λ (q)+∑αiei. By strict

properness of λ , p = q, indeed Λ(p) = p′ · z ≥ p′ · λ (q). Thus αi = 0 if pi 6= 0 because
otherwise, p′ · z > p′ ·λ (p) = Λ(p) which would be a contradiction.

Hence there is one hyperplane supporting Sλ at each of the points λ (p)+∑αieiJpi = 0K, p ∈
∆n, αi ≥ 0. These points belong to the boundary of Sλ . Since λ is continuous and by definition
of Sλ , the last points are the only points of th boundary of Sλ . So for each point of the boundary,
there exists a suporting hyperplane, then Sλ is convex. The second point give the strict convexity
of Sλ in its inner part.

Since λ is continuous, the associated Bayes risk is differentiable. Indeed Sλ is smooth because
the differentiability of the support function is equivalent to the fact that in each points of the
boundary there exists an unique hyperplane supporting the set.

Proof of Proposition 19

This proof is very similar to the preceeding proof. Assume that ` is continuous and has a proper
composite representation. Then the proper loss associated with λ = ` ◦ψ is also continuous and
`(V ) = λ (∆n) so the convexity and smoothness of S` is equivalent to the convexity and smoothness
of Sλ . Then the first point of the last proof still holds and so hΛ(p)

p ∩Sλ ⊇ {λ (p)+∑αieiJpi =
0K, αi ≥ 0}. These last points belong to the boundary of Sλ . By continuity of λ , the points of the
boundary of Sλ are still λ (p)+∑αieiJpi = 0K, αi ≥ 0. Thus by the result quoted at the beginning
of the second part of the proof of the Proposition 18, Sλ is convex. The continuity of λ still implies
the differentiability of the Bayes risk so the smoothness of Sλ . Thus for each point λ (p), there
exists an unique hyperplane supporting Sλ .

If moreover ` is invertible, λ is also invertible. Assume there exists two points v and w such that
a hyperplane hβ

r supports S` at `(v) and `(w). Then hβ
r supports Sλ at λ (ψ−1(v)) and λ (ψ−1(w)).

Yet hΛ(ψ−1(v))
ψ−1(v) and hΛ(ψ−1(w))

ψ−1(w) are two hyperplanes supporting Sλ at these points. So v = w and thus
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S` is strictly convex in its inner part.

Proof of Lemma 20

In order to show that L is concave it suffices to show that for g : ∆2→ R concave, f : p ∈ ∆n→
f (p) = (p1 + p2)g

(
p1

p1+p2
, p2

p1+p2

)
is concave, since a sum of concave functions is concave. Let γ ∈

[0,1], p,q∈∆n. Since g is concave, ∀α ∈ [0,1], ∀p,q∈∆2, g
(

α

p1+p2
p+ 1−α

q1+q2
q
)
≥αg

( p
p1+p2

)
+(1−

α)g
( q

q1+q2

)
. Then with α = γ(p1+p2)

γ(p1+p2)+(1−γ)(q1+q2)
, we get f (γ p+(1− γ)q)≥ γ f (p)+(1− γ) f (q).

Moreover, L(0, .,0, pi1 ,0, .,0, pi2 ,0, .,0) = ∑i/∈{i1,i2} (pi1 ∗0+ pi2 ∗0)

+(pi1 + pi2)L
i1,i2
(

pi1
pi1+pi2

,
pi2

pi1+pi2

)
= Li1,i2(pi1 , pi2), (p ∈ ∆n, so pi1 + pi2 = 1).

Proof of Lemma 21

Use the correspondence between Bayes risk and proper losses and the preceeding lemma.

Proof of Lemma 23

We suppose that ` ∈ exLn and denote its Bayes risk by L(p) = p′ · `(p). Let F ,G ∈Fn so that
L = 1

2 (F +G). Suppose f and g are proper losses whose Bayes risks are respectively equal to F and
G, then ∀p ∈ ∆n and almost everywhere in q (more precisely where L, F and G are differentiable),
L(p,q) = 1

2 (G(p,q) +F(p,q)). Then ` = (g+ f ) almost everywhere, so there exists α such as
g = α` almost everywhere, hence G = αL almost everywhere and then everywhere by continuity.
So L is extremal in Fn.

Now suppose that the concave function L is extremal and let ` be a proper loss whose Bayes
risk is L. Then L(p,q) = p′ · `(q) = L(q) + (p− q)′ · A(q) where A(q) ∈ ∂L(q). Suppose that
there exist f ,g ∈ Ln so that ` = 1

2 ( f + g) almost everywhere, and have associated Bayes risks F
and G, respectively. Then L(p) = p′ · `(p) = p′ 12 ( f (p)+ g(p)) = 1

2 (F +G) almost everywhere so
L = 1

2 (F +G) everywhere by continuity. Since L is extremal we must have F = αL and So f = α`
where L is differentiable (and so almost everywhere). Thus ` is extremal in Ln.

Proof of Lemma 24

We require two facts from convex analysis (cf. Theorems B.3.1.4 and D.6.2.7 of [15]). If a
sequence ( f i)i of convex functions f i converges pointwise to f then: 1) the sequence converges
uniformly on any compact domain; and 2) ∀ε > 0, ∂ f i(x) ⊂ ∂ f (x)+B(0,ε) for i large enough.
Then the reverse implication of the lemma is a direct consequence of the first result and the forward
implication is obtained by considering the set {x : ∀n, Li and L are differentiable at x} which is of
measure 1.

Proof of Proposition 22

When n > 2 the simplex ∆n is isomorphic to a subset of Rd for d > 1. Since Fn is a convex
cone associated with the set of bounded concave functions (i.e., the fair Bayes risks), Theorem 2.2
of [20] guarantees (with an appropriate change from concavity to convexity) that exFn is dense
in Fn w.r.t. the topology of uniform convergence. Therefore, if ` ∈ Ln there exists a sequence
( f i)i with f i ∈ exFn which converges uniformly to the Bayes risk L of ` and so by Lemma 24
there is a corresponding sequence (`i)i of fair proper losses that converges almost everywhere to `.
Lemma 23 guarantees that each `i is extremal in Ln since each f i ∈ exFn and so we have shown
there exists a sequence (`i)i with `i ∈ exLn which converges to an ` which was arbitrary.
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