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Abstract

An instrumental variable method for continuous-time model identification is proposed for multiple input single output systems where

the characteristic polynomials of the transfer functions associated with each input are not constrained to be identical. An associated

model order determination procedure is shown to be reasonably successful. Monte Carlo simulation analyses are used to demonstrate the

properties and general robustness of the model order selection and parameter estimation schemes. The results obtained to model a

winding process and an industrial binary distillation column illustrate the practical applicability of the proposed identification scheme.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

System identification is an established field in the area of
systems analysis and control. It aims at determining
mathematical models for dynamical systems based on
observed inputs and outputs. Although dynamical systems
in the physical world are normally formulated in the
continuous-time (CT) domain, as differential equations,
most system identification schemes have been based in the
past on discrete-time (DT) models without concern for the
merits of the more natural CT models. The development of
CT model identification techniques originated in the last
century (see e.g. Young, 1970 which adumbrates the
methodology described in the present paper) but was
overshadowed by the overwhelming developments of DT
model identification methods. This was mainly due to the
‘go completely digital’ trend that was spurred by parallel
developments in digital computers. Interest in CT ap-
e front matter r 2006 Elsevier Ltd. All rights reserved.

nengprac.2006.09.004

ing author. Tel.: +383 68 44 61; fax: +383 68 44 62.

esses: hugues.garnier@cran.uhp-nancy.fr (H. Garnier),

cran.uhp-nancy.fr (M. Gilson), p.young@lancaster.ac.uk
proaches to system identification has, however, been
growing in the recent years (Garnier & Wang, 2007;
Garnier & Young, 2004; Garnier, Mensler, & Richard,
2003; Li, Raghavan, & Shah, 2003; Mahata & Garnier,
2006; Mensler, Joe, & Kawabe, 2006; Moussaoui, Brie, &
Richard, 2005; Rao & Unbehauen, 2006; Wang, Gaw-
throp, Chessari, Podsiadly, & Giles, 2004; Young &
Garnier, 2006).
In this paper, a new identification method is developed

for multiple input single output (MISO) CT linear systems.
In DT model identification, the approaches dedicated to
multiple transfer function model identification combine
either extensions of linear regression techniques like
pseudo-linear, multi-linear regression, filtering, instrumen-
tal variable (IV), or nonlinear optimization techniques
(Ljung, 1999; Gevers, Miskovic, Bonvin, & Karimi, 2006).
For the CT case, as far as the authors are aware, the only
procedure developed to handle the MISO identification
problem is based on nonlinear optimization techniques
which minimize the output error. However, the technique
may critically rely on a good initial parameter set
to converge to the global minimum of the cost function.
The linear regression-based algorithms should offer an

www.elsevier.com/locate/conengprac
dx.doi.org/10.1016/j.conengprac.2006.09.004
mailto:marion.gilson@cran.uhp-nancy.fr
mailto:p.young@lancaster.ac.uk
mailto:p.young@lancaster.ac.uk


ARTICLE IN PRESS

Fig. 1. Multiple input system to be identified.
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interesting solution to overcome this drawback. However,
the parameter estimation procedures for MISO systems
have usually been developed by a straightforward
extension of procedures devoted to SISO systems, which
only allows transfer function estimation with a common
denominator (CD). Since this case is not very realistic
in many practical applications, this paper presents a
new method to estimate MISO systems described by
multiple CT transfer functions with different denominators
(DDs).

When looking at methods that can consistently identify
systems while relying on simple linear regression algo-
rithms, IV techniques seem to be rather attractive
(Söderström & Stoica, 1983; Young, 1984 or Gilson &
Van den Hof, 2005 for a recent reference). Moreover, when
dealing with highly complex processes that are high
dimensional in terms of inputs and outputs, it can be
rather attractive to rely on methods that do not require
non-convex optimization.

Several IV estimators have been developed for CT SISO
system identification (Garnier et al., 2003). Amongst these,
the Simplified Refined Instrumental Variable for Contin-
uous-time systems (Young & Jakeman, 1980), denoted by
SRIVC from hereon, presents the advantage of yielding
asymptotically efficient estimates in the presence of white
measurement noise. Therefore, the main objective in this
paper is to develop a SRIVC version dedicated to CT
multiple transfer function model identification, which is a
CT version of a similar SRIV algorithm for DT systems
(Jakeman, Steele, & Young, 1980; Young & Jakeman,
1979). Another interesting advantage of using this refined
IV method is that a procedure based on the properties of
the instrumental product matrix (Young, Jakeman, &
McMurtries, 1980) can be used for identifying the model
structure prior to parameter estimation.

The paper is organized in the following way. Section 2
states the problem. The proposed method is described in
Section 3. The properties of the proposed algorithm are
illustrated through Monte Carlo simulation in Section 4.
The robustness of the proposed estimation scheme
against the initial parameter set is also illustrated and
compared with a traditional output-error technique.
Sections 5 and 6 present the results of the identification
of a winding process and an industrial binary distillation
column, respectively. Finally, Section 7 gives some
concluding remarks.
2. Problem statement

Consider a MISO CT linear time-invariant causal system
that can be described by (see Fig. 1)

S :

yui
ðtÞ ¼ Go

i ðpÞuiðt� to
i Þ;

yuðtÞ ¼
Pnu

i¼1 yui
ðtÞ;

yðtÞ ¼ yuðtÞ þ vðtÞ;

8><
>: (1)
with

Go
i ðpÞ ¼

Bo
i ðpÞ

F o
i ðpÞ

, (2)

Bo
i ðpÞ ¼ bo

i;0 þ bo
i;1pþ � � � þ bo

i;mi
pmi , (3)

Fo
i ðpÞ ¼ f o

i;0 þ f o
i;1pþ � � � þ f o

i;ni
pni ,

f o
i;ni
¼ 1; niXmi; i ¼ 1; . . . ; nu, (4)

where uðtÞ ¼ ½u1ðtÞ . . . unu ðtÞ� is the vector of uncorrelated
input signals, yuðtÞ the system response to uðtÞ and vðtÞ is the
disturbance signal; p is the differential operator, i.e.
pxðtÞ:¼dxðtÞ=dt; to

i denotes the time-delay between the
output and the ith corresponding input. The polynomials
Fo

i ðpÞ and Bo
i ðpÞ are assumed to be relatively prime and the

roots of the polynomials F o
i ðpÞ are assumed to have

negative real parts; the system under study is therefore
assumed to be asymptotically stable.
The first equation in (1) describes the ith output at all

values of the CT variable t and can also be written as

f o
i;0yui
ðtÞ þ f o

i;1y
ð1Þ
ui
ðtÞ þ � � � þ yðniÞ

ui
ðtÞ

¼ bo
i;0uiðt� to

i Þ þ � � � þ bo
i;mi

u
ðmiÞ

i ðt� to
i Þ, ð5Þ

where xðlÞðtÞ denotes the lth time-derivative of the CT signal
xðtÞ. The system is subject to an arbitrary set of initial
conditions

u0 ¼ ½u0
1 � � � u0

nu
�; y0

u ¼ ½y
0
u1
� � � y0

unu
�, (6)

u0
i ¼ ½uið0Þ u

ð1Þ
i ð0Þ � � � u

ðmi�1Þ
i ð0Þ�T 2 Rmi , (7)

y0
ui
¼ ½yui

ð0Þ yð1Þui
ð0Þ � � � yðni�1Þ

ui
ð0Þ�T 2 Rni . (8)

It is furthermore assumed that the disturbances that cannot
be explained from the input signal can be lumped into
the additive term vðtÞ (1). The disturbance term vðtÞ is
assumed to be independent of the inputs uiðtÞ, i.e. the
case of the open-loop operation of the system is considered.
For the identification problem, it is also assumed that the
CT signals uiðtÞ and yðtÞ are sampled at regular time-
interval Ts.
The goal is then to build a model of equation (1) based

on sampled input and output data. Models of the following
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form are considered:

G :

yui
ðtk; yiÞ ¼ Giðp; yiÞuiðtk � tiÞ;

yuðtk; yiÞ ¼
Pnu

i¼1yui
ðtk; yiÞ;

yðtkÞ ¼ yuðtk; yiÞ þ vðtkÞ;

8><
>: (9)

where xðtkÞ denotes the sample of the CT signal xðtÞ at
time-instant t ¼ kTs and Giðp; yiÞ is the ith transfer
function given by

Giðp; yiÞ ¼
BiðpÞ

F iðpÞ
¼

bi;0 þ bi;1pþ � � � þ bi;mi
pmi

f i;0 þ f i;1pþ � � � þ f i;ni
pni

,

f i;ni
¼ 1; niXmi; i ¼ 1; . . . ; nu, ð10Þ

and yi ¼ ½bi;mi
. . . bi;0 f i;ni�1

. . . f i;0�
T 2 Rnpi , with npi

¼

niþ mi þ 1, where ni and mi denote the denominator and
numerator orders of Giðp; yiÞ, respectively. Therefore, the
sought parameter vector is

y ¼ ½yT1 . . . yTnu
�T 2 Rnp�1, (11)

with np ¼
Pnu

i¼1npi
.

Note that estimation methods presented in this paper
focus on identifying the parameters of each plant transfer
function Giðp; yiÞ rather than the additive noise appearing
in (1). The disturbance term is assumed here to be a zero-
mean DT noise sequence denoted as vðtkÞ. Moreover, the
pure time-delays are supposed to be known and multiple
integers of the sampling period ti ¼ nki

Ts.
The identification problem can now be stated as follows:

determine the orders (ni and mi) and the parameter vector
y ¼ ½yT1 � � � y

T
nu
�T of the CT plant model from N sampled

measurements of the input and the output ZN ¼ fyðtkÞu1

ðtkÞ . . . unuðtkÞg
N
k¼1.
1Strictly, the method is quasi-optimal because true optimality would

require optimal interpolation of the input signal uðtÞ over the sampling

interval, whereas only simple interpolation is used in the SRIVC

implementation. However, this normally produces very good, near

optimal estimation results.
2The RIV algorithm for DT model identification is available in the

CAPTAIN toolbox (see http://www.es.lancs.ac.uk/cres/captain/).
3. Refined IV methods for CT transfer function model

3.1. CT transfer function model identification

There are mainly two time-domain approaches to
determine a CT model from sampled data. The first is to
estimate a DT model which is then converted into a CT
model. The second approach consists in identifying directly
a CT model from the DT data. In comparison with the DT
counterpart, CT model identification raises several techni-
cal issues. The first is related to the fact that unlike the
difference equation model, the differential equation model
is not a linear combination of samples of only the
measurable process input and output signals. It also
contains input and output time-derivatives which are not
available as measurement data in most practical cases.
Various types of CT filters, such as the traditional
State-Variable Filter (SVF) method, have been devised
to circumvent the need to reconstruct these time-derivatives
(Garnier et al., 2003). The CONtinuous-Time System
IDentification (CONTSID) toolbox has been developed
on the basis of these methods (Garnier, Gilson, &
Cervellin, 2006).
Most of these CT model identification methods present
the following drawbacks. First, they can handle the case of
MISO CD transfer function models only. Secondly, these
approaches require the a priori choice of a design
parameter which can be difficult from a practical point of
view. Thirdly they disregard the properties of the additive
noise and therefore represent a sub-optimal solution to the
estimation problem. One particularly successful stochastic
identification method is the iterative SRIVC method (see
Young & Jakeman, 1980; Young, 2002, where it is referred
to as RIVC). This approach involves a method of adaptive
prefiltering based on an optimal1 statistical solution to the
problem when the additive noise vðtkÞ is white, but which
also yields consistent and relatively low variance parameter
estimates in the case of coloured noise. This estimation
technique was first proposed for DT model identification in
the form of the Refined IV (RIV) algorithm2 (Young, 1976,
1984) and then extended for DT MISO systems with DDs
(Jakeman et al., 1980). The CT MISO algorithm described
in the present paper uses the same type of iterative,
relaxation algorithm as that used in this DT MISO
algorithm. The RIV approach was extended for SISO CT
model identification at the time of its original development
(Young & Jakeman, 1980). It has recently been revisited
(Young, 2002) and adapted to handle the case of
irregularly sampled data (Huselstein & Garnier, 2002)
(see also Raghavan, Tangirala, Gopaluni, & Shah, 2006 for
a recent review of identification approaches for handling
irregularly sampled data). This IV-type of method has
often proved to be particularly useful in practical applica-
tions (see e.g. Young, 1998). This method not only ensures
that the estimate converges to statistically optimum values
in the case of additive white noise, it also generates
information on the parametric error covariance matrix
which can be used in an associated procedure to identify
the orders of the component transfer function models.
SRIVC is also a logical extension of the traditional and
more heuristically defined SVF approach but presents the
advantage of not requiring manual specification of prefilter
parameters.
In the following section, the SRIVC version for SISO

transfer function model is first briefly recalled and then
extended to handle the case of multiple transfer function
models.

3.2. SRIVC for SISO transfer function models

Consider a SISO system with a white measurement noise
on the output. The SRIVC method is based on the
maximum likelihood (ML) approach where the error

http://www.es.lancs.ac.uk/cres/captain/
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function is given by the output error

vðtk; yÞ ¼ yðtkÞ �
Bðp; yÞ
F ðp; yÞ

uðtk � tÞ, (12)

with

F ðp; yÞ ¼
Xn�1
l¼0

f lp
l þ pn and Bðp; yÞ ¼

Xm

l¼0

blp
l . (13)

Minimization of a least squares criterion function in vðtk; yÞ
provides the basis for the output-error estimation methods.
However, vðtk; yÞ can also be rewritten as

vðtk; yÞ ¼
1

F ðp; yÞ
½F ðp; yÞyðtkÞ � Bðp; yÞuðtk � tÞ�. (14)

Therefore, the output error given in (12) can be trans-
formed in this manner to yield an equation error expression
of the form

vðtk; yÞ ¼ F ðp; yÞ ~yðtkÞ � Bðp; yÞ ~uðtk � tÞ, (15)

where ~yðtkÞ and ~uðtkÞ are the variables pre-filtered by
Lðp; yÞ ¼ 1=F ðp; yÞ. The problem with this formulation is
that y and therefore F ðp; yÞ are unknown a priori. This
problem can be conveniently solved by employing an
iterative optimization procedure which aims at adjusting an
initial estimate y0 of y adaptively until it converges on an
optimal estimate. Therefore, at each step, a linear in the
unknown parameter vector y equation has to be solved

~yðnÞðtk; ŷ
j
Þ ¼ ~fT

ðtk; ŷ
j
Þyjþ1

þ eðtk; ŷ
j
Þ, (16)

where ŷj is the parameter vector estimated at the jth step of
the algorithm, yjþ1 is the parameter vector to be estimated
and

~f
T
ðtk; ŷ

j
Þ ¼ ½ ~uðmÞðtk � t; ŷj

Þ . . . ~uðtk � t; ŷj
Þ � ~yðn�1Þðtk; ŷ

j
Þ

. . .� ~yðtk; ŷ
j
Þ�, ð17Þ

where

~xðiÞðtk; ŷ
j
Þ ¼

pi

F ðp; ŷj
Þ
~xðtk; ŷ

j
Þ. (18)

The use of the conventional least squares method to solve
(16) will give biased results when the output measurement
is corrupted by noise. A solution is to use an IV-type of
method to overcome the bias problem. However, the choice
of the instruments, denoted by ~ZTðtkÞ here, was shown to
have considerable effect on the parametric covariance
matrix Pi. The lower bound of Pi for any unbiased
identification method is given by the Cramer–Rao bound,
which is specified (see e.g. Ljung, 1999; Söderström &
Stoica, 1983)

PiXP
opt
i (19)

with3

P
opt
i ¼ s2e ½Ē ~̄fðtkÞ

~̄fT
ðtkÞ�

�1, (20)
3The notation Ē½:� ¼ limN!1ð1=NÞ
PN�1

k¼0 E½:� is adopted from the

prediction error framework of Ljung (1999).
where ~̄fðtkÞ ¼ LðpÞf̄ðtkÞ and f̄ðtkÞ is the noise-free part of
fðtkÞ. The minimum variance can then be achieved by the
following choice of design variables (see Young & Jake-
man, 1980 where these filters are defined by a special ML
solution to the problem):

LðpÞ ¼
1

FoðpÞ
;

~ZTðtkÞ ¼
1

F oðpÞ
f̄ðtkÞ:

8>>><
>>>:

(21)

Since the exact model FoðpÞ is not known, it has to be
replaced by its estimate obtained at the previous iteration:
i.e.,

Lðp; ŷj
Þ ¼

1

F ðp; ŷj
Þ
;

~ZTðtk; ŷ
j
Þ ¼ ½ ~uðmÞðtk � t; ŷj

Þ . . . ~uðtk � t; ŷj
Þ

� ~yu
ðn�1Þðtk; ŷ

j
Þ . . .� ~yuðtk; ŷ

j
Þ�;

8>>>><
>>>>:

(22)

where the filtered auxiliary model output is obtained from

~yuðtk; ŷ
j
Þ ¼

Bðp; ŷj
Þ

F ðp; ŷj
Þ
~uðtk � tÞ. (23)

~Z
T
ðtk; ŷ

j
Þ is thus an estimation of the filtered noise-free part

of the regressor fðtkÞ. The optimal IV-based parameter
estimates are then given by

ŷ
jþ1
¼

XN

k¼1

~Zðtk; ŷ
j
Þ ~f

T
ðtk; ŷ

j
Þ

" #�1XN

k¼1

~Z
T
ðtk; ŷ

j
Þ ~yðnÞðtk; ŷ

j
Þ.

(24)

The main steps of the SRIVC algorithm dedicated to
SISO4 transfer function model are presented in Young and
Jakeman (1980) and Young (2002). It may be noted that
since the instruments are correlated with the input/output
data but uncorrelated with the noise, the proposed IV
algorithm delivers consistent parameters even if the
additive noise is a coloured noise process. However, it
only gives asymptotically efficient estimates in the case of a
white noise. In practical situations, the additive noise will
not have the nice white noise properties assumed above: it
is likely that the noise will be a coloured noise process
vðtÞ ¼ HoðpÞeðtÞ. In such a case, (21) becomes

LðpÞ ¼
1

HoðpÞFoðpÞ
;

~ZTðtkÞ ¼
1

HoðpÞFoðpÞ
f̄ðtkÞ:

8>>><
>>>:

(25)

The exact noise model is unknown in practice but could be
estimated by extending to the CT case the procedure used
in the full DT RIV version (see Young, 1984 or Jakeman
et al., 1980) where an AR or ARMA model for the noise
part is estimated and used in the prefiltering operation.
4The case of multiple transfer function models with CDs can be handled

in a straightforward manner.
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This would lead to the identification of a hybrid model
where the plant model would be in CT while the noise part
would be in DT, as suggested recently (Young, Garnier, &
Gilson, 2006).
3.3. SRIVC for multiple transfer function models

The proposed method derives from the equivalent
iterative, relaxation algorithm for DT models in Young
and Jakeman (1980) and Jakeman et al. (1980). It aims at
identifying MISO models with DDs for each input (9),
which is more realistic than assuming an identical
denominator for all transfer function. However, the model
is no longer linear in the parameters and the proposed
MISO version of SRIVC lies, therefore, in the domain of
multi-linear regression. The MISO model (9) can be
converted into nu SISO models as follows:

viðtk; yÞ ¼ ~xiðtk; yÞ � ~yui
ðtk; yiÞ for i ¼ 1 . . . nu, (26)

~xiðtk; yÞ ¼ ~yðtkÞ �
Xnu

j¼1;jai

~yuj
ðtk; yjÞ. (27)

The parameter vector y is partitioned5into classes
y1; . . . ; ynu such that the error is affine with respect to the
parameters of any of these classes when the parameters of
all others are fixed (Walter & Pronzato, 1997). It is then
possible to search for ŷ by applying successively the SISO
version of the SRIVC algorithm to estimate the parameters
of each class in turn, with a cyclic exploration of all classes.
This is achieved by following the same type of ‘relaxation’
procedure described in Section 3.2

~xðniÞ

i ðtk; ŷ
j
Þ ¼ ~fT

i ðtk; ŷ
j
Þyjþ1

i þ ~eiðtk; ŷ
j
Þ, (28)

~f
T

i ðtk; ŷ
j
Þ ¼ ½ ~uðmiÞ

i ðtk � ti; ŷ
j
Þ . . . ~uiðtk � ti; ŷ

j
Þ

� ~x
ðni�1Þ

i ðtk; ŷ
j
Þ . . .� ~xiðtk; ŷ

j
Þ�, ð29Þ

where the filter is Liðp; ŷ
j
iÞ ¼ 1=Fiðp; ŷ

j
iÞ. This equation is

then solved by using the IV estimator described in the
previous section.

The main steps of the proposed iterative SRIVC method
can be summarized by the following algorithm.6
1.
5

pro
6

Mc

non
Estimate the initial parameter vectors

ŷ0i ¼ ½b̂
0
i;mi

. . . b̂0
i;0f̂

0
i;ni�1

. . . f̂
0

i;0�
T for i ¼ 1 . . . nu, (30)

between the output yðtkÞ and each input uiðtkÞ.
The partition of y into sub-vectors yi is related to the model order

blem discussed further in Section 3.4.

This can also be considered as a ‘backfitting’ algorithm: see Young,

Kenna, and Bruun (2001), where a similar device is used to identify

linear, state-dependent parameter systems.
Calculate the auxiliary model outputs

yui
ðtk; ŷ

0

i Þ ¼
Biðp; ŷ

0

i Þ

Fiðp; ŷ
0

i Þ

uiðtk � tiÞ.
2.
 j ¼ 0 . . .Niter � 1, i ¼ 1 . . . nu

(a) Generate an estimate xui
ðtk; ŷ

j
iÞ of the noisy response

to ui,

xui
ðtk; ŷ

j
iÞ ¼ yðtkÞ �

Xnu

l¼1;lai

yul
ðtk; ŷ

j
lÞ.

Filter the latter variable, the input signal and the
auxiliary model output

~xui
ðtk; ŷ

j
iÞ ¼

1

F iðp; ŷ
j
iÞ
xui
ðtk; ŷ

j
iÞ,

~uiðtk; ŷ
j
iÞ ¼

1

Fiðp; ŷ
j
iÞ

uiðtkÞ,

~yui
ðtk; ŷ

j
iÞ ¼

1

F iðp; ŷ
j
iÞ

yui
ðtk; ŷ

j
iÞ.

(b) Build up regressor (29) and the instruments

~Z
T

i ðtk; ŷ
j
iÞ ¼ ½ ~u

ðmiÞ

i ðtk � ti; ŷ
j
iÞ . . . ~uiðtk � ti; ŷ

j
iÞ

� ~x
ðni�1Þ

ui
ðtk; ŷ

j

iÞ . . .�
~xui
ðtk; ŷ

j

iÞ�. ð31Þ

Calculate the IV estimate of the parameter vector
ŷjþ1

i

ŷjþ1
i ¼

XN

k¼1

~Ziðtk; ŷ
j
iÞ
~fT

i ðtk; ŷ
j
iÞ

" #�1

XN

k¼1

~ZT
i ðtk; ŷ

j
iÞ
~xðniÞ

i ðtk; ŷ
j
iÞ. ð32Þ

Use ŷjþ1
i to generate the auxiliary model output

yui
ðtk; ŷ

jþ1

i Þ ¼
Biðp; ŷ

jþ1

i Þ

F iðp; ŷ
jþ1
i Þ

uiðtk � tiÞ.
Repeat step 2 until the relative error on the parameters
is sufficiently small

Xnu

i¼1

Xnpi

l¼1

ŷ
jþ1

i;l � ŷj
i;l

ŷj
i;l

������
������o�, (33)

where ŷj
i;l denotes the lth element of the parameter ŷj

i , � is
a given tolerance and Niter is the final iteration number.

N

3.
 For i ¼ 1 . . . nu, ŷi ¼ ŷ iter

i . Compute an estimate of the
parametric covariance matrix P̂i (see Young, 2002 for
example)

P̂i ¼ ŝ2e
XN

k¼1

~Ziðtk; ŷiÞ ~Z
T

i ðtk; ŷiÞ

" #�1
, (34)
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where ŝ2e denotes the empirical variance of the simula-
tion error

eðtk; ŷÞ ¼ yðtkÞ � yuðtk; ŷÞ.

The parameter vector and parametric covariance matrix
estimates are given by

ŷ ¼ ½ŷ
T

1 . . . ŷ
T
nu
�T (35)

P̂ ¼

P̂1 0 � � � 0

0 . .
. . .

. ..
.

..

. . .
. . .

.
0

0 � � � 0 P̂nu

0
BBBBB@

1
CCCCCA. (36)

Remarks:
1.
7

8

9

For the initialization of the algorithm, estimates for a
particular transfer function i can be obtained using
SISO modelling of the output yðtkÞ against each input
uiðtkÞ in turn. This is not a difficult task and there are
several alternatives available to the user in the CON-
TSID toolbox. An automatic option is to use the DT
version (SRIV) of the SRIVC method, which has the
advantage of not requiring any design parameters to be
specified. The estimated DT model is then first used to
generate the auxiliary model outputs yui

ðtk; ŷ
0
i Þ and also

converted to CT form to provide the F̂ iðp; ŷ
0
i Þ poly-

nomials. Two alternatives include the user specification
of a single cut-off frequency used in either the
traditional least squares-based SVF or the basic IV-
based GPMF methods (see Garnier et al., 2003 for
example).
2.
 This method is an IV-type estimation technique. There-
fore, upon convergence, it yields consistent estimates,
when the model belongs to the system class (Go 2 G7).
3.
 The proposed approach can be implemented recursively
(Young & Jakeman, 1980).
4.
 An indication of the estimated parameter uncertainties
is given which makes it possible to assess the model
quality. Note, however, that there is an implicit
assumption, introduced by the nature of the algorithm,
that the parameter estimates of each component TF are
statistically independent (see (36)).
5.
 The proposed estimation scheme is implemented in both
CONTSID8 and CAPTAIN9 toolboxes for Matlab.
6.
 If the measurement noise vðtkÞ is coloured, then the
method is not optimal in statistical terms. However,
experience has shown that it is robust and normally
yields estimates with reasonable statistical efficiency (i.e.
low but not minimum variance). In the coloured noise
situation, it is possible to use, albeit at the cost of
This notation is adopted from Ljung (1999).

see http://www.cran.uhp-nancy.fr/contsid/

see http://www.es.lancs.ac.uk/cres/captain/
increased complexity, a hybrid approach where the noise
modelling, as well as the noise-derived parts of the
prefiltering, are carried out in DT terms, as suggested
recently (Young et al., 2006).

3.4. Model order estimation

A key point to be solved in the identification procedure
concerns the model order selection. The method available
for SISO systems (see e.g. Young, 1989, 2002) is extended
to the case of MISO systems. While models are estimated
from a given data set, two statistical measures are
computed and used to choose between a range of model
orders. These are R2

T and YIC, which are defined as
follows:

R2
T ¼ 1�

ŝ2e
ŝ2y

,

YIC ¼ loge

ŝ2e
ŝ2y

( )
þ loge

1

np

Xnu

i¼1

Xnpi

l¼1

ŝ2e ŝ
2
yi;l

ŷ2i;l
, (37)

where ŝ2y, ŝ2e denote, respectively, the variance of the
measured output and the variance of the simulation error;
ŷ2i;l is the squared value of the lth element of the estimated
parameter vector ŷi; ŝ2yi;l

is the lth diagonal element of the
SRIVC estimated parametric covariance matrix P̂i; and np

is the total number of parameters. R2
T is recognized as the

coefficient of determination based on the simulation error.
It is a measure of how well the model output explains to the
system output and will be close to 1 in low noise situations.
However, R2

T does not provide a clear indication of the best
model order and can suggest over-parameterized models.
The Young’s information criterion (YIC) is more complex
and provides a measure of how well the parameters are
defined statistically (see Young, 1996 for example): the
more negative the YIC, the better the definition. However,
it may lead to underestimate the model orders. Both
criteria are inspected to find the orders for which R2

T is
sufficiently high to indicate a good explanation of the data
and the YIC is sufficiently negative to indicate well defined
parameter estimates.
Note that the proposed procedure, based on the two

criteria, is not always completely unambiguous, as all
model order procedures and other factors, such as physical
considerations and parsimony, need also to be taken into
account in the final selection of the model order. However,
as illustrated in the next section, the proposed SRIVC-
based model order selection procedure is helpful and is
shown to be reasonably successful for the multiple input
transfer function model, although the procedure is not as
clearly defined as in the equivalent SISO situation.

4. Simulation examples

Two simulation examples are considered in this section.
The system orders are first assumed to be known and

http://www.cran.uhp-nancy.fr/contsid/
http://www.es.lancs.ac.uk/cres/captain/
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Fig. 2. Step responses of the two inputs one output simulation systems. (a) System 1, (b) System 2.

11All of the identification results were computed using version 4.0 of the
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Monte Carlo simulations are used to illustrate the
relevance of the proposed SRIVC estimation scheme in
comparison to the traditional identification method for
MISO transfer function model with CDs. The performance
of the proposed approach is also compared with the direct
CT model identification method for MISO transfer
function model with DDs minimizing the output error
(COE).10 The model order selection procedure described in
Section 3.4 is then evaluated. The first system has two
transfer functions with approximately the same bandwidth;
while the second example has two transfer functions with
clearly distinguished bandwidths.

4.1. Simulation example 1

The first system considered (S1) is a two input, one
output system, with second-order non-minimum phase
transfer functions

S1 :
yuðtÞ ¼

�0:5pþ 1

p2 þ 0:6pþ 1
u1ðtÞ þ

�3pþ 2

p2 þ 4pþ 3
u2ðtÞ;

yðtkÞ ¼ yuðtkÞ þ vðtkÞ:

8<
: (38)

The first transfer function presents a resonant mode, with a
damping coefficient of 0.3 and a natural frequency of 1 rad/s,
while the second has two time constants equal to 1 and 3 s.
The dynamic characteristics between the two inputs and
the output are quite similar, as can be observed from the
step response of both transfer functions displayed in
Fig. 2(a).

The measured output yðtkÞ consists of the noise-free
output yuðtÞ sampled at time tk, to which is added a zero-
mean independent identically distributed (i.i.d.) Gaussian
sequence vðtkÞ. Note that S1 is formulated with the model
structure assumed in both SRIVC and COE methods. The
sampling period is equal to Ts ¼ 50ms. The system is
excited by two uncorrelated PRBS of maximum length.
The characteristics of the PRBS signals, whose amplitude
10This algorithm is also available in the CONTSID toolbox where the

parameters of MISO models are estimated by using the Levenberg–Mar-

quardt algorithm via sensitivity functions.
switches between �1 and þ1, are the following: the number
of stages of the shift register is set to ns1 ¼ 6, the clock
period is set to np1 ¼ 40 for the first input, while ns2 ¼ 7
and np2 ¼ 20 for the second input. The first input is
duplicated and then truncated in order to have the same
number of points N ¼ 2540 for both inputs. Note that the
noise-free system response to the PRBS has been calculated
exactly at the sampling instances by discretizing the CT
transfer function model, assuming a zero-order hold on the
inputs.
The variance of the additive noise vðtkÞ on the measured

output is adjusted in order to obtain a signal-to-noise ratio
ðSNRÞ of 20 dB. The SNR is defined as

SNR ¼ 10 log
Pyu

Pv

, (39)

where Pv represents the average power of the zero-mean
additive noise on the system output (i.e. the variance) while
Pyu

denotes the average power of the noise-free output
fluctuations. The noisy system response, along with the two
PRBS inputs, are displayed in Fig. 3(a).
The estimation results11 from a Monte Carlo simulation

with Nexp ¼ 200 experiments are shown in Table 1. The
aim here is first to illustrate the relevance of the proposed
approach dedicated to MISO transfer function model with
DDs. The estimation results obtained with the proposed
SRIVC and with the traditional Instrumental Variable-
based State Variable Filter (IVSVF)12 method (Garnier
et al., 2003) for MISO transfer function models with CDs
are presented in Table 1. The estimation results obtained
with the COE method13 are also included in Table 1 for
comparison purposes. Note that both SRIVC and COE
routines are initialized in the same way from an initial
estimate obtained by using the IV-based GPMF algorithm
(see Garnier et al., 2003 for example) since the automatic
CONTSID toolbox on Matlab 7.0.1.
12This algorithm is also available in the CONTSID toolbox.
13Both SRIVC and COE iterative searches are automatically stopped by

using the procedure presented in Section 3.3. (see (33)).
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Table 1

Monte Carlo simulation results for System 1

b1;1 b1;0 f 1;1 f 1;0 b2;1 b2;0 f 2;1 f 2;0 N̄iter � sNiter
T̄c

Method True value �0.5 1 0.6 1 �3 2 4 3

ŷi;l
�1.339 1.747 1.970 1.737 �1.697 1.873 1.970 1.737

IVSVF sŷi;l
0.022 0.019 0.024 0.014 0.027 0.016 0.024 0.014 0.44

NMSEðŷi;l Þ 2.8 5:6� 10�1 5.2 5:4� 10�1 1:9� 10�1 4:1� 10�3 2:6� 10�1 1:8� 10�1

ŷi;l
�0.500 1.001 0.601 1.000 �3.001 1.999 4.002 3.001

SRIVC sŷi;l
0.005 0.004 0.003 0.003 0.037 0.022 0.050 0.030 8:69� 0:46 4.02

NMSEðŷi;l Þ 9:5� 10�5 1:8� 10�5 3:3� 10�5 8:2� 10�6 1:5� 10�4 1:3� 10�4 1:6� 10�4 1:0� 10�4

ŷi;l
�0.500 1.001 0.601 1.000 �3.001 1.999 4.002 3.001

COE sŷi;l
0.005 0.004 0.003 0.003 0.037 0.022 0.050 0.030 6:46� 0:66 6.09

NMSEðŷi;l Þ 9:5� 10�5 1:8� 10�5 3:3� 10�5 8:2� 10�6 1:5� 10�4 1:3� 10�4 1:6� 10�4 1:0� 10�4
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option based on the use of the DT version SRIV is not
available in the COE method.

To compare the statistical performance of the different

approaches, the computed mean ŷi;l and standard deviation
sŷi;l

of the estimated parameters are presented, as well as

the empirical normalized mean square error (NMSE)
which is defined as

NMSEðŷi;lÞ ¼
1

Nexp

XNexp

j¼1

yo
i;l � ŷi;lðjÞ

yo
i;l

 !2

, (40)

where ŷi;lðjÞ is the lth element of the estimated parameter
vector at the jth Monte Carlo simulation experiment ŷiðjÞ

(i ¼ 1 or 2 here) while ‘o’ denotes the true value of the
parameter. The average iteration number N̄iter, the
standard deviation of iterations sNiter

and the average
computational time T̄c for the iterative methods to
converge are also considered later in the analysis of the
estimation results.

The comparison of the estimation results displayed in
Table 1 obtained by the SRIVC and IVSVF methods show,
as expected, the relevance of the proposed SRIVC
algorithm dedicated to DD transfer function models. It
can be seen that the IVSVF method assuming CDs fails to
give a good estimate because the same dynamic is used for
the two transfer functions. In contrast to this, the SRIVC
algorithm, which considers DDs, gives very accurate results
with no bias and very low standard errors. This analysis is
further illustrated by the Bode plots of the 200 estimated
models for both SRIVC and IVSVF estimation techniques
displayed in Fig. 4.
Table 1 shows also that, for this system with quite similar

dynamic characteristics, there is nothing to choose between
the SRIVC and COE methods. The two methods dedicated
to DD transfer function model identification are consistent
with very low estimated standard errors and give their best
performance when applied to simulated data that conform
with the assumptions made in their derivation, which is
clearly the case in this additive Gaussian measurement
noise example.

4.2. Simulation example 2

The second system considered (S2) is also a two input,
one output system given by

S2 :
yuðtÞ ¼

�0:5pþ 1

p2 þ 0:6pþ 1
u1ðtÞ þ

100

p2 þ 8pþ 100
u2ðtÞ;

yðtkÞ ¼ yuðtkÞ þ vðtkÞ:

8<
:

(41)

The first transfer function is identical to the one used in S1,
while the second transfer function is now a minimum
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15This kind of output-error minimization techniques is known to

encountered difficulties (linked to local minima problems) under condi-

tions that are non-standard, such as rapidly sampled data and dominant
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phase, second order which has a resonant mode, with a
damping coefficient of 0.4 and a natural frequency of
10 rad/s. The dynamic characteristics between the two
inputs and the output are now clearly different, as it may
be seen from the step responses displayed in Fig. 2(b).

The simulation conditions are the same than before. The
input signal u2 was kept at 1 for some decades of seconds
after the PRBS sequence had finished.14 The noisy system
response, along with the two PRBS inputs, are displayed in
Fig. 3(b). The estimation results obtained with the
proposed SRIVC and COE algorithms from a Monte
Carlo simulation with 200 realizations are shown in
Table 2. From this table, the difference in performance
14This non-zero-mean portion of signal was added to the PRBS in order

to ensure that the COE method estimated the correct steady state gain in

the Monte Carlo simulation.
between the two estimation approaches is clearly notice-
able. While the proposed SRIVC method still delivers very
good estimation results, the output-error-based technique
is not able to converge to the global minimum for this
system with quite different dynamic characteristics.15 The
COE iterations stop when the maximum number of
iterations is achieved. Note that both algorithms are
initialized in the same way from an initial IVGPMF-based
model estimates. The difference in performance of both
system modes with widely different natural frequencies (see Ljung, 2003

for example). Various remedies exist for the local minima problems as, for

example, the special choice of an excitation signal or the use of robust

initialization procedure. However, these special remedies have not been

further investigated here.
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Table 2

Monte Carlo simulation results for System 2

b1;1 b1;0 f 1;1 f 1;0 b2;0 f 2;1 f 2;0 N̄iter � sNiter
T̄c

Method True value �0.5 1 0.6 1 100 8 100

ŷi;l
�0.500 1.000 0.600 1.000 99.947 7.995 99.944

SRIVC sŷi;l
0.005 0.004 0.003 0.003 1.134 0.121 1.031 6:65� 0:56 2.99

NMSEðŷi;lÞ 1:2� 10�4 1:8� 10�5 2:8� 10�5 7:3� 10�6 1:3� 10�4 2:3� 10�4 1:1� 10�4

ŷi;l
�0.400 0.986 0.583 0.978 3:4� 106 2:6� 106 4:4� 106

COE sŷi;l
0.011 0.005 0.004 0.003 1:8� 106 1:5� 106 2:4� 106 50� 0 19.77

NMSEðŷi;lÞ 4:1� 10�2 2:1� 10�4 8:7� 10�4 4:9� 10�4 1:5� 109 1:4� 1011 2:5� 109
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SRIVC, (d) estimated G2ðsÞ by COE.
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methods cannot, therefore, come from the algorithm
initialization stage. The Bode plots of the 200 estimated
models for both estimation techniques are plotted in Fig. 5
and further illustrate the previous analysis.
4.3. Model order selection

The model order selection procedure presented in
Section 3.4 is now applied to the second simulated system
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Table 3

Best 15 model orders according to YIC and R2
T for System 2

m1 m2 n1 n2 YIC R2
T

Niter

1 0 2 2 �13.71 0.990 6

1 0 2 1 �12.03 0.975 17

1 1 2 1 �12.03 0.975 17

0 0 3 1 �11.17 0.970 17

0 1 3 1 �11.17 0.970 17

0 0 2 2 �11.06 0.959 9

0 0 2 1 �10.50 0.945 21

0 1 2 1 �10.50 0.945 21

0 1 3 3 �7.92 0.985 21

0 0 1 2 �7.08 0.738 50

1 0 1 2 �7.08 0.738 50

0 0 1 1 �6.96 0.722 50

1 0 1 1 �6.96 0.722 50

0 1 1 1 �6.96 0.722 50

1 1 1 1 �6.96 0.722 50
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S2 for the same simulation conditions (same PRBS,
SNR ¼ 20 dB). The procedure implemented in the CON-
TSID SRIVCSTRUC routine is applied to search all
models in the range ½m1;m2; n1; n2� ¼ ½0; 0; 1; 1� to
½1; 1; 3; 3�. Table 3 shows the best 15 model orders sorted
in increasing YIC.

For this simulation example, the proposed model order
estimation procedure, based on the selection of the most
negative YIC and a relatively high value of R2

T , clearly
identifies the true model structure ½m1;m2; n1; n2�

¼ ½1; 0; 2; 2�. It presents the most negative YIC ¼ �13:71
with a R2

T ¼ 0:990 very close to the highest R2
T value16 and

with the lowest number of iterations to converge.
5. Winding process application

5.1. Process description

A diagram of the winding process is presented in Fig. 6.
The main part of this MIMO pilot plant is a winding
process composed of a plastic web and three reels. Each
reel is coupled with a direct-current motor via gear
reduction. The angular speed of each reel ðS1; S2; S3Þ is
measured by a tachometer, while the tensions between the
reels ðT1; T3Þ are measured by tension meters. At a second
level, each motor is driven by a local controller. Two PI
control loops adjust the motor currents ðI1Þ and ðI3Þ and a
double PI control loop drives the angular speed ðS2Þ. The
set-points of the local controllers ðI�1; S�2; I�3Þ constitute the
manipulated inputs of the winding system uðtÞ ¼ ½I�1ðtÞ

S�2ðtÞ I�3ðtÞ�
T. Driving a winding process essentially comes

down to controlling the web linear velocity and the web
16Where R2
T ¼ 0:991, but with an associated YIC ¼ �6:42. This is why

it does not appear in Table 3.
tensions ðT1Þ and ðT3Þ around a given operating point.
Consequently, the output variables of the winding system
are yðtÞ ¼ ½T1ðtÞ T3ðtÞ S2ðtÞ�

T. The process is described in
more detail in Bastogne, Noura, Sibille, and Richard
(1998).

5.2. Experiment design

The estimation and validation data sets are displayed in
Figs. 7 and 8. Discrete interval binary sequences were
used as input excitation signals. The sampling rate is equal
to Ts ¼ 10ms. The experimental period, around 30 s
for the estimation data set, is short enough to overlook
the changes of the winding radii r1ðtÞ and r3ðtÞ. The
mean and linear trends of the input/output signals were
removed. The raw input/output data set can be found in
the Matlab file winding.mat available in the CONTSID
toolbox.

5.3. Model order selection

The SRIVC-based procedure presented in Section 3.4
has been used to determine the transfer function orders of
the winding process model. For each output, a large
number of models have been estimated for a wide range of
model orders. The best model structures according to
identification criteria YIC and R2

T are given in Table 4.
Each model presented in this table respects two conditions:
�
 YICominðYICÞ þ 3,

�
 R2

TomaxðR2
T Þ � 0:01.
It can be seen that there is still some ambiguity about which
is the best model for the three outputs. In the SISO
situation, the choice of the best model is usually clear cut,
since the correct model’s YIC is singularly most negative in
relation to higher-order models. However, in this MISO
and real-life data situation, for a given output, some of the
models within one order of the best model possess very
similar YIC and R2

T criteria. In such cases, the intuitive
procedure is to choose within the potential model set, the
most parsimonious model with the lowest number of
parameters. Models which respect the above condition
have finally been selected and these are referenced by � in
Table 4.

5.4. Model identification

The proposed MISO estimation scheme has been
implemented for each of the three outputs. The final
identified transfer function matrix is

T1ðsÞ

T3ðsÞ

S2ðsÞ

0
BBB@

1
CCCA ¼ GðsÞ

I�1ðsÞ

S�2ðsÞ

I�3ðsÞ

0
BBB@

1
CCCA (42)
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with
GðsÞ ¼

�35:9ð�1:2Þ

s2 þ 9:3ð�0:3Þsþ 11:5ð�0:4Þ

�1:3ð�0:02Þ

sþ 2:3ð�0:04Þ

2:0ð�

sþ 6:9

�4:1ð�0:2Þs� 2:7ð�0:2Þ

s2 þ 5:6ð�0:3Þsþ 12:3ð�0:6Þ

�1:6ð�0:08Þ

sþ 6:0ð�0:3Þ

4:8ð�

sþ 3:7

1:1ð�0:05Þ

s2 þ 1:4ð�0:1Þsþ 7:8ð�0:2Þ

3:4ð�0:02Þ

sþ 2:7ð�0:01Þ

1:4ð�

sþ 5:8

0
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where s denotes the Laplace variable and the figures in
parentheses are the estimated standard errors.

5.5. Cross-validation results

To evaluate the quality of the estimated transfer function
models, a cross-validation procedure has been applied to
data that were not used to build the model. Cross-validation
results are plotted in Fig. 9, where it may be observed that
there is a satisfactory reproduction of the multiple output
behaviour by the transfer function models. These results
demonstrate the applicability of the proposed SRIVC
algorithm for the identification of reduced-order, CT,
multiple transfer function models. Note that the oscillatory
character of the output ðT3Þ is not modelled as well as the
first two outputs. However, this problem is not due to the
estimation algorithm. Indeed, it has been shown in Bastogne
and Sibille (1998) that the tension ðT3Þ has nonlinear
transient behaviour depending on the sign of the steps on
the input ðI�1Þ. These input-dependent dynamics cannot,
therefore, be captured by a linear model identification
procedure, although they may be captured if a nonlinear
input transformation and this is being investigated using the
state-dependent parameter estimation approach to modelling
nonlinear systems (see e.g. Young et al., 2001).

6. Industrial distillation column application

6.1. Column description

Fig. 10 shows a schematic description of the industrial
binary distillation column. It is equipped with 48 trays, a
0:2Þ

ð�0:9Þ

0:1Þ

ð�0:1Þ

0:1Þ

ð�0:4Þ

1
CCCCCCCA
, (43)
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Table 4

Best model structures according to YIC and R2
T for the winding process

m1 m2 m3 n1 n2 n3 YIC R2
T

Output 1, T1ðtkÞ

0 0 1 2 1 2 �8.96 0.960

1 0 1 1 1 2 �8.82 0.957

0 0 1 2 2 2 �8.78 0.962

0 0 0 2 1 1 �8.68* 0.955

1 0 0 1 2 2 �8.57 0.953

1 0 1 1 2 2 �8.53 0.958

0 1 1 2 2 2 �8.33 0.962

0 1 1 2 1 2 �8.29 0.960

0 1 1 1 2 2 �8.25 0.953

Output 2, T3ðtkÞ

1 0 0 2 1 1 �8.03* 0.882

1 0 0 2 2 1 �7.81 0.884

1 0 1 2 2 1 �7.32 0.885

1 0 1 2 1 1 �7.28 0.883

1 1 0 2 2 1 �7.26 0.890

1 1 1 2 2 1 �6.86 0.891

1 0 0 2 1 2 �6.74 0.884

Output 3, S2ðtkÞ

0 1 0 2 2 1 �10.52 0.988

0 1 0 2 1 1 �10.34 0.985

0 0 0 2 2 1 �10.30 0.986

0 0 0 2 1 1 �10.14* 0.983

0 0 0 2 2 2 �9.93 0.986

0 1 1 2 2 1 �9.93 0.988

1 0 1 2 1 2 �9.71 0.986

1 1 1 2 1 2 �9.70 0.987

1 0 0 2 1 1 �9.67 0.983

1 0 1 2 2 2 �9.65 0.987

1 0 0 2 2 2 �9.61 0.986

1 1 0 2 1 2 �9.53 0.986

0 0 1 2 2 2 �9.26 0.987

0 0 0 2 1 2 �9.23 0.983
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Fig. 9. Cross-validation results for the winding process.
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steam-heated reboiler and a total condenser. The column is
fed in at the 18th tray with a binary mixture of carbonate
components. The separation of components takes place
under controlled pressure. The objectives are to control the
impurity of the top product or distillate X t and the
impurity of the bottom product or residue X b with respect
to changes on reflux flow F r and heating power Q while
preventing influence of changes on feed flow Ff and feed
composition. The distillate and residue X t and X b are
measured by means of analysers and expressed in volume
per million (vpm). The process is described in more detail
in Defranoux, Garnier, and Sibille (2000).

6.2. Experiment design

Two kinds of experiment were carried out while
respecting constraints imposed by the industrial company.
These constraints were first to not perturb the production,
since the top composition is a finished product; and
secondly to manipulate the inputs separately for security
and productivity reasons. This latter constraint required
that the inputs were perturbed separately and that MISO
identification was utilized. The sampling time was set to
10 s. The two experiments, therefore, consisted of manip-
ulating separately the set-points of the reflux flow, Fr, and
the temperature of tray 40, T40, around their normal
operating point; the other variables being locally con-
trolled. The experiment lasted between 5 and 17 h. The
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manipulated variables were chosen as zero-mean random
binary signals (RBS). Two RBS with a magnitude of 0.3 t/h
and of 1:5 	C were separately applied to the reflux flow Fr

and to the temperature T40, respectively, as illustrated in
Fig. 11. Before executing the estimation procedure,
classical data pre-processing was carried out on the raw
data sets.

6.3. Model structure selection

Based on detailed data analysis, it turns out that the
temperature measurement of the sensitive tray T12 can be
considered as a continuous indication of the distillate X t

that reacts quickly to changes. This sensitive tray
temperature T12 has, therefore, been considered as an
output variable instead of the distillate. However, no
temperature tray could represent a continuous indication
of the residue X b, which constitutes the second output of
the model. Classically, the reflux flow F r and heating power
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Fig. 10. Schematic description of the column.
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represented by the controlled temperature T40 are used as
input variables for the system. The most important
disturbance entering this distillation column is a change
in the feed flow rate. Since the feed flow rate Ff is
measured, therefore, it has been included as a third input
variable for the model. The multivariable coupling in the
process can then be described by the following model:

T12ðsÞ

X bðsÞ

 !
¼

H11ðsÞ H12ðsÞ H13ðsÞ

H21ðsÞ H22ðsÞ H23ðsÞ

 ! F rðsÞ

T40ðsÞ

Ff ðsÞ

0
B@

1
CA.

(44)

6.4. Model identification

The measured reflux flow and tray 40 temperature rather
than the set-points for these variables were considered in
the identification procedure. Time-delays from input to
output variables and model orders were previously
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Fig. 13. Cross-validation results for RBS excitation on the tray 40 temperature set-point.

H. Garnier et al. / Control Engineering Practice 15 (2007) 471–486 485
estimated from step responses and from previous identifi-
cation (Defranoux et al., 2000), respectively. During the
experiment, the feed flow changes did not disturb explicitly
the bottom product composition of the column. The
distant position of the feed tray (Fig. 10) in respect to the
bottom of the column probably explains this phenomenon.
The transfer function H23 was not, therefore, considered in
the estimation procedure and was set to zero. Furthermore,
no coupling between the reflux flow F r and the residue X b

could be demonstrated. Consequently, the transfer func-
tion H21 was also set to zero and was not considered in the
estimation procedure. This explains why there is no cross-
validation plot for X b in the case of excitation on the reflux
flow set-point. The proposed MISO estimation scheme has
been implemented for each of the two outputs.

6.5. Cross-validation results

Cross-validation results are presented in Figs. 12 and 13.
They are of identical quality to those obtained by using an
indirect approach consisting first of estimating a DT model
by a prediction error method and then converting it into a
CT one (Defranoux et al., 2000). This application
demonstrates further the practical applicability of the
proposed scheme.

7. Conclusions

In this paper, an optimal IV-type method has been
proposed to directly estimate asymptotically efficient
estimates in multiple input, single output continuous-time
models from sampled data, where the additive noise is
white. This method also yields consistent and relatively low
variance parameter estimates in the case of coloured noise;
and it could be made statistically efficient in this situation
by incorporating a discrete-time model for the coloured
noise process, as in Young et al. (2006). The proposed
procedure differs from many other MISO estimation
schemes in that it is applied to a MISO model with
different transfer functions between the various inputs and
the output. In this sense, the proposed refined IV procedure
has considerable potential for practical application, parti-
cularly in those cases where the dynamic characteristics
between the various inputs and the single output are quite
different. Moreover, the proposed IV procedure, in
contrast to alternative output-error minimization ap-
proaches, exploits the advantage of using an iterative,
linear regression approach and, therefore, does not appear
to suffer from the local minima problems that characterize
the output-error methods in similar circumstances. Other
advantages are that the proposed approach can easily
handle non-uniformly sampled data and the refined IV
method allows for the use of the YIC model structure
identification criterion, which based on the properties of
the instrumental product matrix and helps to identify the
most appropriate model orders, prior to parameter
estimation. All of these interesting properties have been
illustrated via Monte Carlo simulations and the application
to both a winding process and an industrial binary
distillation column. Another successful application of the
proposed estimation scheme to identify a two input-two
output flexible robotic arm designed for heart-beating
tracking is also reported in Cuvillon, Laroche, Garnier,
Gangloff, and de Mathelin (2006), demonstrating the wide
practical applicability of the proposed identification
approach.
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