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Abstract
In this paper we illustrate a standard problem of mathematical physics, by
exploring the potential of using a computer algebra system in a classroom
experiment. Although many textbooks describe the problem and solve its
particular examples to variable extent, to the student is always left the task
of imagining, after a few tedious calculations, the temporal evolution of
the system. The aim of this paper is, using algebraic computation, to give
a complete route to the problem of an asymmetrically perturbed circular
membrane in viscous media with the usual boundary conditions, including
the computer animation of the results.

1. Introduction

We have witnessed a steady increase in the availability of computers with sufficient CPU
power to process numerical applications of physical and engineering interest that used to
drain mainframe computer system resources a decade ago. The situation has improved more
dramatically with the evolution of algebraic computational platforms to such a mature level
that many theoretical studies are now done relying on these platforms and extending them
concomitantly. The classroom reality has, with relatively few exceptions, overlooked such
powerful tools and machinery, leading interested science students to explore these possibilities
unsystematically by themselves. In the best case they can achieve some degree of comparison
with the theory presented in classical texts, which is invariably limited to simple cases. It
is the belief of the authors of this paper that such availability of tools should push us ahead
towards giving a more complete view as possible so as to preserve the amount of intellectual
effort a student should put in his/her academic formation.

The problem of the vibrations of a tense circular membrane, with a fixed border, is a
classic problem of mathematical physics, having been solved for the first time close to the
middle of the eighteenth century, by Euler [1, 2]. The solution envisaged by Euler made use
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of a power series that we today refer to as J0(x)—the Bessel function of the first kind, which
was to be formally introduced in 1824 by Bessel [3], a near sixty year interim.

In musical instruments employing circular membranes, such as the drum for example,
the vibrations propagating on the membrane are of such a minute amplitude and much too
fast to reveal visually the complex composition of normal modes. The use of a computer in
this situation can be very welcome, especially considering the graphic animation facilities of
systems such as (Maple, Mathematica, etc). In [4] one can see the use of such an environment,
but restricted to normal modes and only of symmetrically driven membranes under fixed
boundary conditions.

As will be reported in this paper, for the case of circular membranes and for many
other vibrational problems, not only the full structure of normal modes at various boundary
conditions but also the actual solution in time of an asymmetrically driven membrane can
be analytically handled and graphically explored with relatively little effort by using such an
algebraic environment and widespread available hardware.

In the majority of textbooks of mathematical physics, including some classics [5, 6], it
is rare to see treated the boundary value problem of vibrations, induced by a out-of-centre
perturbation, across a membrane with a circular hole concentric with its border. It is also rare
to come across the solution of the analogue problem of undulations of the surface of a liquid
in a circular reservoir. One can find a description of both situations without the asymmetric
perturbation in the books [7–9]. These are both relevant educational problems in mathematical
physics and are treated in the present paper with the aim of being a pedagogical contribution
for the teaching of these topics.

Here, we collected most of the mathematics involved in the solution of cylindrically
symmetric linear differential equations by illustrating the composition of eigenmodes of
the circular membrane. Damping was added as it requires little more in terms of a tidy
presentation of formulae, as opposed to a driven time dependent force and the important
concept of resonance, which are left aside, as they would complicate the exposition and could
be modelled alone in a much simpler application.

This paper starts by presenting a review of the basic procedure of the spectral
decomposition and temporal evolution of separable differential equations. We then present
three important boundary situations that this membrane could satisfy and present the graphics
of eigenmodes and temporal evolution. It is important to remark that to fully accomplish
the purpose of this paper the reader should be able to reproduce in his/her computer this
simulation in detail as the visualization can only be partially printed.

2. Solutions of the damping wave equation in cylindrical coordinates

The sound of the drum comes from the oscillatory movement of the circular membrane fixed
at the border. To describe a drum mathematically, we assume that the circular membrane is
uniformly distended in all directions by a tension T, vibrating in the upward z-direction in
a viscous medium with a small damping factor γ and with no external forces. Under these
considerations such a system follows the equation

∇2z(r, θ, t) = 1

c2

∂2z(r, θ, t)

∂t2
+

γ

c2

∂z(r, θ, t)

∂t
, (1)

where c2 = T/ρ and ρ is the mass density. The damping was included to give a more accurate
description of a realistic problem. The same equation is obtained for a liquid having a free
surface in the limit of small oscillations, under gravity and with a viscosity linearly dependent
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on velocity [7]. In order to complete the mathematical description we have to specify the
boundary conditions, representing the physical situation we want to describe. In this work we
adopt three different boundary conditions for the circular membrane.

The first problem we want to treat is the drum, which consists of a circular membrane
with a fixed border, meaning that z(r = R) = 0 for all t and θ , where R is the radius of the
membrane. The second physical situation is a membrane that has permitted movement at its
contour, which represents an approximation for the movement of a liquid surface (see [7] for
a detailed description), the boundary condition being ∇z(r = R) n̂ = 0 for all t and θ . In the
last situation, we describe an annular membrane [8, 9], we have two fixed contours for this
membrane, i.e. z(r = r0) = 0 and z(r = R) = 0 for all t and θ . A practical situation similar
to this is found in the design of a hornless moving-coil loudspeaker (see [10]).

Using the method of separation of variables equation (1) can be written in separable
equations in the following way,

d2T (t)

dt2
+ γ

dT (t)

dt
= λ1c

2T (t), (2)

d2�(θ)

dθ2
= λ2�(θ), (3)

d2R(r)

dr2
+

1

r

dR(r)

dr
+

(
λ2

r2
− λ1

)
R(r) = 0, (4)

where z(r, θ, t) = T (t)�(θ)R(r). The general solution of these equations is given by

z(r, θ, t) =
∞∑

m=0,n=1

e−γ t/2(C1Jm

(
km
n r

)
+ C2Nm

(
km
n r

))[(
Am

n sin ωm
n t + A

m

n cos ωm
n t

)
cos mθ

+
(
Bm

n sin ωm
n t + B

m

n cos ωm
n t

)
sin mθ

]
, (5)

where ωm
n =

√
c2

(
km
n

)2
+ γ 2

/
2 and km

n depends on boundary conditions. Because of the
damping the eigenfrequencies increase as expected.

For each boundary condition we have a particular solution for equation (5) we should
analyse case by case. In the first case we set C2 = 0, for the Neumann functions are not finite
in r = 0 and this solution makes no sense for the drum problem. In this case km

n = αm
n

/
R

where αm
n are the zeros of the Bessel function

Jm

(
αm

n

) = 0, m = 0, 1, 2, . . . . (6)

In the case in which the membrane is free to vibrate at its border we have C2 = 0 too,
using the same argument as above, and km

n = βm
n

/
R, where βm

n are the zeros of the derivative
of the Bessel function

dJm

(
βm

n

)
dr

= 0, m = 0, 1, 2, . . . . (7)

In the last case C2 �= 0, because the solution of equation (5) does not pass through the
point r = 0 we have two equations to satisfy,

C1Jm

(
km
n R

)
+ C2Nm

(
km
n R

) = 0 (8)

C1Jm

(
km
n r0

)
+ C2Nm

(
km
n r0

) = 0. (9)

The nontrivial solutions are given by the transcendental equation [5]

E
(
r0, R, km

n

) = Nm

(
km
n r0

)
Jm

(
km
n R

) − Jm

(
km
n r0

)
Nm

(
km
n R

) = 0, (10)
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where the constants satisfy the following relation:

C2

C1
= − Jm

(
km
n r0

)
Nm

(
km
n r0

) = − Jm

(
km
n R

)
Nm

(
km
n R

) . (11)

We can write equation (5) as a sum of normal modes (eigenmodes), which are functions
that oscillate with the same eigenfrequency ωm

n . To illustrate the vibrations in normal modes
let us assume in a particular case, the drum as initially at rest z(r, θ, 0) = 0. For this case
A

m

n = B
m

n = 0 and

z(r, θ, t) = e−γ t/2
∞∑

m=0,n=1

C1Jm

(
km
n r

) × [
Am

n cos mθ + Bm
n sin mθ

]
sin ωm

n t

and the normal modes are

Re
m,n(r, θ, t) = Jm

(
km
n r

)
cos mθ sin ωm

n t Ro
m,n(r, θ, t) = Jm

(
km
n r

)
sin mθ sin ωm

n t. (12)

We have two types of normal modes the odd Ro
m,n and even Re

m,n, which describe the movement
of the circular membrane depending on the symmetry of our initial velocity, in this case. Finally
we rewrite the general solution given by equation (5) as

z(r, θ, t) = e−γ t/2
∞∑

m=0,n=1

(
am

n Re
m,n + bm

n Ro
m,n

)
sin ωm

n t. (13)

3. Computational details

In this section we show how to solve, using the algebraic computational environment MAPLE,
the model described in the last section, leading to the temporal evolution of the circular
membrane in those situations. To explain the procedure we utilize as an example the more
general case, the membrane with a hole at its centre. The first step to construct the temporal
evolution series is to determine the coefficients km

n . To do this we plot equation (10) whose
zeros we want to find, and look up the range in which the zero is located. So we can use the
following MAPLE instructions to determine the exact position of the zeros. We present below
the code to determine the zeros for r0 = 0.2, R = 1 and m = 0:

[>r0:=0.2;R:=1;

[>E[0]:=BesselY(0,k*R)*BesselJ(0,k*r0)

[>-BesselY(0,k*r0)*BesselJ(0,k*R);

[>plot(E[0],k=0..5);

[>k[0,1]:=fsolve(E[0],k=3..4);

[> for i from 2 to 4 do;

[>k[0,i]:=fsolve(E[0](r0,R,k),

[>k=k[0,i-1]..k[0,i-1]+2*Pi);

[>od;

Plotting the expression for E[0] we find the range where the first zero is localized and then we
use the fsolve command to determine it. To find the other zeros we choose the range between
the earlier zero and the earlier zero plus 2π , as the zeros of Bessel functions are spaced by a
distance approximately close to 2π . Using the same procedure for other m′, we find the zeros
of equation (10). In the above case we just took the first four zeros.
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Figure 1. The 3d graphic of initial velocity distribution, made with the plot3d command.

To determine the solution of equation (5) we need to define the initial situation of the
membrane, that is, the initial form and velocity distribution of the membrane at some time.
We choose the membrane initially at rest, z(r, θ, 0) = 0, giving it a kick at t = 0 described
mathematically by

[>v0:=-100*(r0-r)^2*(R-r)^2

[>*exp(-(theta-Pi)^2/0.05);

[>plot3d(v0,r=r0..R,theta=0..2*Pi);

The graphic of the initial velocity distribution, using the plot3d command, is shown in
figure 1.

For the initial velocity, a four-order polynomial in r was used to calculate the integrals
faster. Another interesting hint is to separate the angular and the radial dependences to facilitate
the integral calculation which can be done as

[>v0r:=(r0-r)^2*(R-r)^2;

[>v0theta:=exp(-(theta-Pi)^2/0.05);

Knowing the initial conditions we can calculate the temporal evolution of the membrane,
using the following expressions:(

Am
n

Bm
n

)
= 1

ωm
n

∫ ∞

0

∫ 2π

0

(
Nm

(
km
n r0

)
Jm

(
km
n r

)− Jm

(
km
n r0

)
Nm

(
km
n r

))
v0(r, θ)r

(
cos mθ

sin mθ

)
dr dθ.

The above equation is obtained if we differentiate equation (5) with relation to time,
evaluate in t = 0 and compare with initial velocity distribution. As the Bessel functions
form a complete set of eigenfunctions we can evaluate the coefficients Am,n and Bm,n. The
coefficients obey Am,n = Bm,n = 0 because the initial shape is z(r, θ, 0) = 0.

For the radial function we choose in equation (5) the coefficients C1 and C2 according to
equation (11) and evaluate a normalized function using the next commands:

[> for m from 0 to 4 do;

[> for n from 1 to 4 do;

[>R[m,n]:=(BesselN(m,r0*r)*BesselJ(m,k[m,n]*r)

[>-BesselJ(m,r0*r)*BesselN(m,k[m,n]*r))/N[m,n];

[>od;od;
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In the above equation, N [m, n] is the normalization constant obtained by

[> for i from 0 to 4 do;

[> for j from 1 to 4 do;

[>N[i,j]:=int((R[i,j])^2*r,r=r0..R);

[>od;od;

We first evaluate the angular then the radial integrals, as follows:

[> for m from 0 to 4 do;

[>ange[m]:=int(v0theta*cos(m*p),theta=0..2*Pi);

[>ango[m]:=int(v0theta*sin(m*p),theta=0..2*Pi);

[>od;

[> for m from 0 to 4 do;

[> for n from 1 to 4 do;

[>A[m,n]:=ange[m]*int(v0r*R[m,n]*r,r=r0..R);

[>B[m,n]:=ango[m]*int(v0r*R[m,n]*r,r=r0..R);

[> od;

[> od;

Now we finally sum up the coefficients to determine the temporal evolution of the circular
membrane. In MAPLE we can evaluate it using these following commands:

[> for m from 0 to 4 do;

[> for n from 1 to 4 do;

[>gamma:=2;

[>omega[m,n]:=sqrt(k[m,n]^2+gamma^2/2);

[>ze[m,n]:=A[m,n]*R[m,n]*sin(omega[m,n]*t)

[>*exp(-gamma*t/2)*cos(m*theta);

[>zo[m,n]:=B[m,n]*R[m,n]*sin(omega[m,n]*t)

[>*exp(-gamma*t/2)*sin(m*theta); [> od;

[>z:=sum(sum(Re(ze[m,n])+Re(zo[m,n]),n=1..4)

[>,m=0..4);

In the above calculation we extracted the real part of ZE and ZO, because when MAPLE
gives the coefficients of the expansions A[m, n] and B[m, n] it keeps an imaginary part, which
is actually zero. We have adopted the propagation velocity c = 1 and the damping constant
γ = 2.

The procedure for the other two cases can be done if we change the calculation of k[m, n]
and R[m, n] according to the description in section 2.

4. Graphics

4.1. The normal modes of vibration

The temporal evolution which determines the position of the membrane in time is a
superposition of normal modes of the membrane with the corresponding boundary conditions.
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Figure 2. Graphics of the first eight pure harmonics for the membrane with fixed contour and a
central hole, in the left panel we have the first four harmonics and in the right panel the next four,
t = 0.2.
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Figure 3. Graphics of the first eight pure harmonics for the membrane with fixed contour, in the
left panel we have the first four harmonics and in the right panel the next four, t = 0.2.
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Figure 4. Graphics of the first eight pure harmonics for the membrane with a free contour, in the
left panel we have the first four harmonics and in the right panel the next four, t = 0.2.
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Figure 5. Graphics of a membrane with a hole for different times, in the left panel we have t =
0.1, t = 0.7 and t = 1.5 and in the right panel we have t = 0.4, t = 1.0 and t = 1.8.

The normal modes are ordered according to the eigenfrequencies, which means that the
fundamental mode is correspondingly the smallest eigenfrequency, the first excited normal
mode is correspondingly the next smallest eigenfrequency and so on.

In this section we explore these modes graphically using tridimensional plots that can be
visualized by the MAPLE commands below:

[>t:=0.2; [>with(plots);

[>m:=0;n:=1;

[>Ro[m,n]:=R[m,n]*cos(0*theta)*sin(omega[m,n]*t);

[>plot3d([r*cos(theta),r*sin(theta),Ro[m,n]]

[>,r=r0..R,theta=0..2*Pi);
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Figure 6. Graphics of a fixed membrane at different times, in the left panel we have t = 0.1, t = 0.7
and t = 1.5 and in the right panel we have t = 0.4, t = 1.0 and t = 1.8.

The instructions above just plot the fundamental normal mode at time t = 0.2, to visualize
the other normal modes we just change the index (m, n) according to their eigenfrequencies.
We show the normal modes of the circular membrane with a hole at the centre in figure 2, the
circular membrane in figure 3 and the liquid membrane in figure 4. The temporal evolution of
the normal modes can be done using the following sequence:

[>with(plots);

[>m:=0;n:=1;

[>p:=animate3d([r*cos(theta),r*sin(theta),Ro[m,n]]

[>,r=r0..R,theta=0..2*Pi,t=0..2*Pi/omega[m,n]

[>,frames=20,style=PATCHCONTOUR,shading=ZHUE

[>,lightmodel=light4);
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Figure 7. Graphics of a membrane with a free contour for different times, in the left panel we have
t = 0.1, t = 0.7 and t = 1.5 and in the right panel we have t = 0.4, t = 1.0 and t = 1.8.

The command with(plots) loads the plots package where the animate3d routine is localized,
which generates an animation so the reader can visualize the simulation on his own computer.

4.2. Temporal evolution

In this section we present instructions to illustrate the temporal evolution, the final results of
these simulation which are shown in figures 5–7. To produce a single figure we fix a time and
use the plot3d command as follows:

[>t:=0.1;

[>plot3d([r*cos(theta),r*sin(theta),z]

[>,r=r0..R,theta=0..2*Pi);
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To create a graphical animation of these temporal evolutions we use the sequence of
commands presented below:

[>p:=animate3d([r*cos(theta),r*sin(theta,z)]

[>,r=r0..R,theta=0..2*Pi,t=0..0.8,frames=20

[>,style=PATCHCONTOUR,shading=ZHUE

[>,lightmodel=light4);

The animation created by the above commands can be visualized in the mathematical
physics course home page located at http://basalto.if.sc.usp.br/cursos/FISMAT/ensaios.html.

5. Conclusions

In this paper we have presented a survey analysis of a graphically challenging physical problem,
that of a membrane vibrating under three typical situations of constraint. The procedural steps
to generate these graphical sequences are, despite some tedious calculations which are actually
done by the computer, simple. The result is encouraging. While in printed form we can only
check the shape of the membrane which is made of a superposition of eigenmodes (a grace
of linear systems), to produce an animated version of this sequence is a straightforward step.
One can have, by looking at the actual animation movie, an immediate feeling of the response
in time of the membrane as kinetic energy flows from the point of the initial hit to the border
under a specific constraint and back with simultaneous degradation of this energy.

The use of an algebraic computer environment, as presented in this work, is suggested as
a complement to the formal teaching methods. The analytical properties of special functions
have yet to be mastered by the student, but the results of such eigenmode analysis ought not
to be as dry as just an equation describing its points at different times.

Other very interesting physical problems can be visualized in this manner, such as the
vibration of porous balls or even simple studies of waves in strings. Work to conclude a case
study in these directions is being carried out.
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