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1. Introduction

The problem of listing all fullerene isomers with a given num-
ber of carbon atoms has received a considerable amount of atten-
tion. The first tool was the spiral algorithm [1], which was shown
to be incomplete in that some isomers are omitted [2]. Corrective
modifications of the spiral algorithm [3] have importance for
nomenclature [4], but have not been demonstrated to be efficient
for enumeration. Nor have mathematical classification schemes,
despite their ingenuity [5]. An alternative technique is the folding
net [6], but it has not been shown to produce all isomers. The most
successful practical method to date with proven completeness has
been the program fullgen of Brinkmann and Dress [7,8] that oper-
ates by stitching together ‘patches’ bounded by zigzag (Petrie)
paths.

A different approach, the focus of our research, is to construct
fullerenes from some simple set of starting isomers by succes-
sively applying a growth operation [9] (which we will call an
expansion) that replaces some fragment of the fullerene by a larger
piece. Such transformations are postulated to have physical as
well as theoretical reality [10–12]. It is known [13] that no finite
set of expansions suffice, so instead we seek an easily-described
infinite class of them. Brinkmann et al. [14] gave small growth
operations of this nature that suffice to construct all fullerene iso-
mers to at least 200 atoms but fail in the general case. Our aim in
the present Letter is to give a set of expansions that is provably
complete.

2. The algorithms

As starting points, we consider C20 (the dodecahedron), C28(Td)
(index 28:2 in [15]), and the type-(5,0) nanotube fullerenes. There
ll rights reserved.
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is exactly one of the latter class with 30 + 10k atoms for each k P 0.
The smallest is C30(D5h) (index 30:1 in [15]); the others have addi-
tional rings of hexagons. See Fig. 1.

We will define two families of expansions Li and Bi,j together
with a single expansion F. We will establish the following
properties.

Algorithm 1. Every fullerene isomer except C28(Td) can be con-
structed from C20 using expansions of type L, B, and F.

Algorithm 2. Every fullerene isomer, except C28(Td) and type-(5,0)
nanotube fullerenes, can be constructed from C20 using expansions
of type L and B.

Algorithm 3. Every fullerene isomer with at most 300 atoms,
except C28(Td) and type-(5,0) nanotube fullerenes, can be con-
structed from C20 using expansions of type L.

At the expense of adding an extra expansion type we could gen-
erate C28(Td) from C20 as well; for example, removing the central
atom of C28(Td) and suppressing the resulting atoms of valence 2
yields C24. However we have chosen to keep the number of expan-
sion types to a minimum.

We will now formally introduce the expansions: Li for i P 0 that
adds i + 2 faces, Bi,j for i,j P 0 that adds i + j + 3 faces, and F that
adds 5 faces. These are defined in accordance with the examples
in Fig. 2. In the case of L and B, the transformation consists of infla-
tion of a path between two pentagons. Expansion Li uses a path of
length 2i + 3 that alternates left and right, while Bi,j uses a path of
length 2i + 2j + 5 that alternates left and right except that bends
2i + 2 and 2i + 3 have the same orientation. The mirror image of
Li is implicitly included. Though it is not necessarily required for
the validity of the expansions, we will show that it suffices to in-
clude the cases where all the faces drawn completely in the figure
or labelled as fk or gk are distinct. However, faces not shown as pen-
tagons or hexagons may be either.

By a reduction we mean an operation inverse to an
expansion.
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C28(Td) C30(D5h)C20

Fig. 1. Basic fullerene isomers.

M. Hasheminezhad et al. / Chemical Physics Letters 464 (2008) 118–121 119
3. Justification of the algorithms

The main step in the justification of the algorithms consists of
identifying the fullerene structures G that cannot be reduced using
L, B or F reductions.

We divide the argument according to the value k which is the
greatest number of pentagons adjacent to a common pentagon.

If k = 5, then either G is C20 or else G has a cut of five indepen-
dent edges with more than a pentagon on each side. The latter only
occurs for type-(5,0) nanotube fullerenes [16], which have reduc-
tions of type F.

If k = 4, then consider a pentagon p which is adjacent to four
pentagons p1, . . .,p4 and one hexagon h as in Fig. 3a. If f2 is a hexa-
gon then G has reduction L(f2,p3,p,h). (Here, f2,p3,p,h is a list of
faces corresponding to the ‘after’ picture for L0 in Fig. 2. We will in-
dex other explicit reductions similarly.) If f2 is a pentagon then f1, f3

are hexagons (since k = 4) and B(f3,p4,h,p1, f1) applies.
Suppose k = 3 and let p be a pentagon which is adjacent to three

pentagons p1,p2,p3 and two hexagons h1,h2. If p1,p2,p3 appear
around p consecutively as in Fig. 3b, then f1 and f2 are hexagons
and G has reduction L(h2,p,p2, f1). Otherwise p1,p2,p3 appear
around p as in Fig. 3c. If f1 is a hexagon, then reduction L(f1,p2,p,h2)
applies to G, and if f3 is a hexagon, then reduction L(f3,p3,p,h1) ap-
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Fig. 2. Expa
plies. Finally, if f1 and f3 are pentagons then f2 must be a hexagon as
in Fig. 3d. So G is either C28 (Td), or at least one of f4, . . ., f9, say f4, is a
hexagon and G has reduction L(f4, f3, f2, f1,h1).

In the case that 1 6 k 6 2, if there is a pentagon p1 which is adja-
cent to exactly one pentagon p2, then considering the neighbours
of p1 and p2 as in Fig. 3e, at least one of f1 and f2, say f1, is a hexagon
and reduction L(f1,p2,p1,h3) applies. Otherwise, k = 2 and there is a
ring of pentagons not adjacent to any other pentagons. If there are
three pentagons p1,p2,p3 with a common atom as in Fig. 3f, then
reduction L(h1,p1,p2,h4) applies. So suppose there are no such three
pentagons but there is a longer ring R of pentagons. Rings of four
pentagons are impossible, and rings of five pentagons only occur
surrounding another pentagon [16], so R contains six or more pen-
tagons. If the outside or inside of R consists of a single hexagon,
then G has reduction L(h1,p1,h,p2,h2) as in Fig. 3g. Otherwise, there
are two adjacent pentagons p1,p2 on R in the configuration of
Fig. 3h and reduction L(h1,p1,p2,h2) applies.

We are left with the case that all the pentagons are isolated. Let
p be a path of faces in G such that:

(i) p is as short as possible among all the paths between two
pentagons, say p1,p2.

(ii) Subject to condition (i), if p is not straight, the segment from
p1 to the first bend is as long as possible. (A path of faces
. . .f1hf2 . . ., where h is a hexagon, is said to have a bend at h
if f1, f2 are not on opposite sides of h.)

Condition (i) implies that the faces on p, other than p1 and p2,
are hexagons, and that there are no sharp (60�) bends. It also im-
plies that p (as for all shortest paths) is not self-intersecting. We
will show that in fact p is either straight or has a single 120� bend.

Suppose that p has more than one bend, with the first two
bends occurring at hexagons h1 and h2. If these bends have the
same orientation (both left or both right), then the walk p0 defined
as in Fig. 4a is shorter than p, which violates (i). If instead the two
bends have opposite orientation, then the path p00 defined as in
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Fig. 3. Configurations appearing in the proof.
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Fig. 4. Illustration of the case that all pentagons are isolated.

Table 1
Counts of IPR fullerenes with 214–300 atoms

214 36173081 236 117166528 258 331516984 280 842498880
216 40536922 238 129476607 260 362302637 282 912274538
218 45278722 240 142960479 262 395600 325 284 987874095
220 50651799 242 157402781 264 431894257 286 1068507786
222 56463948 244 173577766 266 470256442 288 1156161305
224 62887775 246 190809628 268 512858451 290 1247686188
226 69995887 248 209715141 270 557745669 292 1348832359
228 77831323 250 230272559 272 606668511 294 1454359796
230 86238206 252 252745513 274 659140287 296 1568768503
232 95758929 254 276599784 276 716217919 298 1690214821
234 105965373 256 303235792 278 776165187 300 1821766836
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Fig. 4b has the same length but a longer first segment. Therefore, p
has at most one bend.

If p has no bends then an L reduction applies to G and otherwise
a B reduction applies. The uniqueness of the faces neighbouring p,
as specified in Section 2, follows from property (i) together with
the fact that fullerenes do not have cuts of four independent edges
[17].

The foregoing establishes that all fullerene structures other than
C20 and C28(Td) are reducible by an L, B or F reduction. To complete
the justification of Algorithm 1, we can easily check that every ful-
lerene formed by applying a single expansion to C28(Td) can be re-
duced to C20 without C28(Td) appearing as an intermediate step.
To establish the correctness of Algorithm 2, we start by recalling
that reduction F can only be applied in the case of a type-(5,0)
nanotube fullerene, as noted above in case k = 5. Furthermore, each
L or B expansion of a type-(5,0) nanotube fullerene G can be re-
duced by L or B to a fullerene which is not of type (5,0).

For Algorithm 3, first note that in the case there are adjacent
pentagons we applied a B reduction only in the case of Fig. 3a with
f2 a pentagon and f1, f3 hexagons. Such fullerenes are type-(3,3)
nanotubes [16] with the same configuration of pentagons occur-
ring in each cap (including the 0th member of this nanotube se-
quence, C26). In that case there is an L reduction which extends
from one cap to the other. Therefore, only L reductions are re-
quired for adjacent pentagons. If all the pentagons are isolated, B
reductions might be required but this does not occur until quite
a large size. We have not established when this first happens,
but examination of all IPR (isolated pentagon) fullerenes with up
to 300 atoms using fullgen [7] found no examples. The smallest
we know of is a fullerene of 1340 atoms found by Brinkmann
et al. [14], which has reduction B1,6 but no reductions of type L.
Note that there are probably in excess of 1011 fullerene isomers
with at most 300 atoms, so Algorithm 3 is likely to satisfy any
practical purpose.
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Since the numbers of IPR fullerenes have not previously been
published beyond 214 atoms [7], we provide this information in
Table 1.
4. Concluding remarks

Our algorithms can be used in conjunction with the method of
McKay [18] to produce a generator of non-isomorphic fullerenes.
Briefly the method works as follows. For each fullerene G, one
expansion is attempted from each equivalence class of expansions
under the symmetry group of G. If the new larger fullerene is H, then
H is accepted if the reduction inverse to the expansion by which H
was constructed is equivalent under the symmetry group of H to a
‘canonical’ reduction of H; otherwise it is rejected. The essential
algorithmic requirements are computation of symmetry groups
and canonical labelling, which are both easy to do in linear time
using a depth-first search starting at the pentagons. In addition,
since there are only 12 pentagons, the number of reductions that
can apply to any fullerene is bounded. By [18] Theorem 3, this means
that the set of all fullerene isomers of at most n atoms, without isom-
orphs, can be found in O(n) time per isomer. See Brinkmann and
McKay [19] for further description and examples of this technique.
Finally, we wish to thank Gunnar Brinkmann for helpful advice.
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