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Abstract

We propose two statistical tests to determine if two samples are from different dis-
tributions. Our test statistic is in both cases the distance between the means of the
two samples mapped into a reproducing kernel Hilbert space (RKHS). The first
test is based on a large deviation bound for the test statistic, while the second is
based on the asymptotic distribution of this statistic. The test statistic can be com-
puted in O(m2) time. We apply our approach to a variety of problems, including
attribute matching for databases using the Hungarian marriage method, where our
test performs strongly. We also demonstrate excellent performance when compar-
ing distributions over graphs, for which no alternative tests currently exist.

1 Introduction
We address the problem of comparing samples from two probability distributions, by proposing a
statistical test of the hypothesis that these distributions are different (this is called the two-sample
or homogeneity problem). This test has application in a variety of areas. In bioinformatics, it is
of interest to compare microarray data from different tissue types, either to determine whether two
subtypes of cancer may be treated as statistically indistinguishable from a diagnosis perspective,
or to detect differences in healthy and cancerous tissue. In database attribute matching, it is desir-
able to merge databases containing multiple fields, where it is not known in advance which fields
correspond: the fields are matched by maximising the similarity in the distributions of their entries.

In this study, we propose to test whether distributions p and q are different on the basis of samples
drawn from each of them, by finding a smooth function which is large on the points drawn from p,
and small (as negative as possible) on the points from q. We use as our test statistic the difference
between the mean function values on the two samples; when this is large, the samples are likely
from different distributions. We call this statistic the Maximum Mean Discrepancy (MMD).

Clearly the quality of MMD as a statistic depends heavily on the class F of smooth functions that
define it. On one hand, F must be “rich enough” so that the population MMD vanishes if and only
if p = q. On the other hand, for the test to be consistent, F needs to be “restrictive” enough for the
empirical estimate of MMD to converge quickly to its expectation as the sample size increases. We
shall use the unit balls in universal reproducing kernel Hilbert spaces [22] as our function class, since
these will be shown to satisfy both of the foregoing properties. On a more practical note, MMD is
cheap to compute: givenm points sampled from p and n from q, the cost is O(m + n)2 time.

We define two non-parametric statistical tests based on MMD. The first, which uses distribution-
independent uniform convergence bounds, provides finite sample guarantees of test performance,
at the expense of being conservative in detecting differences between p and q. The second test is



based on the asymptotic distribution of MMD, and is in practice more sensitive to differences in
distribution at small sample sizes. These results build on our earlier work in [6] on MMD for the
two sample problem, which addresses only the second kind of test. In addition, the present approach
employs a more accurate approximation to the asymptotic distribution of the test statistic.

We begin our presentation in Section 2 with a formal definition of the MMD, and a proof that the
population MMD is zero if and only if p = q when F is the unit ball of a universal RKHS. We also
give an overview of hypothesis testing as it applies to the two-sample problem, and review previous
approaches. In Section 3, we provide a bound on the deviation between the population and empirical
MMD, as a function of the Rademacher averages of F with respect to p and q. This leads to a first
hypothesis test. We take a different approach in Section 4, where we use the asymptotic distribution
of an unbiased estimate of the squaredMMD as the basis for a second test. Finally, in Section 5, we
demonstrate the performance of our method on problems from neuroscience, bioinformatics, and
attribute matching using the Hungarian marriage approach. Our approach performs well on high
dimensional data with low sample size; in addition, we are able to successfully apply our test to
graph data, for which no alternative tests exist. Proofs and further details are provided in [13], and
software may be downloaded from http : //www.kyb.mpg.de/bs/people/arthur/mmd.htm

2 The Two-Sample-Problem
Our goal is to formulate a statistical test that answers the following question:

Problem 1 Let p and q be distributions defined on a domain X. Given observations X :=
{x1, . . . , xm} and Y := {y1, . . . , yn}, drawn independently and identically distributed (i.i.d.) from
p and q respectively, is p != q?

To start with, we wish to determine a criterion that, in the population setting, takes on a unique and
distinctive value only when p = q. It will be defined based on [10, Lemma 9.3.2].

Lemma 1 Let (X, d) be a separable metric space, and let p, q be two Borel probability measures
defined on X. Then p = q if and only if Ep(f(x)) = Eq(f(x)) for all f ∈ C(X), where C(X) is the
space of continuous bounded functions on X.

Although C(X) in principle allows us to identify p = q uniquely, such a rich function class is not
practical in the finite sample setting. We thus define a more general class of statistic, for as yet
unspecified function classes F, to measure the discrepancy between p and q, as proposed in [11].

Definition 2 Let F be a class of functions f : X → R and let p, q, X, Y be defined as above. Then
we define the maximum mean discrepancy (MMD) and its empirical estimate as

MMD[F, p, q] := sup
f∈F

(Ex∼p[f(x)] − Ey∼q[f(y)]) , (1)

MMD [F, X, Y ] := sup
f∈F

(

1

m

m
∑

i=1

f(xi) −
1

n

n
∑

i=1

f(yi)

)

. (2)

We must now identify a function class that is rich enough to uniquely establish whether p = q, yet
restrictive enough to provide useful finite sample estimates (the latter property will be established
in subsequent sections). To this end, we select F to be the unit ball in a universal RKHS H [22];
we will henceforth use F only to denote this function class. With the additional restriction that X be
compact, a universal RKHS is dense in C(X) with respect to the L∞ norm. It is shown in [22] that
Gaussian and Laplace kernels are universal.

Theorem 3 Let F be a unit ball in a universal RKHS H, defined on the compact metric space X,
with associated kernel k(·, ·). Then MMD [F, p, q] = 0 if and only if p = q.

This theorem is proved in [13]. We next express the MMD in a more easily computable form. This is
simplified by the fact that in an RKHS, function evaluations can be written f(x) = 〈φ(x), f〉, where
φ(x) = k(x, .). Denote by µ[p] := Ex∼p(x) [φ(x)] the expectation of φ(x) (assuming that it exists



– a sufficient condition for this is ‖µ[p]‖2
H

< ∞, which is rearranged as Ep[k(x, x′)] < ∞, where
x and x′ are independent random variables drawn according to p). Since Ep[f(x)] = 〈µ[p], f〉, we
may rewrite

MMD[F, p, q] = sup
‖f‖

H
≤1

〈µ[p] − µ[q], f〉 = ‖µ[p] − µ[q]‖
H

. (3)

Using µ[X ] := 1
m

∑m
i=1 φ(xi) and k(x, x′) = 〈φ(x), φ(x′)〉, an empirical estimate of MMD is

MMD [F, X, Y ] =




1

m2

m
∑

i,j=1

k(xi, xj) −
2

mn

m,n
∑

i,j=1

k(xi, yj) +
1

n2

n
∑

i,j=1

k(yi, yj)





1

2

. (4)

Eq. (4) provides us with a test statistic for p != q. We shall see in Section 3 that this estimate is
biased, although it is straightforward to upper bound the bias (we give an unbiased estimate, and an
associated test, in Section 4). Intuitively we expect MMD[F, X, Y ] to be small if p = q, and the
quantity to be large if the distributions are far apart. Computing (4) costs O((m + n)2) time.

Overview of Statistical Hypothesis Testing, and of Previous Approaches Having defined our
test statistic, we briefly describe the framework of statistical hypothesis testing as it applies in the
present context, following [9, Chapter 8]. Given i.i.d. samples X ∼ p of size m and Y ∼ q of
size n, the statistical test, T(X, Y ) : Xm × Xn +→ {0, 1} is used to distinguish between the null
hypothesisH0 : p = q and the alternative hypothesisH1 : p != q. This is achieved by comparing
the test statistic MMD[F, X, Y ] with a particular threshold: if the threshold is exceeded, then the
test rejects the null hypothesis (bearing in mind that a zero population MMD indicates p = q). The
acceptance region of the test is thus defined as any real number below the threshold. Since the test is
based on finite samples, it is possible that an incorrect answer will be returned: we define the Type I
error as the probability of rejecting p = q based on the observed sample, despite the null hypothesis
being true. Conversely, the Type II error is the probability of accepting p = q despite the underlying
distributions being different. The level α of a test is an upper bound on the Type I error: this is a
design parameter of the test, and is used to set the threshold to which we compare the test statistic
(finding the test threshold for a given α is the topic of Sections 3 and 4). A consistent test achieves
a level α, and a Type II error of zero, in the large sample limit. We will see that both of the tests
proposed in this paper are consistent.

We next give a brief overview of previous approaches to the two sample problem for multivariate
data. Since our later experimental comparison is with respect to certain of these methods, we give
abbreviated algorithm names in italics where appropriate: these should be used as a key to the
tables in Section 5. We provide further details in [13]. A generalisation of the Wald-Wolfowitz
runs test to the multivariate domain was proposed and analysed in [12, 17] (Wolf), which involves
counting the number of edges in the minimum spanning tree over the aggregated data that connect
points in X to points in Y . The computational cost of this method using Kruskal’s algorithm is
O((m + n)2 log(m + n)), although more modern methods improve on the log(m + n) term. Two
possible generalisations of the Kolmogorov-Smirnov test to the multivariate case were studied in
[4, 12]. The approach of Friedman and Rafsky (Smir) in this case again requires a minimal spanning
tree, and has a similar cost to their multivariate runs test. A more recent multivariate test was
proposed in [20], which is based on the minimum distance non-bipartitematching over the aggregate
data, at cost O((m + n)3). Another recent test was proposed in [15] (Hall): for each point from
p, it requires computing the closest points in the aggregated data, and counting how many of these
are from q (the procedure is repeated for each point from q with respect to points from p). The test
statistic is costly to compute; [15] consider only tens of points in their experiments.

Yet another approach is to use some distance (e.g. L1 or L2) between Parzen window estimates
of the densities as a test statistic [1, 3], based on the asymptotic distribution of this distance given
p = q. When the L2 norm is used, the test statistic is related to those we present here, although it is
arrived at from a different perspective (see [13]: the test in [1] is obtained in a more restricted setting
where the RKHS kernel is an inner product between Parzen windows. Since we are not doing density
estimation, however, we need not decrease the kernel width as the sample grows. In fact, decreasing
the kernel width reduces the convergence rate of the associated two-sample test, compared with
the (m + n)−1/2 rate for fixed kernels). The L1 approach of [3] (Biau) requires the space to be
partitioned into a grid of bins, which becomes difficult or impossible for high dimensional problems.
Hence we use this test only for low-dimensional problems in our experiments.



3 A Test based on Uniform Convergence Bounds

In this section, we establish two properties of the MMD. First, we show that regardless of whether or
not p = q, the empirical MMD converges in probability at rate 1/

√
m + n to its population value.

This establishes the consistency of statistical tests based on MMD. Second, we give probabilistic
bounds for large deviations of the empirical MMD in the case p = q. These bounds lead directly to
a threshold for our first hypothesis test.

We begin our discussion of the convergence ofMMD[F, X, Y ] toMMD[F, p, q].

Theorem 4 Let p, q, X, Y be defined as in Problem 1, and assume |k(x, y)| ≤ K . Then

Pr
{

|MMD[F, X, Y ] − MMD[F, p, q]| > 2
(

(K/m)
1

2 + (K/n)
1

2

)

+ ε
}

≤ 2 exp
(

−ε2mn
2K(m+n)

)

.

Our next goal is to refine this result in a way that allows us to define a test threshold under the null
hypothesis p = q. Under this circumstance, the constants in the exponent are slightly improved.

Theorem 5 Under the conditions of Theorem 4 where additionally p = q and m = n,

MMD[F, X, Y ] > m− 1

2

√

2Ep [k(x, x) − k(x, x′)]
︸ ︷︷ ︸

B1(F,p)

+ ε > 2(K/m)1/2

︸ ︷︷ ︸

B2(F,p)

+ ε,

both with probability less than exp
(

− ε2m
4K

)

(see [13] for the proof).

In this theorem, we illustrate two possible boundsB1(F, p) andB2(F, p) on the bias in the empirical
estimate (4). The first inequality is interesting inasmuch as it provides a link between the bias bound
B1(F, p) and kernel size (for instance, if we were to use a Gaussian kernel with large σ, then k(x, x)
and k(x, x′) would likely be close, and the bias small). In the context of testing, however, we would
need to provide an additional bound to show convergence of an empirical estimate ofB1(F, p) to its
population equivalent. Thus, in the following test for p = q based on Theorem 5, we use B2(F, p)
to bound the bias.

Lemma 6 A hypothesis test of level α for the null hypothesis p = q (equivalently MMD[F, p, q] =

0) has the acceptance region MMD[F, X, Y ] < 2
√

K/m
(

1 +
√

logα−1
)

.

We emphasise that Theorem 4 guarantees the consistency of the test, and that the Type II error
probability decreases to zero at rate 1/

√
m (assuming m = n). To put this convergence rate in

perspective, consider a test of whether two normal distributions have equal means, given they have
unknown but equal variance [9, Exercise 8.41]. In this case, the test statistic has a Student-t distri-
bution with n + m − 2 degrees of freedom, and its error probability converges at the same rate as
our test.

4 An Unbiased Test Based on the Asymptotic Distribution of the U-Statistic

We now propose a second test, which is based on the asymptotic distribution of an unbiased estimate
ofMMD2. We begin by defining this test statistic.

Lemma 7 Given x and x′ independent random variables with distribution p, and y and y′ indepen-
dent random variables with distribution q, the populationMMD2 is

MMD2 [F, p, q] = Ex,x′∼p [k(x, x′)] − 2Ex∼p,y∼q [k(x, y)] + Ey,y′∼q [k(y, y′)] (5)
(see [13] for details). Let Z := (z1, . . . , zm) bem i.i.d. random variables, where zi := (xi, yi) (i.e.
we assume m = n). An unbiased empirical estimate ofMMD2 is

MMD2
u [F, X, Y ] =

1

(m)(m − 1)

m
∑

i(=j

h(zi, zj), (6)

which is a one-sample U-statistic with h(zi, zj) := k(xi, xj) + k(yi, yj) − k(xi, yj) − k(xj , yi).



The empirical statistic is an unbiased estimate ofMMD2, although it does not have minimum vari-
ance (the minimum variance estimate is almost identical: see [21, Section 5.1.4]). We remark that
these quantities can easily be linked with a simple kernel between probability measures: (5) is a
special case of the Hilbertian metric [16, Eq. (4)] with the associated kernel K(p, q) = Ep,qk(x, y)
[16, Theorem 4]. The asymptotic distribution of this test statistic underH1 is given by [21, Section
5.5.1], and the distribution under H0 is computed based on [21, Section 5.5.2] and [1, Appendix];
see [13] for details.

Theorem 8 We assume E
(

h2
)

< ∞. Under H1, MMD2
u converges in distribution (defined e.g. in

[14, Section 7.2]) to a Gaussian according to

m
1

2

(

MMD2
u − MMD2 [F, p, q]

) D→ N
(

0, σ2
u

)

,

where σ2
u = 4

(

Ez

[

(Ez′h(z, z′))2
]

− [Ez,z′(h(z, z′))]2
)

, uniformly at rate 1/
√

m [21, Theorem
B, p. 193]. Under H0, the U-statistic is degenerate, meaningEz′h(z, z′) = 0. In this case, MMD2

u
converges in distribution according to

mMMD2
u

D→
∞
∑

l=1

λl

[

z2
l − 2

]

, (7)

where zl ∼ N(0, 2) i.i.d., λi are the solutions to the eigenvalue equation
∫

X

k̃(x, x′)ψi(x)dp(x) = λiψi(x
′),

and k̃(xi, xj) := k(xi, xj)−Exk(xi, x)−Exk(x, xj)+Ex,x′k(x, x′) is the centred RKHS kernel.

Our goal is to determine whether the empirical test statistic MMD2
u is so large as to be outside the

1 − α quantile of the null distribution in (7) (consistency of the resulting test is guaranteed by the
form of the distribution underH1). One way to estimate this quantile is using the bootstrap [2] on the
aggregated data. Alternatively, we may approximate the null distribution by fitting Pearson curves
to its first four moments [18, Section 18.8]. Taking advantage of the degeneracy of the U-statistic,
we obtain (see [13])

E

(
[

MMD2
u

]2
)

=
2

m(m − 1)
Ez,z′

[

h2(z, z′)
]

and

E

(
[

MMD2
u

]3
)

=
8(m − 2)

m2(m − 1)2
Ez,z′ [h(z, z′)Ez′′ (h(z, z′′)h(z′, z′′))] + O(m−4). (8)

The fourth moment E

(
[

MMD2
u

]4
)

is not computed, since it is both very small (O(m−4))
and expensive to calculate (O(m4)). Instead, we replace the kurtosis with its lower bound
kurt

(

MMD2
u

)

≥
(

skew
(

MMD2
u

))2
+ 1.

5 Experiments

We conducted distribution comparisons using our MMD-based tests on datasets from three real-
world domains: database applications, bioinformatics, and neurobiology. We investigated the
uniform convergence approach (MMD), the asymptotic approach with bootstrap (MMD2

u B),
and the asymptotic approach with moment matching to Pearson curves (MMD2

u M). We also
compared against several alternatives from the literature (where applicable): the multivariate t-
test, the Friedman-Rafsky Kolmogorov-Smirnov generalisation (Smir), the Friedman-Rafsky Wald-
Wolfowitz generalisation (Wolf), the Biau-Györfi test (Biau), and the Hall-Tajvidi test (Hall). Note
that we do not apply the Biau-Györfi test to high-dimensional problems (see end of Section 2), and
that MMD is the only method applicable to structured data such as graphs.

An important issue in the practical application of the MMD-based tests is the selection of the kernel
parameters. We illustrate this with a Gaussian RBF kernel, where we must choose the kernel width



σ (we use this kernel for univariate and multivariate data, but not for graphs). The empirical MMD is
zero both for kernel size σ = 0 (where the aggregateGrammatrix overX and Y is a unit matrix), and
also approaches zero as σ → ∞ (where the aggregate Gram matrix becomes uniformly constant).
We set σ to be themedian distance between points in the aggregate sample, as a compromise between
these two extremes: this remains a heuristic, however, and the optimum choice of kernel size is an
ongoing area of research.

Data integration As a first application of MMD, we performed distribution testing for data inte-
gration: the objective is to aggregate two datasets into a single sample, with the understanding that
both original samples are generated from the same distribution. Clearly, it is important to check
this last condition before proceeding, or an analysis could detect patterns in the new dataset that are
caused by combining the two different source distributions, and not by real-world phenomena. We
chose several real-world settings to perform this task: we compared microarray data from normal
and tumor tissues (Health status), microarray data from different subtypes of cancer (Subtype), and
local field potential (LFP) electrode recordings from the Macaque primary visual cortex (V1) with
and without spike events (Neural Data I and II). In all cases, the two data sets have different statistical
properties, but the detection of these differences is made difficult by the high data dimensionality.

We applied our tests to these datasets in the following fashion. Given two datasets A and B, we either
chose one sample from A and the other from B (attributes = different); or both samples from either
A or B (attributes = same). We then repeated this process up to 1200 times. Results are reported
in Table 1. Our asymptotic tests perform better than all competitors besidesWolf: in the latter case,
we have greater Type II error for one neural dataset, lower Type II error on the Health Status data
(which has very high dimension and low sample size), and identical (error-free) performance on the
remaining examples. We note that the Type I error of the bootstrap test on the Subtype dataset is far
from its design value of 0.05, indicating that the Pearson curves provide a better threshold estimate
for these low sample sizes. For the remaining datasets, the Type I errors of the Pearson and Bootstrap
approximations are close. Thus, for larger datasets, the bootstrap is to be preferred, since it costs
O(m2), compared with a cost of O(m3) for Pearson (due to the cost of computing (8)). Finally, the
uniform convergence-based test is too conservative, finding differences in distribution only for the
data with largest sample size.

Dataset Attr. MMD MMD
2
u
B MMD

2
u
M t-test Wolf Smir Hall

Neural Data I Same 100.0 96.5 96.5 100.0 97.0 95.0 96.0
Different 50.0 0.0 0.0 42.0 0.0 10.0 49.0

Neural Data II Same 100.0 94.6 95.2 100.0 95.0 94.5 96.0
Different 100.0 3.3 3.4 100.0 0.8 31.8 5.9

Health status Same 100.0 95.5 94.4 100.0 94.7 96.1 95.6
Different 100.0 1.0 0.8 100.0 2.8 44.0 35.7

Subtype Same 100.0 99.1 96.4 100.0 94.6 97.3 96.5
Different 100.0 0.0 0.0 100.0 0.0 28.4 0.2

Table 1: Distribution testing for data integration on multivariate data. Numbers indicate the per-
centage of repetitions for which the null hypothesis (p=q) was accepted, given α = 0.05. Sample
size (dimension; repetitions of experiment): Neural I 4000 (63; 100) ; Neural II 1000 (100; 1200);
Health Status 25 (12,600; 1000); Subtype 25 (2,118; 1000).

Attribute matching Our second series of experiments addresses automatic attribute matching.
Given two databases, we want to detect corresponding attributes in the schemas of these databases,
based on their data-content (as a simple example, two databases might have respective fields Wage
and Salary, which are assumed to be observed via a subsampling of a particular population, and we
wish to automatically determine that both Wage and Salary denote to the same underlying attribute).
We use a two-sample test on pairs of attributes from two databases to find corresponding pairs.1 This
procedure is also called table matching for tables from different databases. We performed attribute
matching as follows: first, the dataset D was split into two halves A and B. Each of the n attributes

1Note that corresponding attributes may have different distributions in real-world databases. Hence, schema
matching cannot solely rely on distribution testing. Advanced approaches to schema matching using MMD as
one key statistical test are a topic of current research.



in A (and B, resp.) was then represented by its instances in A (resp. B). We then tested all pairs
of attributes from A and from B against each other, to find the optimal assignment of attributes
A1, . . . , An from A to attributes B1, . . . , Bn from B. We assumed that A and B contain the same
number of attributes.

As a naive approach, one could assume that any possible pair of attributes might correspond, and
thus that every attribute of A needs to be tested against all the attributes of B to find the optimal
match. We report results for this naive approach, aggregated over all pairs of possible attribute
matches, in Table 2. We used three datasets: the census income dataset from the UCI KDD archive
(CNUM), the protein homology dataset from the 2004 KDD Cup (BIO) [8], and the forest dataset
from the UCI ML archive [5]. For the final dataset, we performed univariate matching of attributes
(FOREST) and multivariate matching of tables (FOREST10D) from two different databases, where
each table represents one type of forest. Both our asymptoticMMD2

u-based tests perform as well as
or better than the alternatives, notably for CNUM, where the advantage of MMD2

u is large. Unlike
in Table 1, the next best alternatives are not consistently the same across all data: e.g. in BIO they
are Wolf or Hall, whereas in FOREST they are Smir, Biau, or the t-test. Thus, MMD2

u appears to
perform more consistently across the multiple datasets. The Friedman-Rafsky tests do not always
return a Type I error close to the design parameter: for instance, Wolf has a Type I error of 9.7% on
the BIO dataset (on these data, MMD2

u has the joint best Type II error without compromising the
designed Type I performance). Finally, our uniform convergence approach performs much better
than in Table 1, although surprisingly it fails to detect differences in FOREST10D.

A more principled approach to attribute matching is also possible. Assume that φ(A) =
(φ1(A1), φ2(A2), ..., φn(An)): in other words, the kernel decomposes into kernels on the individual
attributes of A (and also decomposes this way on the attributes of B). In this case, MMD2 can be
written

∑n
i=1 ‖µi(Ai) − µi(Bi)‖2, where we sum over the MMD terms on each of the attributes.

Our goal of optimally assigning attributes from B to attributes of A via MMD is equivalent to find-
ing the optimal permutation π of attributes ofB that minimizes

∑n
i=1 ‖µi(Ai)−µi(Bπ(i))‖2. If we

define Cij = ‖µi(Ai)− µi(Bj)‖2, then this is the same as minimizing the sum over Ci,π(i). This is
the linear assignment problem, which costs O(n3) time using the Hungarian method [19].

Dataset Attr. MMD MMD
2
u
B MMD

2
u
M t-test Wolf Smir Hall Biau

BIO Same 100.0 93.8 94.8 95.2 90.3 95.8 95.3 99.3
Different 20.0 17.2 17.6 36.2 17.2 18.6 17.9 42.1

FOREST Same 100.0 96.4 96.0 97.4 94.6 99.8 95.5 100.0
Different 4.9 0.0 0.0 0.2 3.8 0.0 50.1 0.0

CNUM Same 100.0 94.5 93.8 94.0 98.4 97.5 91.2 98.5
Different 15.2 2.7 2.5 19.17 22.5 11.6 79.1 50.5

FOREST10D Same 100.0 94.0 94.0 100.0 93.5 96.5 97.0 100.0
Different 100.0 0.0 0.0 0.0 0.0 1.0 72.0 100.0

Table 2: Naive attribute matching on univariate (BIO, FOREST, CNUM) and multivariate data
(FOREST10D). Numbers indicate the percentage of accepted null hypothesis (p=q) pooled over
attributes. α = 0.05. Sample size (dimension; attributes; repetitions of experiment): BIO 377 (1; 6;
100); FOREST 538 (1; 10; 100); CNUM 386 (1; 13; 100); FOREST10D 1000 (10; 2; 100).

We tested this ’Hungarian approach’ to attribute matching viaMMD2
u B on three univariate datasets

(BIO, CNUM, FOREST) and for table matching on a fourth (FOREST10D). To study MMD2
u B

on structured data, we obtained two datasets of protein graphs (PROTEINS and ENZYMES) and
used the graph kernel for proteins from [7] for table matching via the Hungarian method (the other
tests were not applicable to this graph data). The challenge here is to match tables representing
one functional class of proteins (or enzymes) from dataset A to the corresponding tables (functional
classes) in B. Results are shown in Table 3. Besides on the BIO dataset,MMD2

u B made no errors.

6 Summary and Discussion
We have established two simple multivariate tests for comparing two distributions p and q. The test
statistics are based on the maximum deviation of the expectation of a function evaluated on each
of the random variables, taken over a sufficiently rich function class. We do not require density



Dataset Data type No. attributes Sample size Repetitions % correct matches
BIO univariate 6 377 100 90.0
CNUM univariate 13 386 100 99.8
FOREST univariate 10 538 100 100.0
FOREST10D multivariate 2 1000 100 100.0
ENZYME structured 6 50 50 100.0
PROTEINS structured 2 200 50 100.0

Table 3: Hungarian Method for attribute matching viaMMD2
u B on univariate (BIO, CNUM, FOR-

EST), multivariate (FOREST10D), and structured data (ENZYMES, PROTEINS) (α = 0.05; ‘%
correct matches’ is the percentage of the correct attribute matches detected over all repetitions).

estimates as an intermediate step. Our method either outperforms competing methods, or is close to
the best performing alternative. Finally, our test was successfully used to compare distributions on
graphs, for which it is currently the only option.
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