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Abstract
This study uses strontium (87Sr/86Sr), oxygen (δ18O) and 
carbon (δ13C) isotope analysis of archaeological tooth enamel 
samples to investigate the origins of human remains from two 
sites in Arnhem Land, Northern Territory: a coastal Macassan 
site and an Indigenous rockshelter complex. The study aims 
to resolve whether two individuals from the Macassan site 
originate from outside Arnhem Land and, if so, whether 
their place of origin can be determined. Strontium results 
confirm the Macassan and Indigenous samples represent 
two distinct populations. The Indigenous values match the 
local Arnhem Land geologic strontium signatures, while the 
Macassan values are outside the local range and more likely 
to match Indonesian geological signatures. Carbon isotope 
results are more equivocal, but tend to support the presence 
of two populations by revealing slightly different dietary 
backgrounds for each group. Oxygen isotope data introduce 
more complexity; their geographic signal may be confounded 
by cultural behaviour. Radiocarbon dating suggests the 
Macassan Anuru Bay A site is a relatively early contact site. 
This study shows that even with a small sample set there is 
potential to discern past human mobility and origin using 
stable isotope analysis.

Introduction
For centuries, the northern coastline of Australia has witnessed 

the meeting, trading and cultural exchange of people from 

vastly different societies. Sailing south out of the centre of what 

is now Indonesia, fleets of boats called ‘praus’ visited the coast 

of northern Australia, arriving on the northwest monsoons in 

October and November and returning home when the southeast 

winds blew several months later (Berndt and Berndt 1947:133). 

They came to collect and process trepang, a marine animal 

found abundantly on the shallow seabeds off the coast. A prized 

ingredient in Chinese cuisine, trepang was a major item of 

commerce (Macknight 1976:1). The archaeological site of Anuru 

Bay A in northwest Arnhem Land is one of the places Macassans 

came to process their catch; it is a large trepang processing site 

with the remains of 21 lines of stone fireplaces for boiling trepang. 

The site is located on a sheltered peninsula on the eastern side 

of Anuru Bay, a low-energy sandy bay facing northeast towards 

the Arafura Sea (Figure 1). Originally excavated by Campbell 

Macknight in 1966 and 1967, the site is currently the focus of 

renewed archaeological work.

Macknight recovered two sets of skeletal human remains 

during his initial work at Anuru Bay A in 1966. The archaeological 

context and morphology of these remains led Macknight 

and Thorne (1968) to identify them as Macassan rather than 

Aboriginal Australian in origin. In this study, strontium, oxygen 

and carbon stable isotope analyses of tooth enamel from these 

two ‘Macassans’ is used as an independent means of assessing 

whether they originate from outside Arnhem Land and if so, 

whether their origin may indeed be Macassan. Key to these 

assessments is a comparison of stable isotope ratios from the 

skeletons to a local signature for an Arnhem Land population. We 

therefore also report stable isotope ratios from three human teeth 

and one faunal tooth recovered from the nearby archaeological 

site of Malarrak. These are the first reported archaeological 

stable isotope ratios derived from human remains in Arnhem 

Land, and are therefore supplemented in the analysis with ratios 

from geological (Table S1, supplementary information) and 

hydrological reports.

Our results confirm that the two people buried at Anuru 

Bay A were not Aboriginal Australians from Arnhem Land and, 

when combined with previously reported archaeological and 

morphological data, analyses strongly support their identification 

as Macassans. There is also interesting variation within both the 

Macassan and Aboriginal Australian groups’ isotope ratios which 

points toward the potential for using stable isotope analysis to 

more precisely identify origin locations for people and fauna 

recovered from archaeological sites both within Arnhem Land 

and Island Southeast Asia. In addition, radiocarbon dating of 

the enamel indicates that Anuru Bay A was occupied relatively 

early in the Macassan trepang period; in fact, the Anuru Bay 

A remains are likely to be the earliest known non-Aboriginal 

human skeletons from anywhere in Australia.

Macassan Trepang Visits to Arnhem Land
Central to the current study is the identity and geographical 

origin of Macassans. Macknight (1976, 2008) provides an 
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Figure 1 Map showing the study area and the archaeological sites of 
Anuru Bay A and Malarrak.
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overview based on historic sources; for our purposes, the term 

‘Macassan’ refers to a person on the annual fleet of praus to the 

Northern Territory, rather than to a particular racial, linguistic 

or cultural group. The crews are known to have consisted 

predominantly of men from the Macassarese and Bugis cultural 

groups of southwest Sulawesi. Macknight found that even 

in the twentieth century, the old men in the city of Makassar 

remembered the ‘Macassan’ trepangers as a distinct group with a 

close association of captains. The direct connection to southwest 

Sulawesi is also supported linguistically, as the Macassarese 

language is the most common in words borrowed into Arnhem 

Land languages. However, the Macassan crews do not appear to 

have been limited to men from southwest Sulawesi. Macknight 

(1976) has cited crew lists in which individuals came from various 

places in Indonesia including New Guinea, Java and Ceram, with 

further mention of crew members from Buton, Timor, Maluka 

and Papua. He also notes historical records indicating that, while 

the majority of praus were of the type from Makassar, a few were 

made in the styles of other places such as the island of Sumbawa.

Macassan-Indigenous relations were not limited to one-way 

contact in the form of Macassans visiting northern Australia. 

There are accounts of Aboriginal people sailing on praus, 

travelling to Macassar and Singapore, and living abroad for a 

time (Macknight 1976:86). Such adventures away from Australia 

were frequent occurrences for young Aboriginal men (and for 

women occasionally), while Macassans seem to have been less 

likely to remain in Australia beyond their working season. There 

are also several accounts of Macassans fathering children with 

Aboriginal women (Macknight 1976; Warner 1932).

The early chronology of contact is uncertain. Based on written 

sources, Macknight (1976:97) initially suggested Macassan praus 

began visiting northern Australia for trepang between AD 1650 

and 1750, probably in the last quarter of the seventeenth century. 

He later revised his estimate to somewhere between early contact 

in the 1720s when ‘the trepang trade in Macassar was still in its 

infancy’ and 1754 when more concrete evidence was available 

(Macknight 2008:136). Some ethnographic evidence, based on 

local Aboriginal culture, language, narrative and mythology, 

suggests an earlier date for the beginnings of the industry, 

perhaps as early as the first part of the sixteenth century (Berndt 

and Berndt 1947:133; Taçon et al. 2010:7). A recently discovered 

pottery sherd at Groote Eylandt was found below a date of 

930±60 BP (ANU-8984) (Clarke and Frederick 2009 cited in 

Taçon et al. 2010). Another study investigating the minimum 

age for early rock art depictions of southeast Asian praus in 

northwest Arnhem Land found one depiction under beeswax 

dated to before AD 1664 (Taçon et al. 2010).

Stable Isotope Analysis
Isotopes are atoms of the same element but with differing 

weights. That is, they have the same number of protons but 

differing numbers of neutrons in the nucleus. Unlike radioactive 

isotopes such as 14C, stable isotopes do not decay over time. The 

ratio of heavy to light isotopes for a particular element, however, 

often varies across the landscape. Strontium ratios vary based on 

the age and composition of the underlying geology while oxygen 

isotope ratios depend on precipitation source and intensity, and 

temperature. The isotope ratios of particular places become 

incorporated into plants growing on the landscape, and are 

carried up through the food chain until they are incorporated 

into human tissues. Carbon isotope ratios, on the other hand, 

depend on the particular photosynthetic pathway utilised by 

plants and are useful for distinguishing certain aspects of diet 

including the relative proportions of marine and terrestrial 

components in the diet. While not frequently applied in 

Australian and Indonesian archaeological situations, stable 

isotope analyses have become common in many other regions. 

A number of recent overviews of archaeological stable isotope 

analysis are available elsewhere (e.g. Bentley 2006; Lee-Thorp 

2008; Tykot 2004). In the Island Southeast Asia-Pacific region, 

isotope analyses have been used archaeologically as indicators of 

Lapita migration in the Bismarck Archipelago (Shaw et al. 2009, 

2010) and remote Oceania (Bentley et al. 2007) and in the study 

of Neolithic groups in Sarawak, Malaysia (Valentine et al. 2008).

Strontium
The ratio of heavy and light isotopes of strontium (87Sr/86Sr) for 

a particular place is determined by the ratio in the soil, which 

may be derived from rocks of different ages and lithologies. 

Very young rocks such as basalt and reef limestone typically 

have low ratios (less than 0.704) while very old continental 

crust rocks such as gneiss, schist and slate can have quite high 

ratios (well above 0.710) (Bentley 2006; Pye 2004). While 

geologic processes are the ultimate basis for strontium ratios, 

interpretation of strontium values in organic specimens by 

comparison to geologic information can be problematic because 

the strontium composition of soil and the biosphere does not 

usually correspond exactly with that of the underlying bedrock. 

Soils and sediments are products of varying compositions of 

the source materials from which they are derived, so strontium 

readings incorporated into the food chain can vary significantly 

from those of the bedrock beneath. When additional factors such 

as differential mineral weathering, leaching, seaspray, geological 

drift and surface additions of dust and rainwater are added to the 

equation, the strontium found in biological materials can be quite 

removed from the geological indicators of the region (Eckardt et 

al. 2009; Price et al. 2002; Pye 2004). Optimally, archaeologists 

prefer to use strontium ratios from archaeological faunal 

remains or humans to determine the local biologically-available 

strontium ratio signature for an area (Bentley 2006; Bentley 

et al. 2004; Price et al. 2002). Unfortunately, no biologically-

available strontium ratios have been published from either 

Arnhem Land or likely Macassan origin islands. As discussed 

below, we measured strontium ratios in three human and one 

mammal teeth from an Aboriginal Australian archaeological site 

to determine the local strontium signature, and supplement this 

with expectations derived from geological analyses.

Oxygen
Oxygen isotope ratios in mammals are determined by the ratios 

in water obtained from drinking and consuming food. They are 

useful for archaeological assessment of location because they 

are correlated with environmental variables such as temperature 

during precipitation and precipitation intensity, which can vary 

significantly between different regions (Bowen et al. 2005; Eckardt 

et al. 2009; Luz et al. 1984). Human cultural behaviour such as 

boiling water or using wells to obtain underground water with 

a different isotopic ratio can also influence oxygen isotope ratios.
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Carbon
Carbon isotope analysis is typically used to reconstruct ancient 

diets. The approach is based on different plant groups having 

a subtle difference in the fractionation of atmospheric carbon 

dioxide during photosynthesis (Lee-Thorp 2008; Tykot 2004). 

The two dominant photosynthetic pathways, C3 and C4 (after 

the number of carbon atoms fixed in the initial product), result 

in different ratios of the two stable isotopes of carbon, 12C and 13C.

The C3 pathway is typically followed by trees, woody shrubs, 

herbs and grasses from temperate regions. Domesticated C3 

cereals include rice, wheat, barley, and oats while C3 root 

staples include manioc, yam and potato. The isotope ratio 

values (δ13C) for C3 plants average about -26.5‰ but range 

from -24‰ to -36‰ (Lee-Thorp 2008; Tykot 2004). The C4 

pathway is commonly utilised by grasses native to hot and 

arid environments as well as by some sedges. Domesticated C4 

plants include maize, sorghum, millet and cane sugar. C4 plant 

δ13C values average about -12.5‰ and their range is narrower, 

between -7‰ and -16‰ (Krigbaum 2005; Lee-Thorp 2008; 

Tykot 2004). The carbon isotope ratios of marine organisms vary 

depending on their local ecology, but primary producers such 

as algae and diatoms are usually enriched in 13C compared to 

those in terrestrial C3 ecosystems (Lee-Thorp 2008; Tykot 2004), 

resulting in marine organisms with δ13C values around -12‰ 

(Collier and Hobson 1987). While purely marine-food consumers 

should contrast to those on a terrestrial C3 diet, the difference 

between marine-food consumers and those on a terrestrial C4 

diet is more difficult to distinguish. We are primarily interested 

in distinguishing the origin of samples rather than determining 

their diet, so we will focus on differences among groups rather 

than on assessing dietary components.

Sites and Materials

Anuru Bay A
In the soft sand of the beach dune at the Macassan Anuru Bay 

A site, about 15m behind the high water mark, two burials were 

identified and excavated by Macknight in 1966 (Macknight 

1976; Macknight and Thorne 1968). Digging underneath a 

‘rather jumbled spread of stones that had probably once been 

a rectangular outline’ (1976:68), two individuals, buried at 

different times, were uncovered. A summary of Macknight’s 

(1976) and Macknight and Thorne’s (1968) observations and 

interpretations follows: The first burial (MAC I) consisted of a 

relatively wide shallow grave into which a person had been laid 

face downwards, with the head at the northern end. Macknight 

and Thorne assessed the skeleton as male, 170cm tall and about 

32 years old. He had lost 10 teeth over the previous years and 

the remaining teeth were in poor condition. Probably some 

years later, a second burial pit was excavated at right angles to 

the previous trench, cutting across the centre of the first body. 

The bones from the neck to the knees of the first body were put 

aside and a second man was laid on his right side with his head 

to the east. A row of stones was laid behind him. The second 

person (MAC II) was male, around 160cm tall and died in his 

early 20s. He had lost only one tooth previously but had chronic 

gum disease. As the second burial was filled in, the bones of the 

first burial were heaped into the north side of the trench, in 

approximately the area from which they had been removed. The 

cause of death for both men is unknown.

In addition to their proximity to a trepang processing site, 

Macknight and Thorne viewed several other details as evidence for 

their final conclusion that the buried individuals were Macassan 

men. The graves were marked by a rectangle of stones, a feature 

of Macassan graves in Australia also observed on Winchelsea 

Island. The second burial had been arranged in Muslim practice, 

with the body on its right side facing west towards Mecca. Thick 

deposits of limy calculus around the teeth of both men and black 

staining of the second man’s mouth suggest they chewed lime 

and betel. Both men also had their teeth filed down, a common 

custom in the Indonesian archipelago including South Sulawesi.

Today, the skeletal remains of the two men are held by the J.L. 

Shellshear Museum of Physical Anthropology and Comparative 

Anatomy at the University of Sydney. For this project, one 

mandibular premolar was obtained from each skeleton (Table 1).

Malarrak
The teeth used as a local Arnhem Land signature in this study 

came from two rockshelters excavated by a team led by Daryl 

Wesley and Sue O’Connor at the Indigenous Malarrak Complex 

in 2008. Analyses were carried out with prior permission 

from coauthor RL, senior traditional owner of the lands of 

the Manganowal traditional owners within the Arnhem Land 

Aboriginal Land Trust. All Malarrak samples remain the property 

of the traditional owners. All teeth were isolated finds with no 

other human skeletal material nearby. The main Malarrak shelter 

revealed two teeth. A human molar, MG25, was uncovered 

around 150mm beneath the surface of test pit G25 within a 

Table 1 Origin, type and condition of samples.

Sample Location Type Condition

MAC I Anuru Bay A , Burial I Human premolar (mandibular) No wear

MAC II Anuru Bay A, Burial II Human premolar (mandibular) No wear

MG25 Malarrak Main Shelter, Square G25, 
XU8

Human molar (mandibular) Heavily worn to dentine; 2 
cavities on sides (one deep, one 
developing)

MK25 Malarrak Main Shelter, Square K25, 
XU4

Faunal mandible fragment (3 teeth)

MT4 Malarrak Shelter #4, Trench 1, 
Square 11, XU4

Human premolar No wear; one lateral crack

MT6 Malarrak Shelter #4, Trench 1, 
Square 11, XU6

Human molar Slightly worn; split laterally; several 
hairline cracks
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hearth-like lens of dense charcoal surrounded by loose sandy 

sediment (Table 1). A radiocarbon date of 487±26 BP (NZA-

32470) was obtained around 50mm above the excavation unit 

containing MG25 and a date of 577±17 BP (NZA-32455) was 

obtained around 50mm below the unit. An iron spearhead was 

excavated just below the excavation unit. The test pit stratigraphy 

appeared disturbed with possible postholes penetrating from the 

upper sediment into the Pleistocene sediment starting 350mm 

below the surface.

A mandible fragment with several teeth of a small mammal, 

MK25, was recovered from test pit K25, also in the main 

Malarrak shelter. Located around 80mm beneath the surface in 

loose sediment, the mandible may have belonged to a possum or 

rat-kangaroo. No dating information is available for test pit K25.

In Malarrak Rockshelter #4, one test pit was excavated 

revealing two additional teeth. MT4, a human premolar, was 

found approximately 80mm beneath the surface in sandy 

sediment containing large concentrations of charcoal thought 

to belong to hearth remains. The second tooth in this test pit, 

human molar MT6, was uncovered approximately 40mm below 

MT4, also in sandy sediment with dense charcoal concentrations. 

A fragment of Staffordshire Ware ceramic, possibly from the 

late eighteenth to early nineteenth century, was found in the 

excavation unit containing MT4, and a glass fragment was found 

in the excavation unit containing MT6. This shelter appeared 

to have well-preserved stratigraphy, suggesting deposition of the 

teeth occurred within the European contact period.

Methods
Enamel was collected and pretreated to remove adhering 

contaminants following procedures adapted from Koch et al. 

(1998) and detailed in Fenner (2007:175-178). Briefly, teeth 

were mechanically cleaned and enamel powder collected using 

a drill. Samples were immersed in 2% NaOCl for 24 hours, 

rinsed, then immersed in 0.1N C
2
H

4
O for four hours. Strontium 

isotope composition was determined by Geochron Laboratories, 

Massachusetts using TIMS. NIST 987 standard samples run 

simultaneously produced a value of 0.710240±0.000012 (2σ 

error). Oxygen and carbon isotope in enamel carbonate was 

determined at the Australian National University Research 

School of Earth Sciences on a Finnigan MAT 251 IRMS. Sample 

MAC I did not contain quite enough enamel to balance against 

the reference gas during the measurement, but the laboratory 

is confident the result is accurate. Results are reported using 

the VPDB standard. When compared with precipitation, δ18O 

values are converted to the SMOW standard and adjusted for 

fractionation during incorporation into enamel apatite using the 

equations in Coplen et al. (1983), Bryant et al. (1996:5147) and 

Daux et al. (2008).

Due to low sample size, all statistical tests were performed 

using the unequal variance t-test (Ruxton 2006). A metric analysis 

of Anuru Bay A skull morphology for geographic assignment 

using the FORDISC and CRANID tools was performed but 

results were inconclusive (Watson 2011). Both programmes were 

unable to confidently assign the skulls to any group, presumably 

due to the lack of Indonesian data in the FORDISC and CRANID 

comparative database. Radiocarbon dating was performed 

on enamel from each Anuru Bay A sample using AMS at the 

Australian National University Radiocarbon Dating Laboratory.

Results
Stable isotope ratio analysis results are shown in Table 2 and 

Figure 2. The strontium isotope data show a large range and 

clear grouping. The Anuru Bay A and Malarrak samples are 

significantly different (t=10.970, p=0.007, df=2.106), with the 

Anuru Bay A samples much lower than the Malarrak samples. 

Within each location, there is substantial strontium isotope 

variation: 0.0018 for the two samples from Anuru Bay A and 

0.0031 for the four samples from Malarrak. Excluding the faunal 

sample as potentially reflecting a different geographic range 

from the human samples, the Malarrak samples still have a fairly 

large strontium isotope range of 0.0012.

The δ18O values range from -5.91‰ to -0.42‰. Daux et al. 

(2008:1144-1145) suggest that ‘at any given place, the water 

ingested by human beings via solid foods, whether it is raw 

or cooked, should not be richer in 18O than is the total water 

ingested by herbivorous animals of the same place whose 

diet is composed of raw plants (tree-leaves, fruits, and grass)’. 

The faunal sample in this study, MK25, is indeed an outlier 

in the sample set, with an isotopic value far more enriched 

than the human samples and also well outside the expected 

range of modern Arnhem Land precipitation δ18O values 

(discussed below). It may be that this animal obtained most 

of its water from different sources than did the humans; it 

may have used water derived from plants rather than drinking 

water, or sipped water from partially evaporated puddles. To 

avoid distortion of comparative human enamel results the 

oxygen isotope signature of MK25 is excluded in the statistical 

analyses. We note however that including the faunal sample 

in the Malarrak values does not materially alter the results 

(data not shown).

Excluding the faunal sample, the Anuru Bay A and Malarrak 

δ18O values are not significantly different (t=0.085, p=0.943, 

df=1.441). Figure 2 shows that in fact the two Anuru Bay oxygen 

isotope values are at opposite extremes of the total human range, 

while the Malarrak values are spaced (widely) in between.

As with δ18O, the faunal sample is omitted from δ13C statistical 

comparisons with human samples because its diet is probably 

different from a human diet in the same region. The Anuru Bay 

A samples are on average 0.9‰ more positive than the Malarrak 

human samples (Table 2, Figure 2). A ranked t-test indicates 

the two populations are statistically different (t=3.536, p=0.046, 

df=2.667) while an unranked test does not reach statistical 

significance (t=4.110, p=0.1425, df=1.056). This uncertainty is 

likely to be a reflection of the small sample size.

Interestingly, the human δ13C values are strongly linearly 

correlated with the 87Sr/86Sr values (two-tailed r=-0.98, p=0.004; 

Spearman’s =-0.98, p=0.005). This suggests the δ13C values at 

the base of food chains vary systematically with geographical 

variation evident in the strontium data. While this could reflect 

either causal or coincidental geological interaction with plant 

communities such that plants growing on older rocks tend to 

be depleted in heavy carbon isotopes, it seems more likely to 

involve human dietary behaviour. Perhaps younger geology with 

low strontium isotope ratio values tends to be located closer to 

the sea, and people living closer to the sea eat more marine food 

with relatively low δ13C values. A larger sample will be needed to 

test this hypothesis.
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Radiocarbon Results
As is common for radiocarbon dates from after AD 1500, the 

Anuru Bay A calibrated dates span a fairly long timeframe 

(Table  3). The posterior probability distributions are uneven, 

however, and tend to be weighted towards the earlier dates 

within the range. MAC I, for instance, has a 72% chance of 

being earlier than AD 1700 and only a 12% chance of being 

later than AD 1770. Enamel does not remodel during life so the 

radiocarbon method dates when the enamel formed, rather than 

when the person died. Human adult premolar enamel forms 

between ages 2 and 8 (Bass 1995:304). Macknight and Thorne 

(1968:219) estimate that MAC I was in his early 30s when he 

died so the radiocarbon-based dates pre-date the burial by 20 

to 30 years. Thus MAC I most likely died in the first half of the 

eighteenth century. MAC II has a 40% chance of being earlier 

than AD 1700 and a 13% chance of being later than AD 1780. 

MAC II was assessed as being in his early 20s (1968:220) so the 

radiocarbon dates for that skeleton pre-date the burial by 10 

to 20 years, and MAC II most probably died in the mid-to-late 

eighteenth century.

The archaeological context of the burials indicates the MAC 
II burial disturbed the MAC I burial and therefore occurred 
later in time than MAC I (Macknight and Thorne 1968:218). 
Incorporating this information into the date calibration (and 
ignoring for the moment the 10-year difference in age at death) 
increases the probability that MAC I was earlier than AD 1700 to 
84%. Adding in his age at death, there is thus an 84% chance that 
he died (and Anuru Bay A was occupied) before approximately 
AD 1730.

Discussion

Strontium Isotopes
The strontium and carbon isotope results indicate the Anuru 

Bay A and Malarrak samples have significantly different means 

and thus probably come from different populations. The next 

task is to determine which (if any) of the two populations is 

the local group. The archaeological evidence strongly links the 

Anuru Bay A skeletons to a Macassan site, placing them as the 

best candidates for non-local people. Meanwhile, the Malarrak 

remains are associated with an Aboriginal Australian rockshelter 

and are therefore likely to be representative of a local population. 

We can evaluate this proposition using only isotopic data. First, 

our one small mammal sample would be considered a priori 

as the most likely ‘local’ candidate. Its strontium isotope value 

exceeds but is close to the human Malarrak samples, and greatly 

exceeds the Anuru Bay A samples. This points to the Malarrak 

humans being the local population.

We can also compare our results to geological strontium 

isotope data. As noted above, geological strontium values can 

vary substantially from biologically available strontium values, 

but can provide a rough gauge of likely values within a region. 

Figure 2 Strontium, oxygen and carbon isotope ratios. Also shown 
is the strontium isotope value of modern seawater (0.7092). Samples 
left of the seawater line are from Anuru Bay A; those to the right are 
from Malarrak. Filled markers are human samples; outlined markers 
are from the faunal sample.

Table 2 Strontium, oxygen and carbon isotope ratio results. Note: δ18Osw is the estimated isotope ratio of source water calculated from δ18O using 
equations in Coplen et al. (1983), Bryant et al. (1996:5147) and Daux et al. (2008). δ18Osw uses the VSMOW standard; δ18O and δ13C use the VPDB standard.

Strontium Oxygen 
(‰)

Carbon 
(‰)

Sample Site Type Lab. No. 87Sr/86Sr 2σ error δ18O δ18Osw δ13C

MAC I Anuru Bay A Human SS-119887 0.70628 0.000007 -3.4 -4.8 -12.1

MAC II Anuru Bay A Human SS-119888 0.70807 0.000008 -5.9 -8.8 -12.5

Anuru Bay A mean values 0.70718 -4.7 -6.8 -12.3

MG25 Malarrak 
Main

Human SS-119890 0.71786 0.000011 -3.5 -5.0 -13.1

MK25 Malarrak 
Main

Faunal SS-119889 0.72097 0.000009 -0.4 -0.2 -12.7

MT4 Malarrak #4 Human SS-119891 0.71910 0.000012 -4.6 -6.7 -13.2

MT6 Malarrak #4 Human SS-119892 0.71909 0.000012 -5.5 -8.1 -13.1

Malarrak mean values 0.71926 -3.5 -5.0 -13.0

Table 3 Enamel radiocarbon dates. Dates calibrated using the SHCAL04 curve (McCormac et al. 2004) in the BCal tool (Buck et al. 1999). The δ13C 
values are due to fractionation occurring in the ion source and are not directly comparable to apatite values.

Sample Lab. No. δ13C‰ 14C Age
(years BP)

Calibrated Age 
(cal years AD)

MAC I ANU-19410 -11.3 295±50 1496 to 1691, 1727 to 1804

MAC II ANU-19411 -12.4 255±55 1505 to 1594, 1615 to 1710, 1718 to 1811
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Geological strontium isotope ratios from around the Australia 

and Island Southeast Asia region are shown in Table S1. It is 

clear from these data that Australian values are generally high 

(exceeding 0.710) while Island Southeast Asian values are 

relatively low (usually below seawater’s value of 0.709). This is 

as expected because Australia in general and Arnhem Land in 

particular are known to have very old rock formations while 

Island Southeast Asia is largely of relatively recent volcanic or 

sedimentary origin. Our Malarrak samples have values exceeding 

0.710 while the Anuru Bay A samples are below 0.709; this once 

again points to the Malarrak samples as the local population 

and the Anuru Bay samples as the non-local population. In 

sum, between the isotopic data and the archaeological contexts, 

there is no reasonable doubt the Anuru Bay A remains are 

from Macassans and the Malarrak remains are from Australian 

Aboriginal people.

The strontium variation within each group is also interesting. 

The two samples from Malarrak Shelter #4, MT4 and MT6, 

have almost identical strontium signatures. MG25 differs by 

about 0.0012, still within one standard deviation from MT4 and 

MT6. Given the likely variation of geological strontium isotope 

values in the area (Table S1), this difference could simply be 

the result of an individual obtaining his or her nutrients from 

a slightly different resource composition or location. The lower 

signature of MG25 could, for example, reflect an increased 

exploitation of estuarine or marine resources. The Malarrak 

teeth are all quite recent, probably less than 500 years old, but 

even so, the difference between them may also reflect a shift in 

resource use over time. A larger human and/or faunal sample 

size from northwest Arnhem Land would allow for more certain 

interpretations of any variation within the data.

While the two Anuru Bay A samples are quite convincingly 

non-local, their actual origin is unclear. MAC I and MAC II 

did not necessarily share a common childhood origin, with 

their signatures differing by 0.0018. This range is surprisingly 

large for only two samples, and suggests they did not grow 

up on the same geologic substrate. Of course, the complex 

geologically-derived 87Sr/86Sr values of Indonesia caution that 

the difference in 87Sr/86Sr values between MAC I and MAC II 

do not necessarily exclude a common place of origin either. 

Differences may be accounted for by variations of resource 

use, higher values for example being obtained by farming 

on limestone lowlands common on islands and lower values 

obtained through acquisition of resources from young volcanic 

soils. Both extremes of the geological strontium isotope 

range found in Indonesia occur on Sulawesi alone, the most 

likely place of origin of the Macassans based on historical 

information. The lower signature of MAC I, for example, could 

indicate a childhood predominantly located on young volcanic 

rocks, while the higher signature of MAC II could indicate 

influencing factors such as marine and coastal resources.

It is unlikely the homeland of the Macassan men can be 

determined with certainty based on isotope analysis alone. With 

comparative biological samples from various possible locations 

in Indonesia, however, it may become possible to exclude certain 

places and thus narrow down the number of potential places of 

origin. Incorporation of other geologically-determined isotope 

ratios, such as those of lead, could also help narrow the number 

of potential homelands.

Oxygen Isotopes
The relationship between oxygen isotope ratios in modern 

meteoric precipitation and latitude and altitude has been 

globally modelled based on information from the International 

Energy Association/World Meteorological Organization 

Global Network of Isotopes in Precipitation. Estimates of δ18O 

in various locations are provided according to an algorithm 

developed by Bowen and Wilkinson (2002) (and refined by 

Bowen and Revenaugh 2003 and Bowen et al. 2005) called the 

Online Isotopes in Precipitation Calculator (OIPC version 2.2). 

According to this online calculator, Darwin and most of the 

Northern Territory sit in an area with δ18O precipitation values 

expected around -5 to -5.9‰, while most of Indonesia expects 

values from -4 to -9.9‰.

A specific query considering latitude, longitude and altitude, 

provides an estimated δ18O precipitation value of -5.2‰ for 

Anuru Bay at sea-level, an estimate of -5.3‰ at 100m elevation 

approximately 50km inland (directly south) from Anuru Bay, 

and an estimate of -5.8‰ at 350m elevation approximately 

150km inland (directly south) from Anuru Bay.

Precipitation estimates vary further in the more mountainous 

island environments of Indonesia. For example, an estimated 

δ18O precipitation of -5.6‰ at sea-level for Makassar on 

Sulawesi decreases to -6.7‰ as the land rises to 500m elevation 

southeast of Makassar, and decreases further to -8.1‰ at 1200m 

elevation in the mountain ranges 50km east of Makassar. This is a 

difference of 2.5‰ within 50km. Another example of wide δ18O 

range is found in Papua New Guinea, where δ18O precipitation 

increases from -7.4‰ at Port Moresby (sea-level) to -12.7‰ in 

the mountain range to the north (2700m altitude), a difference 

of 5.3‰ within 150km. There is little difference in estimated 

δ18O precipitation between Makassar and Port Moresby (both 

on west-facing coastlines) and their respective coastal sites on 

the east of each island.

These predictive patterns are consistent with the model that 

precipitation becomes more depleted of heavier 18O isotopes 

as water vapour moves farther from the ocean and elevation 

increases. As oxygen isotopes in the human body are primarily 

derived from ingested drinking water (Eckardt et al. 2009), an 

isotopic similarity between the oxygen isotopes in the human 

body and those in local meteoric water exists, especially in 

archaeological populations where water would have been sourced 

locally and consumption of imported drink and foodstuffs was 

limited (Pye 2004).

A complicating factor is that both Australia’s north coast and 

Indonesia are in the tropics within the Indo-Australian monsoon 

region, characterised by high temperatures, high humidity and 

abundant rain (van Bemmelen 1949). This may reduce the 

potential for applying oxygen isotope forensics, as the most 

distinct results are obtained in mid- to high-latitude continental 

regions where strong spatial isotope gradients exist (Bowen et 

al. 2005). Furthermore, comparing precipitation δ18O data with 

δ18O recovered from human remains rests on the assumption 

that δ18O of ingested water is relatively unaltered from its source 

precipitation. Shallow groundwater often has a close association 

with precipitation, unless evaporation has enriched water 

through loss of lighter isotopes (Pye 2004). Conversely, deep 

groundwater and surface waters fed from artesian sources may be 

different from modern precipitation values because of water-rock 



47Number 73, December 2011

Fenja Theden-Ringl, Jack N. Fenner, Daryl Wesley and Ronald Lamilami

interaction and the effects of climatic change (Pye 2004). River 

water, too, could introduce a precipitation value representative of 

an area upstream. Thus, by the time it is ingested, drinking water 

can be quite different from mean δ18O of rainfall. We suggest this 

explains the non-patterned but large δ18O variation found in our 

samples. Daux et al. (2008:1146) indicate that ideally, confidence 

in the validity of the interpretation can only be obtained through 

a ‘full understanding of the hydrological factors at the local 

scale’, which is currently unavailable for both Arnhem Land 

and Indonesia.

Carbon Isotopes
As previously discussed, the carbon isotope ratios provide weak 

support for a difference between the Anuru Bay and Malarrak 

human samples, with one statistical test achieving significance 

while another does not. This uncertainty is probably a result of 

the small sample size. It is interesting, however, that all samples 

(including the faunal sample) fall in a small range between -12.1 

and -13.2‰. Given a diet-to-enamel offset of at least 9‰ (Tykot 

et al. 2009), all samples represent diets below -21‰ and therefore 

show strong C3 signatures. The Macassans probably had a rice-

dominated diet (Macknight 1976) so a C3 signature would be 

expected for them. The past Indigenous Australian diet within 

Arnhem Land is more difficult to characterise. Grasses within 

Arnhem Land are predominantly C4 (Hattersley 1983) and 

seven modern Macropus samples from southeast Arnhem Land 

showed substantial C4 influence with enamel values averaging 

-7.5±1.2‰ (Murphy et al. 2007). Nevertheless, our human and 

faunal samples from Malarrak indicate a predominantly C3-

based terrestrial diet. This suggests either that people emphasised 

non-grass based resources such as tubers, nuts, fruits and forest 

mammals (including the small mammal in our faunal sample) or 

that C3 grasses were more common at that time in northernmost 

Arnhem Land than they are today in southeast Arnhem Land. It 

also appears that marine fish and mammals did not comprise 

a large portion of the diet during childhood when enamel was 

forming. A larger archaeological human and faunal sample 

which includes collagen-based isotope analyses will be needed 

to investigate this further.

A British Origin?
Given the fairly wide range of calibrated radiocarbon dates 

and the presence of European artefacts within the apparently 

disturbed contexts of the Malarrak units, it is possible that our 

human samples are neither locals nor neighbours; they could 

potentially be from Britain. The strontium isotope ratios of the 

Malarrak individuals, however, are strongly suggestive of the 

diverse geological range of the greater Arnhem Land region, 

exceed the range found in the British Isles other than in several 

small Scottish regions (Evans et al. 2010), and are compatible 

with the presumably local small mammal faunal sample. 

Additionally, the remote location of the Malarrak shelter and its 

significance as an important Indigenous site render it unlikely 

the samples derive from non-Indigenous individuals.

A European origin for the Anuru Bay individuals can be 

dismissed based on the archaeological and morphological 

evidence. Tooth filing on both men, teeth stained by lime and 

betel, and Muslim burial practices are indicative of a southeast 

Asian, rather than a European, origin.

Conclusions
Stable isotope ratio data obtained from human tooth 

enamel at two sites in northwest Arnhem Land – Anuru 

Bay A and Malarrak – support three main points. The first 

is that each site clearly represents a distinct population 

in terms of childhood origin. The second is that geologic 

strontium information combined with a faunal sample can 

be successfully used to distinguish the non-local (Anuru Bay 

A) from the local (Malarrak) population. These two points 

support the archaeological and ethnographic evidence for 

both sites, confirming one as a Macassan burial site and the 

other as an Indigenous site. Furthermore, our radiocarbon 

data indicate that Anuru Bay A was a relatively early Macassan 

site, with at least one of its occupations probably occurring 

before AD 1730.

The third point is that there is potential in the isotope data 

to identify trends on an individual scale, especially through the 

combined patterns revealed by the strontium and carbon isotope 

analyses. So while the current data are insufficient to determine 

the precise origins of the Macassan men, for example, they do 

reveal subtle information pertaining to the men’s origins, such 

as the unlikelihood they spent their childhoods in the same area. 

Similarly, the large variation within the data suggests that all the 

Indigenous individuals from Malarrak may not have originated 

in the same locality either.

With strong results regarding provenance obtained even 

from a very small sample set – five humans and one small 

mammal – our study shows potential for further isotope 

research in north Australian archaeology. With a larger sample 

size, for example, a dataset could be built from which to define 

a local population more accurately and in which to firmly 

position the current findings. In particular, a large sample of 

biogenic strontium isotope ratios from various locations in 

Arnhem Land and at potential places of Macassan origin in 

Indonesia would reduce uncertainty surrounding the origin 

of these individuals as well as others who may be studied in 

the future. The substantial strontium isotope ratio variation 

predicted by the geology of Arnhem Land and confirmed in 

our small sample from Malarrak promises to be of great use in 

studies of pre-European Aboriginal Australian movement and 

may also assist in resolving issues of repatriation or geographic 

association of human skeletal material.

Supplementary Information
Supplementary information for this article is available online at 

www.australianarchaeologicalassociation.com.au.
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