
This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2018.2828938, IEEE
Transactions on Network and Service Management

TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 1

An Inter-domain Collaboration Scheme to Remedy
DDoS Attacks in Computer Networks

Steven Simpson, Syed Noorulhassan Shirazi, Angelos Marnerides Member, IEEE, Simon Jouet,
Dimitrios Pezaros Senior Member, IEEE, David Hutchison

Abstract—Distributed Denial-of-Service (DDoS) attacks con-
tinue to trouble network operators and service providers, and
with increasing intensity. Effective response to DDoS can be slow
(because of manual diagnosis and interaction) and potentially
self-defeating (as indiscriminate filtering accomplishes a likely
goal of the attacker), and this is the result of the discrepancy
between the service provider’s flow-based, application-level view
of traffic and the network operator’s packet-based, network-level
view and limited functionality. Furthermore, a network required
to take action may be in an Autonomous System (AS) several AS-
hops away from the service, so it has no direct relationship with
the service on whose behalf it acts. This paper presents Antidose,
a means of interaction between a vulnerable peripheral service
and an indirectly related AS that allows the AS to confidently
deploy local filtering with discrimination under the control of
the remote service. We implement the core filtering mechanism
of Antidose, and provide an analysis of it to demonstrate that
conscious attacks against the mechanism will not expose the AS
to additional attacks. We present a performance evaluation to
show that the mechanism is operationally feasible in the emerging
trend of operators’ willingness to increase the programmability
of their hardware with SDN technologies such as OpenFlow, as
well as to act to mitigate attacks on downstream customers.

Index Terms—Distributed Denial-of-Service, Antidose, mitiga-
tion, BPFabric, network security, network resilience, bandwidth
saturation attacks, network management, inter-domain collabo-
ration

I. INTRODUCTION

IN a bandwidth-saturating Distributed Denial-of-Service
(DDoS) attack, thousands or even millions of malicious

network hosts, usually compromised machines of unsuspecting
users, conspire to flood a target host or network with such
high volumes of traffic that legitimate users are unable to
access services hosted there. Links and queues outside the
target network but leading to it can be saturated by traffic,
leaving the target network inaccessible remotely, regardless of
its local capacity. Such attacks could be classified according
to [1] as VT-4 (Network attacks) and IV-1:PDR-1 (Disruptive;
Self-recoverable).

DDoS attacks are of a simple yet very effective class [2],
but their impact in recent decades has been significant. These
attacks can generate traffic in the order of hundreds of Gbit/s
(e.g., on Github [3] and the BBC [4]), possibly through the use
of DDoS-for-hire services also known as booters [5]. In 2016,
the largest ever DDoS attack was recorded, exceeding 1 Tbit/s,

S. Simpson, S. Shirazi, A. Marnerides and D. Hutchison are with the School
of Computing and Communications, Lancaster University, LA1 4WA, UK.

S. Jouet and D. Pezaros are with the School of Computing Science,
University of Glasgow, G12 8QQ, Scotland.

along with increased complexity and ease of deployment by
means of IoT devices, impacting organizations including many
running critical services [6]. Such incidents can translate into
millions of dollars of lost revenue, yet DDoS defense remains
an open research issue [7].

Having detected that some target1 is under attack, mitigation
of its effects remains challenging because the vulnerability of
the attack (a link’s capacity) and the target are not necessarily
in the same administrative domain, i.e., Autonomous System
(AS). Flows containing attack traffic must be filtered before
their aggregates exceed downstream link capacity, but ASes
commanding these locations lack a means to accurately deter-
mine whether a packet is good or bad as soon as it arrives.
Meanwhile, the target may have a sufficiently detailed view
to discriminate accurately, but does not command the filtering
locations in potentially remote ASes. If the target could ex-
press its discriminator to sufficiently upstream ASes, malicious
packets could be dropped before their flows coalesce, while
letting good packets pass.

Fig. 1. Saturation zone and
boundary

Figure 1 shows attack flows
coalescing towards target T. At
some point, the aggregated vol-
ume of these flows exceeds the
capacity of the links they traverse.
Network components downstream
of such links are in a saturation
zone, where inbound capacity is
exhausted, and this zone has a
saturation boundary. An attacker
can draw the boundary away from
the target by attacking in higher volume, rendering local
DDoS defense mechanisms ineffective, and requiring co-
operation across administrative domains. The further the sat-
uration boundary from the target, the harder it is for the
necessary actors to take action, as the operators of network
components at the boundary are more distinct from the target
service providers. Being in distinct ASes, these actors can be
unfamiliar with each other, having no prior trust or formal
relationships (such as SLAs or peering agreements if they
are more than one administrative hop away), so they may be
unwilling to co-operate to mitigate the attack. If an AS on the
saturation boundary is to act on behalf of the target, it must
be confident that the request to act is genuine (i.e., not from
some malicious actor pretending to be the target), and that it

1We use ‘target’ to refer to the definitive parameter of an attack, in contrast
to ‘victim’, an entity affected negatively by the attack, which usually includes
the target.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Lancaster E-Prints

https://core.ac.uk/display/156649201?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2018.2828938, IEEE
Transactions on Network and Service Management

TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 2

is taking the correct action to deal with the attack (blocking
enough attack traffic, while allowing enough legitimate traffic
through). Furthermore, ASes (especially those closest to the
core) may be reluctant to bear the overhead of implementing
a sophisticated filter on hardware optimized for simple, high-
speed destination-based forwarding. The filtering overhead
and memory requirements must therefore be minimized, and
shown to be feasible in a high-performance AS context.

A discriminator must be carefully selected. ‘All traffic to
T’ will accomplish the attacker’s likely goal (to make T
inaccessible), but could be used in combination with source-
address filtering. Blacklists of source IP addresses may be
inappropriate within a network if spoofing is present or the
number of malicious addresses is large. The Spoofer project2

shows that, at the start of 2017, close to a fifth of Internet
addresses, and a quarter of autonomous systems, allow their
hosts to spoof. The analysis of backscatter presented in [8]
also suggests that, despite the proliferation of NAT devices,
spoofing is still widespread, and the next generation of attacks
may intelligently probe networks and adapt their behavior
based on the ability to spoof [9], [10]. When attacks involve
NTP or DNS(SEC) reflection, source spoofing is used to
engineer them, but the packets that contribute to saturation do
not have spoofed source addresses, suggesting that spoofing
need not be considered during mitigation. However, without
additional context, it is very difficult for the ASes serving the
target to determine whether any given packet has a spoofed
source address. As a result, the success of a mitigation
mechanism that does not take account of this uncertainty
could motivate attackers to use spoofing more directly, or
populate the mechanism’s blacklist with innocent parties, or
over-populate it. As a discriminator, a whitelist of all potential
legitimate addresses would be absurd. A whitelist of just the
subset with which the target presently communicates is much
more feasible, and could be populated only with addresses
demonstrated to be unspoofed, but poses a considerable barrier
to new legitimate clients [11].

Inside an AS, the discriminator must be able to operate
on individual packets, not just on flows or other higher-level
constructs (ASes see only the network level), without expen-
sive analysis or additional queuing delays. Packets cannot be
allowed to be queued or otherwise stored in the AS to any
greater extent than they would under normal circumstances,
as this presents more vulnerable volume-based resources to
the attacker, as well as degrading QoS for the end users.

The deeper into the network the saturation boundary pen-
etrates, the more the network is geared to simple, high-
speed operation, and the fewer are the opportunities to inject
programming into packet forwarding. The discriminator must
be simple enough to be efficiently implemented within an AS.
Filtering at line rate requires much computation and bespoke
programmable hardware operating at performances well be-
yond the practical limits of software-based systems [12]–[14].

Finally, any requirement to additionally interact with legiti-
mate peers of the target should be minimized, as any remedy
requiring new forms of interaction with the peer will suffer

2https://www.caida.org/projects/spoofer/

from inertia. In particular, techniques that require all peers to
take part are unlikely ever to be adopted.

This paper presents the design, specification and imple-
mentation of a DDoS remedy Antidose, and we report on its
adaptation to the BPFabric environment, a high-performance
programmable data-plane fabric described in [15]. Antidose
defines a discriminator based on a whitelist of known good
peers without barring entry of new ones, whether they or the
target initiate new interactions. The discriminator can be prop-
agated across ASes, and is simple enough to be implemented
as C compiled to eBPF, a platform- and target-independent
instruction set designed for real-time packet processing, which
an AS can then deploy. By deploying the discriminator in
the BPFabric software switch environment, we determine its
ability to accurately separate target-identified ‘good’ packets
from other traffic. We contend that Antidose’s ability to
discriminate even in restricted environments such as BPFabric
demonstrates that automatic remedial collaboration between
networks within and at the edge of the saturation zone is a
feasible and practical proposition. (BPFabric can also exploit
the zero-copy packet-processing infrastructure DPDK3 and
has the potential to exploit greater hardware acceleration.)
Antidose is active only temporarily, i.e., during an attack, and
only in ASes in and at the edge of the saturation zone.

This paper makes the following contributions: motivates
and proposes Antidose; specifies the format and computation
of proofs and cookies (the essential elements of Antidose),
and the interaction of ASes to exchange them; implements
the main Antidose component as a data-plane function to be
deployed as part of network switching fabric; and demonstrates
the impact of Antidose on target-identified ‘good’ traffic versus
other traffic, and shows that false positives (‘other’ traffic
mistakenly allowed to pass) remain minimal even when many
distinct ‘good’ flows are identified.

Section II discusses the nature of the most recent and worst
DDoS attacks. Section III specifies Antidose as a collection
of data structures, actors and their interactive behavior. Sec-
tion IV describes our implementation of Antidose. Section V
analyzes the functional behavior of Antidose, discusses po-
tential attack strategies that could defeat it, and evaluates its
performance under some such conditions. Section VI discusses
limitations and remaining challenges of Antidose, including
some practicalities of deployment. Section VII relates Anti-
dose to prior work, and Section VIII concludes the paper.

II. BACKGROUND

Fundamental aspects of the Internet facilitate DoS attacks
and hamper their mitigation [16]. Also, the expansion of the
Internet in recent decades has presented more potential vic-
tims, more devices to attack from/with, and more motivation
to attack. It is also easy to launch a DoS, whereas the cost of
victimhood or remedy is high. On the 21st of October 2016,
the Internet infrastructure company Dyn suffered the largest
DDoS attack to date, which resulted in inaccessibility of many
services such as Twitter, GitHub, PayPal, Etsy and others.

3Data Plane Development Kit http://dpdk.org/

https://www.caida.org/projects/spoofer/
http://dpdk.org/

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2018.2828938, IEEE
Transactions on Network and Service Management

TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 3

While details of how the attack happened remain vague, it is
certain that the Internet is fragile in the face of DDoS attacks.

An empirical study of DoS attacks observed 68 000 directed
at over 34 000 distinct victim IP addresses over roughly the
years 2001 to 2003 [17]. These attacks targeted Amazon,
Hotmail and ISPs. They were later analyzed by an independent
technology research firm4 and it was observed that they had
significant financial impact on companies, estimated at $1.2
billion in revenue during the observed period [18]. To deter-
mine the prevalence of DoS attacks, understand their nature,
and see long-term trends, we collected information about DoS
attacks reported in the SANS Newsbites news feed5. It is
clear from these anecdotal reports that DoS attacks distributed
among many different domains and ISPs are prevalent, and
such attacks are a common threat for sites depending on
the Internet. However, there is little quantitative data about
these attacks, as operators consider such information private
or sensitive. It is also evident that there is an increasing trend
of these attacks in terms of frequency and intensity. During
2015, the largest DDoS attack thus far was recorded at 400–
500 Gbit/s, and another at the beginning of 2016 exceeded
it with 602 Gbit/s6. The Dyn attack of October 2016 was
reported7 to have up to 100 000 malicious endpoints and
an (unconfirmed) magnitude of 1.2 Tbit/s. DDoS mitigation
giant Akamai released in their quarterly security report8 (Q1-
2015) that there was a 116.5 % increase in total DDoS
attacks, a 59.83 % increase in application-layer DDoS attacks,
a 124.69 % increase in infrastructure (layer 3 and 4) DDoS
attacks, and a 42.8 % increase in the average attack duration,
compared to Q1-2014.

Based on these reports, it is evident that volumetric
(bandwidth-saturation) attacks are not likely to abate while the
vulnerability continues to exist. The emergence of ‘booters’,
essentially commercial DDoS service providers, will also
increase the options available to even novices with malicious
intent. A remediation strategy is required that network opera-
tors find feasible and inexpensive to implement, that they can
confidently co-operate on, and that does not indiscriminately
cut off all service to the attack target.

III. DESIGN

Antidose is a collection of packet formats, protocols and
functions that an AS may choose to implement to various
degrees such that it can counter a DDoS attack on a target it
has no direct knowledge of. Additional functions are required
at the target, and optionally at its peers if they initiate
communication with the target (i.e., it is a server, and they
are its clients). We define target agents and client agents as
the entities implementing these functions, and they need not be
integrated with the target/client, just sufficiently co-located. A
single client agent could also serve multiple co-located clients.

4https://en.wikipedia.org/wiki/Yankee_Group
5https://www.sans.org/newsletters/newsbites/newsbites.php
6http://www.zdnet.com/article/attackers-targeting-bbc-donald-trump-

amazon-web-services/
7http://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/
8https://www.akamai.com/uk/en/about/news/press/2015-press/akamai-

state-of-the-internet-security-report.jsp

Antidose should be engaged only when the target agent
determines that it is necessary, and is to be disengaged when
the target agent deems the attack to be over. At all other times,
an AS should behave as normal. Temporary engagement of
Antidose is in line with the Remediate and Recover steps of
the D2R2 +DR strategy [19], whereby a normally suboptimal
network configuration is temporarily adopted during a chal-
lenge because it prevents total loss of service.

A target agent directly asks only its hosting AS to engage
Antidose. That AS may ask its immediate neighbor ASes to
engage, and they will ask theirs in turn, etc. For the highest
levels of conformance to Antidose, this engagement only needs
to propagate just beyond the saturation boundary.

Fig. 2. Separation of verified traffic from
unverified in a single AS

Antidose defines
a portable packet
discriminator that
a target agent can
maintain control
over remotely while
participating ASes
apply it. In essence,
the discriminator is a
whitelist of legitimate
IP addresses
(and specific
port numbers if
necessary) currently
interacting with the
target, and governs
filters selectively
deployed within any
collaborating AS.
Legitimate clients make an effort (partially through their
agents) to get themselves into the whitelist, but only under
their own IPs. Although an attacker could spoof a whitelisted
peer, attacking hosts are not generally expected to know the
specific set of current legitimate peers; except by chance,
traffic with a spoofed source address should not get through
a filter.

Whitelist membership decays over time, and must be peri-
odically refreshed. Although an attacker could initially behave
well enough to be whitelisted, it could then only attack using
its real address, risking exposure of its bad behavior on that
address to the target agent, which could respond by locally
blacklisting the address, and refusing to refresh it remotely.

An AS implementing Antidose for a given target T selects
filtering points within its network, and ensures that all traffic to
T goes through at least one such point. Filtering points must
be outside the saturation zone if they are to prevent attack
flows from coalescing enough to saturate a downstream link;
otherwise, when the AS is wholly within the zone, it may
still select filtering points locally, but it will also require an
upstream AS to act on its behalf.

A verification filter (VF) exists at each filtering point, and
contains the whitelist and other state pertaining to T. A VF
checks packets heading to the target, and decides to let them
pass if the source address is in the whitelist, or to throttle them
(i.e., to pipe them through a more restricted channel) if not.

https://en.wikipedia.org/wiki/Yankee_Group
https://www.sans.org/newsletters/newsbites/newsbites.php
http://www.zdnet.com/article/attackers-targeting-bbc-donald-trump-amazon-web-services/
http://www.zdnet.com/article/attackers-targeting-bbc-donald-trump-amazon-web-services/
http://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/
https://www.akamai.com/uk/en/about/news/press/2015-press/akamai-state-of-the-internet-security-report.jsp
https://www.akamai.com/uk/en/about/news/press/2015-press/akamai-state-of-the-internet-security-report.jsp

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2018.2828938, IEEE
Transactions on Network and Service Management

TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 4

Figure 2 depicts the flow of traffic through a filtering point in
an AS. The H component simply selects only traffic going to
T, allowing the rest to be forwarded in the usual manner. B is
a bandwidth restriction which will allow a small amount b of
unverified traffic through.

Whitelists within different VFs need not have the same
content. A given VF’s whitelist only needs to contain a
subset of peer IPs whose traffic passes through that VF, so
no synchronization between VFs’ whitelists’ membership is
required.

Whitelists are updated remotely by the transmission of flow
cookies (FCs; Section III-A) from the target agent. Clients (and
their agents) act to persuade the target agent to whitelist them,
but cannot reliably interact with the target until whitelisted,
so a second mechanism, proof-of-work (p/w; Section III-B),
is employed to get critical initial packets from the client
through the filters, which can then persuade the target agent to
whitelist the client. In cases where the target normally initiates
legitimate interactions (e.g., it is a DNS client flooded with
misdirected DNS responses in a DNSSEC UDP reflection
attack), this mechanism is redundant, as the target simply
issues cookies to peers it knows it is about to interact with. In
Figure 2, VF is configured with c (a proof-of-work challenge)
and k (a public key to verify flow cookies) provided by T.

Flow cookies:
An Antidose flow cookie is a cryptographic statement
certifying that a given IP address (and optionally a port)
is permitted to send to a target. The target agent generates
cookies for a client after observing that the client is
behaving well with an unspoofed address. It withholds
cookies if a client subsequently appears to be behaving
badly, allowing the client’s membership to decay from
the relevant whitelists.
A cookie is delivered by encapsulating it in an ICMP
Echo Request9 (a ping) from the target to the client.
Assuming the client (agent) echoes it back, verification
filters will observe it as an ICMP Echo Reply from client
to target. The filter is separately and previously provided
with the credentials necessary to verify the cookie, and
adds the sender address to the whitelist, then forwards
the cookie as normal, if it checks out. If not, the filter
can safely drop it.
An asymmetric cypher is required, as verification creden-
tials could reach the attacker in the worst case. Asymmet-
ric cryptography incurs a performance cost (sometimes
greater in signature verification than in signing [20]),
although only signature verification is required inside the
verification filter. (Signing is done only by the target
agent.)

Proof-of-work:
A proof of work is the solution to a hash-function
challenge. The challenge for a solver is to identify a
solution such that a hash function over various parameters
including the solution yields a hash code with a bit pat-
tern matching another in certain bits. The hash function

9Alternatives are not precluded, but ICMP Echo requires no changes in the
client.

must be irreversible to ensure that solutions can only be
obtained through brute force.
A client agent attaches proofs to packets as a form of per-
packet authorization. With access to the same parameters,
a VF can verify that a proof is correct by performing
the same hash computation. Unlike the solver, which
must perform multiple computations to find a useful
solution, the verifier has to perform only one. Proof-of-
work therefore places a significant processing burden on
agents of all clients (legitimate or not), but little burden
on in-network filters.
Some parameters identify the flow to which the packet
carrying the proof belongs. Others are specified by the
target agent, and can be adjusted to make the challenge
more difficult, without increasing the load on the verifier.
Parameters can be safely distributed to attackers, as this
merely allows them to perform verification, an operation
which is of no use to them.

Fig. 3. Interaction between new client, server
and intervening verification filter (VF)

The verification fil-
ter retains valid cook-
ies and proofs that it
has already seen, so
they cannot be reused.
Timestamps in cook-
ies and proofs al-
low a filter to discard
old ones, and retain
only the most recent
ones, requiring only
roughly synchronized
clocks. Greater asyn-
chrony can be toler-
ated in exchange for
larger or less accurate
cookie/proof sets.

Figure 3 shows how a new legitimate client interacts with
a target server and an intervening VF in forming a TCP
connection. Its initial packets are tagged by its agent with
unique and recently computed proofs-of-work, which allow
the SYN and first ACK to pass through a VF unhindered.
Responses from the server are not observed by VF, so always
pass. On reception of the first ACK, the target can be confident
that the client is using its real address, and notifies its agent10

that the client should be whitelisted, triggering the periodic
emission of flow cookies to the client. When these return and
pass through the VF, it verifies them, and adds or reinforces
the client’s identity in the whitelist. Until that first addition,
other packets from the client that do not carry unique proofs
will follow the restricted path from the VF, and will likely be
dropped.

At the start of an attack, a target server may also pre-
emptively issue cookies to its current or most recent clients,
obviating their sending of proofs.

10Alternatively, the agent observes the handshake, and so infers legitimacy.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2018.2828938, IEEE
Transactions on Network and Service Management

TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 5

A. Flow cookies

A flow cookie is a non-repudiable statement made by one
peer permitting another to send to it. A cookie is formed
by signing a byte structure consisting of the following infor-
mation: a timestamp in seconds; a serial number identifying
cypher and key; the IP protocol number of the protocol that
the cookie permits; a weight for increasing the presence of the
peer in a whitelist; a list of port numbers (empty to mean all;
16-bit unsigned integers); the IP address of the permitted peer
(the subject host); and the IP address of the permitting peer.

0 7 8 1516 2324 31

timestamp

serial # protocol weight port count

port numbers
hhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhh

2 bytes each

subject host

target host

Fig. 4. Byte sequence for computing flow-
cookie signatures

Figure 4 shows
how these fields
are encoded as
a byte sequence,
using network byte
ordering.

A cookie itself is
formed from the same
byte sequence, except
that the host fields
are removed, a magic
word is prefixed, and
the signature is suf-
fixed, as shown in
Figure 5. This struc-
ture is then encap-
sulated in an ICMP

Echo Request, and issued by (or on behalf of) the target host,
destined for the subject host.

0 7 8 15 16 23 24 31

magic word 0x4771dd05

timestamp

serial # protocol weight port count

port numbers
hhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhh

2 bytes each

signature
hhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhh

size implied by serial number

Fig. 5. Flow cookie as ICMP Echo payload

The subject host having echoed the cookie back, a VF read-
ily identifies an ICMP Echo Reply with a payload beginning
with the magic word as a potential flow cookie. The serial
number identifies the the cypher and key (provided to the VF
through another channel) to be used to check the signature.
The subject host is now implicitly the sender of the packet,
while the target host is the destination.

B. Proof-of-work

The proof-of-work computation involves an irreversible
hash function H over a tuple of several parameters and a candi-
date solution S. If bin(H(〈S, t, h, a, F,T, l〉)) ∩ bin(2l − 1) = ∅,
then S is valid11. t is a timestamp in seconds; a is the IP
protocol; F is the ‘from’ address, i.e., the client solving the
challenge; T is the ‘to’ address, which is (part of) the target of
the attack. h is a seed and l is a difficulty level, both specified
by the target agent. The candidate solution S is always first in
the tuple input to the hash function, so that an attacker cannot
use a partial hash state computed for one solution to check
another.

0 7 8 1516 2324 31

option length timestamp

timestamp serial #

solution
hhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhh

size implied by option length

Fig. 6. Proof-of-work as IP option

h can be replaced
if the target agent is
concerned that it has
somehow been com-
promised. The agent
might also suspect
that the attacker has a
large amount of pro-
cessing capability at
its disposal, and can
respond by increas-
ing l to make the
challenge harder. Of
course, it will then be harder for all unwhitelisted clients
to find valid proofs, but it will be no harder for verifiers.
Also, each proof only allows one packet through; a couple
of proofs attached to a legitimate client’s initial packets can
buy it membership in the whitelist, obviating further proofs,
while attackers who do not wish to expose their true identities
only get one packet through per average unit of effort.

For the purposes of hashing and transmission, the timestamp
t is a 4-byte big-endian integer (as before). F and T are 4 or 16
bytes of the respective IP addresses, plus 2 bytes (big-endian)
for the port number if the encapsulating protocol supports the
concept. h and S are arbitrary-length byte sequences, though
practical limits may be imposed.

Figure 6 shows a proof-of-work encapsulated as an IP
option. Other means of attaching a proof to a packet are not
precluded.

C. Verification filter (VF)

Figure 7 shows the behavior of a verification filter. It
has a single ‘INPUT’, and four outputs (‘DROP’, ‘PASS’,
‘PRIORITY’ and ‘THROTTLE’) reflecting the four decisions
it can reach for each packet (cf. Figure 2). It also retains three
state entities:

• The cookie set contains valid cookies that have already
been seen, to prevent replay attacks. Duplicate valid cook-
ies are not necessarily dropped, as they might serve to
whitelist a client in a downstream VF. Indeed, duplicates
for a whitelisted address are given higher priority over
other traffic. Invalid or broken (including expired) cookies

11In other words, the bottom l bits of the hashcode must be zero.

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2018.2828938, IEEE
Transactions on Network and Service Management

TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 6

can be safely discarded, as they will not serve any purpose
to a downstream VF.

• The whitelist is a set of source tuples (e.g., a combination
of IP address and protocols, and optionally port number)
of clients permitted to send to the target. Valid cookies
cause the presence of their source tuples to be reinforced
in the whitelist. Presence in the whitelist decays over
time, so new cookies for already present tuples must be
seen to retain a tuple indefinitely.

• The proof set contains valid proofs that have already
been seen, to prevent replay attacks. As with cookies,
valid duplicate proofs are allowed to pass, but as throttled
traffic. Invalid ones are always dropped, as it is expected
that they would be dropped in downstream VFs too.

Fig. 7. Verification filter (VF) packet flow

Note that proofs
do not influence
the whitelist, so
providing a proof
will not directly
get a potential
client whitelisted.
Proof verification
comes after whitelist
checking, as it only
needs to be performed
on unwhitelisted
traffic. Whitelisting
is performed after
cookie verification,
as a cookie must
still be processed
whether it would pass
the whitelist or not.
Reversing the order
(i.e., checking the whitelist before verifying the cookie)
merely results in duplicating the cookie-verification step on
alternative flow branches, and offers no protection against
attempts to overload cookie verification.

D. Infrastructure

Fig. 8. Propagation of p/w and FC credentials
across AS

To operate effec-
tively, Antidose must
be activated in at
least the ASes on the
saturation boundary.
ASes exchange Anti-
dose signalling infor-
mation so that they
can correctly set up
and configure VFs
when they are needed,
and deactivate them
after an attack. Anti-
dose signalling pri-
marily conveys the
parameters c, k and b,
the proof-of-work challenge, the flow-cookie credentials and

the bandwidth restriction respectively. c itself consists of 〈h, l〉,
the seed and difficulty of a proof-of-work challenge, and also
includes the hash-function type. k consists of the public key
corresponding to the private key used to sign cookies, as
well as type information for the cypher and any necessary
hash functions. c and k are themselves elements of series
of parameters with monotonically increasing serial numbers,
allowing them to be replaced and updated if compromised.

An AS partaking in Antidose is doing so on behalf of the
target (as well as of collateral victims, including itself), so it
must have confidence that the request to act is genuine and
will serve the target. For this reason, when the AS and target
have no direct trust relationship, they do not communicate
directly. Instead, the target’s agent communicates with the
Antidose co-ordinator of its provider AS, which communi-
cates with the co-ordinators of its immediate neighbor ASes,
which communicate with their neighbors, and so on. This
also has the advantage of allowing channels to be reserved
or prioritized for Antidose communication between neighbor
ASes, vital if the rest of an AS’s bandwidth is consumed by
attack traffic. Figure 8 illustrates an AS with a co-ordinator
receiving Antidose parameters for target T from ‘downstream’
gateways through which it currently forwards traffic to T.
Having distilled this information, it passes some of it on to
other ‘upstream’ gateways that are not currently used to deliver
to T. Simultaneously, the co-ordinator can use the information
to establish, configure and tear down VFs within the AS.

Messages are passed only between co-ordinators of ad-
jacent ASes; no message is relayed across a co-ordinator,
though information in a received message may contribute to
a transmitted message. BGP, the Border Gateway Protocol, is
a candidate for distributing Antidose signalling, as it follows
the same interaction model. Antidose co-ordinators must also
exploit information derived from existing BGP exchanges
to determine whether specific Antidose signalling messages
should be acted upon. If a neighbor AS reports that target T is
requesting help with an attack, the receiving AS should ignore
that report while it does not route traffic to T via the reporting
AS; the report is presently deemed inactionable. This means
that, insofar as BGP routing information is correct, an AS will
never act upon a bogus Antidose signal that does not originate
from T.

AS conformance to Antidose is set at five levels:
CL0 The AS does not interact with neighbors regarding Anti-

dose.
CL1 The AS propagates only proof-of-work parameters, un-

conditionally to neighbors.
CL2 The AS propagates only proof-of-work parameters, selec-

tively to neighboring sources of traffic to T.
CL3 The AS propagates proof-of-work parameters to all CL2+

neighbors, and FC parameters to all CL3+ neighbors
(Figure 8).

CL4 The AS propagates all parameters as per CL3, and
maintains VFs internally according to them.

A CL4 AS gathers all actionable reports for T (from gate-
ways 3 and 4), and computes parameters for its internal VFs. It
also computes parameters to be reported to upstream gateways
(1, 2 and 5), those not used to deliver to T. For upstream

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2018.2828938, IEEE
Transactions on Network and Service Management

TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 7

gateways contributing little traffic towards T, the AS has the
option to propagate only proof-of-work parameters, with the
result that FC parameters only propagate as far as ASes on the
saturation boundary. When only propagating p/w parameters,
they do not need to be propagated until some traffic for T
is received. The sum of all b parameters reported upstream
should not exceed the sum of b parameters from actionable
reports; each c and k should be the latest available by serial
number. As new reports come in, or become actionable or
inactionable, or as the status of gateways changes, the AS
re-gathers the reports and re-computes new parameters to
distribute to its VFs and upstream neighbors. An AS has
the option to defer propagation to upstream ASes to allow
parameters from multiple neighbors to converge.

In addition to essential VF configuration parameters, an
AS may propagate statistics concerning traffic to T upstream.
These allow an upstream AS to determine whether traffic it is
not filtering is contributing significantly to the attack. Statistics
may also be propagated downstream, so that the target agent
can determine that an attack is over. It may initially respond
by increasing b and observing no detrimental effect, before
fully tearing down the Antidose instantiation.

An AS does not need to apply VFs to all incoming traffic.
An upstream gateway (e.g., 5) could be contributing little
to an attack, so filtering on its traffic would be superfluous;
additionally, clients using that gateway might not have been
provided with p/w parameters, and so would have difficulty
initially getting through the filter. However, if such contribu-
tions are aggregated with filtered traffic, a downstream AS
might attempt to filter it anyway, and subject traffic of clients
not participating in p/w to filtering they are unprepared for.
To mitigate this, neighboring ASes could agree to instantiate
a virtual gateway. The upstream AS would agree to send its
filtered and unfiltered traffic through distinct virtual gateways,
so the downstream AS could handle them separately. If the
upstream AS has several unfiltered inputs, it could transport
them internally over separate channels, and deliver them
downstream each via a distinct virtual gateway. As a result,
every distinct crossing of the saturation boundary could be
represented in the most downstream AS as a distinct virtual
gateway. As distinct gateways, a downstream AS could report
different Antidose parameters and statistics through each one.
This could be valuable when a DoS attack is not so distributed,
as routes predominantly not used by attacking flows need not
have the full Antidose mechanisms applied to them, including
distribution of p/w parameters to clients.

CL1 and CL2 are intended for ASes with the highest
performance and the least programmability, as forwarding p/w
parameters is merely a signalling function. CL2 ASes have
some basic monitoring capability to detect significant amounts
of traffic to T; CL1s have none.

IV. IMPLEMENTATION

We have implemented the VF component12 in a restricted
C, and translated it to eBPF using the Clang compiler. eBPF is

12Antidose source code is available at http://scc-forge.lancaster.ac.uk/svn-
repos/seccrit-internal/antidose/.

a virtual machine language developed out of Berkeley Packet
Filters, chosen for BPFabric as an alternative to OpenFlow
filters for its greater flexibility, its target independence, and its
statically verifiable bounded execution time, making it suitable
for high-speed switching-fabric execution.

The cookie set and proof set are each a pair of Bloom filters
[21], with elements designated ‘old’ and ‘current’. Each cookie
or proof is checked against both elements of its corresponding
pair of Bloom filters; if not present, the entity is added only to
‘current’. Periodically, the ‘old’ set is discarded to be replaced
with ‘current’, and ‘current’ is reset. Proofs and cookies are
also rejected if their timestamps show them to be too old or too
new. A proof or cookie can therefore only be accepted if it is
both timely and not a duplicate. This strategy prevents replay
attacks without having to record known entities indefinitely,
which would result in saturation of a Bloom filter (or require
unlimited memory for other techniques).

The use of Bloom filters obviates dynamic memory require-
ments. A Bloom filter with m bits, k hash functions and
n entries has a false-positive probability p ≈ (1 − e−

kn
m)k .

An optimal k can be determined for given m and n as
kopt ∈

{⌊
m
n ln 2

⌋
,
⌈
m
n ln 2

⌉}
. With each hash function yielding

a w-bit index, we can address m = 2w slots in a Bloom
filter. We choose w = 16 so m = 65536, requiring 64 kbit per
Bloom filter, or 64 kB in total. With an anticipated n = 10000
unique cookies or proofs per refresh period, kopt yields 5, so
we generate five 16-bit hash indices for any given cookie or
proof. This yields an FP rate of popt ≈ 4.3 × 10−2 under such
conditions.

The whitelist is a counting Bloom filter consisting of m
4-bit counters. The ‘weight’ of each unique valid cookie is
used to increment selected counters (overflows are clamped to
the maximum value) to represent increasing presence in the
whitelist. Periodically, every counter is shifted right one bit,
producing an exponential decay. Periodically issued cookies
should produce linear growth, which then competes with
the exponential decay to reach equilibrium. Except for false
positives, this guarantees that a tuple in the whitelist will
disappear within a fixed time from the point that the target
agent chooses to stop refreshing it, and this time is related to
the rate at which the agent re-issued cookies, not for how long
it had issued them.

With w = 17, the whitelist’s m = 131072 4-bit counters
occupy 64 kB. With n = 10000 currently whitelisted clients,
kopt = 9, so we generate nine 17-bit hash indices for any
client-identifying tuple. This yields popt ≈ 1.8 × 10−3, so less
than 0.2 % of randomly addressed attack traffic should escape
a VF under such conditions.

The hash function used for all Bloom filters is SHA-256,
and each 256-bit hash is sliced into k w-bit fields to emulate
several ‘independent’ hash functions, with the remaining 256−
kw discarded.

SHA-256 is also used for signature verification. The encryp-
tion suite is µECC13, a small C implementation of ECDSA14

chosen for its minimal dependence on other libraries. These

13https://github.com/kmackay/micro-ecc
14Elliptic Curve Digital Signature Algorithm

http://scc-forge.lancaster.ac.uk/svn-repos/seccrit-internal/antidose/
http://scc-forge.lancaster.ac.uk/svn-repos/seccrit-internal/antidose/
https://github.com/kmackay/micro-ecc

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2018.2828938, IEEE
Transactions on Network and Service Management

TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 8

are not compiled into eBPF, but are presented as external
functions to the main VF implementation. This is a trivially
feasible architecture for a software implementation of eBPF,
and can be designed to exploit the hardware cryptographic
functions of hardware network devices.

V. EVALUATION

This section considers anticipated and measured behavior
of Antidose under attack conditions.

A. Impact on DDoS strategy

Unaware of Antidose, a DDoS attacker has several behav-
ioral options:
• Send packets directly to the target in an effort to saturate

its inbound links, but using spoofed source addresses, so
the target cannot identify the attacker.

• Send packets with the attacking node’s real address, but
without following usual protocol rules, e.g., any flow
control, again to saturate inbound links.

• Send packets with the source spoofed as the target to
reflectors, so that they issue unsolicited packets to the
target and saturate links.

• Send packets adhering to the protocol, but attempt to
engage the server in unproductive tasks, or make it
use up its outgoing bandwidth supplying unwanted data,
i.e., semantic/application-level attacks, not necessarily
bandwidth-volumetric.

Fig. 9. Evaluation topology N1

Antidose is intended to deal
with the first three cases, be-
cause they are ordinarily diffi-
cult to deal with (a result of
such behavior actually being con-
sistent with good network uti-
lization from the network op-
erator’s viewpoint). By default,
Antidose blocks everything until
clients demonstrate good behavior.
In the first three cases, only pack-
ets from whitelisted addresses get
through in volume, and none of
which result in whitelisting of the
used addresses. In the last case,
the target can already reliably block an attacker by the identity
it had to use to adhere to the protocol, and any whitelisting
of the identity will expire without continuous consent of the
target.

To demonstrate the functionality of Antidose, we examine
a network topology N1 modelling activity near a saturation
boundary (Figure 9), and a broader topology N2 modelling
the cumulative effect of a hierarchy of VFs on coalescing
traffic (Figure 10). In topology N1, target T is accessed by
two legitimate clients C1 and C2. Two nodes A1 and A2 flood
UDP traffic to T in an attempt to saturate the link R1-T (the
saturation boundary), and link capacities are set such that this
occurs exactly when A1 and/or A2 are attacking. R* nodes are
Ethernet learning switches. Each VF*-MG* structure models
a single node on which a VF runs. In N2, T sits at the base

of a 3-level hierarchy of VF*-MG* structures (each modelling
the filtering efforts of a distinct AS) with a fan-out of 2. Link
capacities are in Mbit/s.

Fig. 10. Evaluation topology
N2

A VF* node contains H and VF
components (c.f. Figure 2). Port-0
traffic passes through H first, and
then either goes to port 1 directly
(if the source address does not
match), or to the VF. PASS and
PRIORITY traffic from VF go to
port 1, and THROTTLE to port 2,
which has considerably restricted
capacity, and models the B com-
ponent. All traffic entering on port
1 goes directly to port 0. No traffic
is expected to enter on port 2.
MG* nodes forward port-0 traffic
to port 1, and all other traffic to
port 0, so all PASS, PRIORITY
and THROTTLE traffic from a VF
is merged, and appears as a single
port to any learning switch below
it.

The topologies are implemented in Mininet, using BPFabric
softswitches for each switch node. The BPFabric controller
is configured to load a simple merging eBPF function for
MG* nodes, an antidose H+VF eBPF function for VF* nodes,
and a simple learning-switch eBPF function for R* nodes.
The controller interface allows the user to load map data to
any given node to configure it, and commands are piped to
it from the Mininet script. Learning switches build up their
own internal configuration automatically, and mergers have
no configuration. Antidose nodes must be provided with T’s
address and a public key to verify cookies.

Time (s) Event
10 A1 starts attack
18 VF1 enabled
25 T cookie to C1
47 A2 starts attack
52 T cookie to C1
58 VF2 enabled
78 Stop

TABLE I
SCHEDULE FOR EXPERIMENT 1

In our first experiment,
a Mininet script schedules
the events shown in Ta-
ble I on topology N1. TCP
bandwidth is measured us-
ing iperf as a server at
T, and as a client at C1/C2.
iperf is used at A1/A2 to
send UDP at a rate greater
than those nodes’ link rates
to simulate a bandwidth-
saturation attack. Cookies

are generated using the program antidose-mkcookie.
The bandwidth measurements demonstrate the effectiveness

of Antidose from two viewpoints. In Figure 11, we see
that both C1 and C2 lose connectivity when A1 starts at
10 s. However, when VF1 is activated at 18 s, C2 recovers
connectivity, and only loses it again at 47 s, when A2 starts. It
regains it once more a little after 58 s when VF2 is activated.

C1 does not recover until about 28 s, having received and
returned a flow cookie from T. On its return, it passes through
VF1, resulting in C1’s whitelisting at that point. Without
refreshment, however, it loses it again at about 42 s when that
cookie’s effect on VF1’s whitelist fully decays. (4-bit counters,

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2018.2828938, IEEE
Transactions on Network and Service Management

TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 9

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 10 20 30 40 50 60 70 80

T
C

P
 T

h
ro

u
g
h
p
u
t

(M
ib

it
/s

)

Time (s)

C1
C2

Fig. 11. TCP throughput in Experiment 1

 0

 5

 10

 15

 20

 25

 30

 0 500 1000 1500 2000 2500 3000

Fa
ls

e
-p

o
s
it

iv
e
 r

a
te

 (
%

)

Time (s; 10 addresses whitelisted per second)

N1/VF1 port 1

Fig. 12. False positives in Experiment 2

a half-life of 5 s, and a cookie weight ≥ 24 − 1 = 15 yields a
total decay time of 15–20 s.) The second cookie at 52 s enables
a similar recovery (decaying at around 67 s)15, but it is not
effective until A2 traffic is blocked by VF2 from 58 s.

These traces demonstrate that, so long as filtering occurs
before saturation, Antidose will allow target-identified clients
outside the saturation boundary to break through filtering that
would otherwise achieve the attacker’s likely goal of removing
all connectivity to T. Furthermore, T must continuously iden-
tify legitimate clients to prevent decay from whitelists, so T
can effectively de-whitelist a previously well-behaving client
with mere patience. Meanwhile, clients that do not have to
go through filtering to reach T benefit from filtering on rival
streams.

In the second experiment, we use hping3 to send 120-byte
SYN packets from A1 towards T in N1 as fast as it can. A filter
is enabled at VF1 at time 0 s, and then a flow cookie response
is generated every 0.1 s for a new IP address, and transmitted
from C1 towards T16. The half-life of VF1 is set high so that
no entry will decay before the end of the experiment. 30 000
distinct addresses are eventually whitelisted, and we count the
number of TCP packets to T passing through VF1’s larger link

15iperf stops reporting when it loses the connection, and does not begin
again before the simulation finishes, hence the C1 trace finishes here.

16C1 emulates thousands of clients by spoofing their source addresses,
avoiding performance limitations in Mininet.

 0

 1

 2

 3

 4

 5

 6

 7

 0 1000 2000 3000 4000 5000 6000 7000 8000

Fa
ls

e
-p

o
s
it

iv
e
 r

a
te

 (
%

)

Time (s; 10 addresses whitelisted per second)

N2/VF1 port 1
N2/VF5 port 1
N2/VF7 port 1

Fig. 13. False positives in Experiment 3

(which must be false positives) in 0.1 s bins, compute false-
positive rates (FPRs), and plot them in Figure 12. As designed,
after 10 000 clients at about 1000 s, FPR is still practically
zero. At 3000 s, when 30 000 clients have been whitelisted,
FPR is about 28.6 %, which roughly concurs with a computed
p ≈ (1 − e−

kn
m)k ≈ 29 %, with m = 131072, k = 9 and n =

30000.
In our third experiment, we measure the impact of multiple

layers of VFs on FPR, using topology N2. Total attack-traffic
volume remains the same as in Experiment 2, but is split across
four attackers A1–A4. Similarly, cookies are generated at 10
per second, but cycled across C1–C4. 80 000 addresses are
eventually whitelisted, so that each VF at the top level receives
20 000, each at the middle level receives 40 000, and the sole
VF7 at the bottom receives all. We capture attack traffic on
the port 1s of VF1, VF5 and VF7, as shown in Figure 13, to
measure FPRs of VF1 alone, the VF1-VF2-VF5 system, and
the complete system respectively.

As VF1 experiences only the 20 000 whitelist entries from
C1, its FPR after 8000 s is at most around 7%, and this is
consistent with Figure 12 up to 2000 s (in which the same
number of addresses where whitelisted in a quarter of the
time). VF2–VF4 will behave similarly.

VF5’s whitelist eventually contains 40 000 entries (from C1
and C2 combined), so its individual FPR should be around
55 %. However, the combined attack traffic it receives from
A1 and A2 has already been reduced to 7%, so the combined
FPR of the VF1-VF2-VF5 system is about 55 %×7% ≈ 3.8%,
close to the measured value of 4 %. The VF3-VF4-VF6 system
will behave similarly.

VF7’s whitelist eventually contains 80 000 entries (from
C1–C4), so its individual FPR is 96 %, so the combined FPR
is 96 % × 3.8% ≈ 3.7%, again close to the measured value,
3.8 %.

In summary, while VF7’s whitelist is saturated beyond its
design, the upstream VFs closer to the saturation boundary
have already effectively reduced the attack volume.

Figure 14 shows performance measurements of the Antidose
eBPF module running in the same DPDK environment with
10 Gbit/s ports as used in [15]. With Antidose in place, but no
filter enabled within it, traffic not directed at the target almost
reaches line rate with 128-byte packets. With a filter enabled

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2018.2828938, IEEE
Transactions on Network and Service Management

TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 10

 0

 2

 4

 6

 8

 10

 0 200 400 600 800 1000 1200 1400 1600

T
h
ro

u
g
h
p
u
t

(G
b
/s

)

Packet size (B)

Non-T tra�c, PASS port
T tra�c, source whitelisted, PASS port

T tra�c, empty whitelist, DROP port

Fig. 14. Throughput in Experiment 4

and one IP address whitelisted, traffic from that source to the
target almost reaches line rate with 512-byte packets. We also
observed similar performance with unwhitelisted traffic to the
target, regardless of entries in the whitelist up to 10 000.

B. Counter-attacks

An attacker that is aware of Antidose could attempt to by-
pass or game its mechanisms.

An attacker can by-pass a VF by attaching proofs-of-work,
but each must be unique, and only buys the successful delivery
of one packet. The attacker can only deliver packets into the
saturation zone at the rate it can generate proofs.

An attacker could attach proofs to the largest packets
to maximize bandwidth consumption. However, large proof-
carrying packets could be routinely dropped, as proofs are
normally only useful for small connection-initiating packets.

Proofs are tied to source addresses, so attacking hosts cannot
share proofs they have found with each other, unless they also
spoof source addresses (and regardless of how many hosts
share a proof, the number of packets that get through VFs
on the saturation boundary will be at most the number of
those VFs). The attacker might also have large amounts of
processing power to generate proofs. However, if the target
agent suspects either of these strategies, it can arbitrarily
increase the difficulty of generating a proof without increasing
the verification effort in VFs. Meanwhile, legitimate clients
are also penalized, but two unique proofs could buy them
membership of the whitelist, after which no more proofs are
required. (Clearly, this counter-strategy is limited by how long
W a new client is prepared to wait to form its first connection.
With a packet size limit of Z = 86 B (a SYN including
Ethernet header and a modest p/w), and W = 8 s, an army of
N = BW

2Z ≈ 12.5 × 106 nodes is required to sustain an attack
of (say) B = 2 Gbit/s.)

An attacker can by-pass a VF by initially behaving well
(resulting in whitelisting), and subsequently behaving badly
by attempting to consume bandwidth within the saturation
zone. If it does so with spoofed source addresses, it achieves
nothing, as only packets using the whitelisted address as
source get through. If it uses its unspoofed, whitelisted source
address, but fails to adhere to protocol flow control, the traffic

gets through and the bandwidth is consumed. However, such
packets are more likely to reach the target or its agent, which
may allow them to determine that the whitelisted address is
being abused. They can then locally blacklist the address,
withdraw refreshment of the address in whitelists, and await
its decay.

The attacker could by-pass a VF by behaving correctly
continuously, but attempt to engage the target in useless
activity. This strategy is not covered by Antidose, and can
be very successful because it is still difficult to determine
if any given service request is genuine or bogus; an attack
might be able to overcome any discriminator at this level
simply by looking increasingly like a flash crowd. However,
if a reliable discriminator is applied, the remedy is simple:
terminate the connection, and block future connections from
the host in the local firewall. The attacker cannot subvert this
without returning to the lower-level attacks, which Antidose
covers. The problem has therefore been reduced to devising
an application-level discriminator (albeit still a very difficult
problem) to be applied in the target server.

An Antidose-aware attacker has some additional options,
attacking the remedial mechanism directly, including the fol-
lowing:

1) A number of malicious clients behave normally, and
get themselves whitelisted, with the aim of saturating
whitelists to the extent that they produce more false
positives. The target agent would be unable to respond to
traffic arriving on FP addresses, as it has not whitelisted
them, so it cannot unwhitelist them.
While this form of attack remains challenging, the at-
tacker faces some difficulty with Antidose in place.
Traffic must pass through several VFs from the saturation
boundary to the target, and each may manage its whitelist
differently, making it more difficult for a given source
IP address to pass through all, especially as the attacker
cannot predict which IP addresses will pass through any
given VF as a false positive, and more so if the attacker is
unable to spoof. With CL4 support expanded sufficiently
beyond the saturation boundary expected under naïve
attack conditions, this chain of VFs could be increased,
and attack traffic could be prevented from coalescing
sooner, so that the initial VFs are less saturated.
Additionally, under this scenario, Antidose has achieved
its goal of forcing an attacker to make its nodes’ real
addresses conspicuous to the target agent. If the target has
a means to identify maliciously unproductive interactions,
it can block their IPs locally, refuse new connections,
refuse to refresh those IPs in whitelists, and await their
exclusion from the attack.

2) At least one attacking node transmits a flood of fake flow
cookies, to force engagement of the cookie verification
step in a VF. The VF cannot resort to sampling flow
cookies, as it will likely then miss many legitimate
ones drowned out by fake ones. This option is available
because no credentials are required to generate a fake
cookie.
If an attacker can command such a high volume of fake-
cookie traffic at a given point, then it must be within

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2018.2828938, IEEE
Transactions on Network and Service Management

TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 11

the saturation boundary, and so VFs should exist further
upstream, where the fake-cookie flows have not yet ag-
gregated to the same degree, and are still competing with
regular traffic. Therefore, VFs should not have to cope
with fake cookies at line rate, as a significant proportion
of that rate would not be cookie traffic. Downstream VFs
are protected from cookie floods because upstream VFs
drop fake cookies.
Nevertheless, if fake-cookie floods are found to be bur-
densome, alternative cyphers with less demanding ver-
ification processes could be chosen, and need not be
indefinitely unbreakable, so long as keys can be updated
faster than they can be cracked.

3) At least one attacking node transmits a flood of duplicate
valid flow cookies, to force engagement of the cookie-
uniqueness step in a VF. This option is available because
even a malicious client can obtain a valid cookie.
This is a lighter-weight step than verification, and occurs
before it, so if verification performance is sufficient, so
is uniqueness. The first cookie will whitelist the client.
Duplicates then pass the whitelist (but do not reinforce the
client’s presence in it), and are passed on with high prior-
ity, increasing the likelihood that they will be observed by
the target agent, who can refuse to issue further cookies
to the offending client. Lacking replacements for new
cookies, the original will eventually expire, be regarded
as broken, and be dropped.

4) Attacking nodes obtain valid cookies, and share them
with other attacking nodes, with the aim of saturating
whitelists in VFs farthest from the target. This option is
available if attackers can spoof source addresses, other-
wise they would not be able to transmit other clients’
cookies. The attacker only has to find a number of
key locations from which to transmit to ensure that the
cookies are seen by every edge VF, so this approach
does not require the attacker to use large amounts of
bandwidth.
As mutual duplicates following different but converging
paths, the cookies will eventually be observed by some
VFs more than once, and will be relayed under high
priority. They are then more likely to be observed by the
target agent, which can behave as under counter-attack 3,
and refuse to refresh cookies to the hosts identified by
the duplicates.

We note that in attacks 2, 3 and 4, attacking nodes are
required to generate unusual packets that might make them
more conspicuous to their local source networks. These pack-
ets are distinguishable without having to inspect them deeply
or record a great deal of state.

For attacks 3 and 4, it might seem undesirable to give
attacking packets (duplicate valid cookies) higher priority.
However, under this priority, these packets are more likely
to reach the target agent, to which they positively identify
compromised (or even complicit) nodes in the attack, and
which can then withhold new cookies.

The success of attacks 1 and 4 depend on the resistance of
the whitelist to saturation, where a Bloom filter’s false-positive
rate becomes excessive. m = 217 4-bit counters occupies

64 kB, and k = 9 hash functions and n = 10000 distinct
entries yields p ≈ 1.8 × 10−3 FP rate, which we believe is
still effective at blocking unwhitelisted addresses during these
more sophisticated attacks. Variations in the hash functions at
different VFs in the chain from any given attacking node to the
target will permit an even smaller proportion of attack traffic
getting through. Furthermore, attacking nodes cannot predict
which client identities will manifest false positives.

VI. DISCUSSION

We discuss a number of open issues, and potential problems
and solutions.

Inter-AS communication reliability during attack: It is a
premise of Antidose that each AS has a reserved or priority
channel with each of its immediate neighbors over which
it can signal p/w and cookie parameters. Without such a
channel, conveying 〈c, k, b〉 reliably over saturated links might
be impossible. In our favor, the quantity to be transmitted is
small and infrequent, and travels in the opposite direction
to the attack flow. Also, as direct signalling with indirect
neighbors is not required, the exact mechanism can be decided
bilaterally, and an AS can ensure that only its authorized co-
ordinators can transmit on a channel, and thus assure its peer
of what it will receive.

VF deployment options in ‘deep’ networks: Two require-
ments compete in deploying a verification filter. First, it must
be deployed sufficiently deep in the network to be beyond
the saturation boundary. Second, the deeper the network, the
less willing its operator is to deploy complex forwarding
logic beyond examination of the destination host address, as
capacities aggregate, and speed dominates requirements. Even
with hardware data-plane programmability such as proposed
by BPFabric, the overhead of a VF deployment might be
too great for the network in which it must be deployed.
However, the H component (Figure 2) has been consciously
separated from other functionality to suggest a solution in such
high-performance and low-programmability environments. H
is fundamentally a destination-host forwarding function, so
it already exists, even in deep networks. It can be used to
separate attack traffic to auxiliary devices that have greater
programmability, and so are capable of hosting VF. This is
feasible so long as the attack volume exceeds the capacity
of neither the channel that carries the separated traffic to
VF, nor the receiving hardware itself. Extended forwarding
functionality offered by the likes of OpenFlow and BPFabric
could also help, e.g., source hashing for load-balancing across
multiple VFs, and tunneling for reaching non-adjacent VFs.

Algorithmic alternatives: Bloom filters could be inadequate
for some scenarios, e.g., where a large number of legitimate
clients must be simultaneously whitelisted, yet false positives
must still be minimized, and memory is tight. Antidose does
not prescribe how a VF should implement its cookie sets, proof
sets and whitelist, so other data structures (including eBPF
tables) and algorithms can be unilaterally selected.

When very low FP rates are required, Bloom filters are
not terribly efficient at storing sets of small keys, such as IP-
protocol tuples, as is the case with the whitelist. To achieve

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2018.2828938, IEEE
Transactions on Network and Service Management

TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 12

(say) p = 0.0001 with m = 131072 and k = 9, then n ≤ 6485.
Storing 6485 entries as a simple array would require only
(5 + 1) × 6485 < 38 kB17, which is somewhat less than the
128 kB required for a Bloom filter with 217 8-bit counters.
However, data structures with better look-up/insertion perfor-
mance are required, and correspondingly might have more
comparable memory requirements. Hardware often present in
routers, e.g., CAMs (content-addressable memory), could also
act as whitelists.

Even with small keys, a Bloom filter still has some favorable
characteristics:
• It has fixed size, so no dynamic memory allocation is

required.
• Its complexity (excluding the hash computation) is O(k),

whether checking or inserting, and O(m) for decay. (The
number of inserted entries n has no impact on perfor-
mance.)

• It can cope with larger and variable key sizes (e.g.,
IPv6 addresses) trivially (without any extra memory or
complexity).

Other asymmetric cyphers may be used for cookie signa-
tures, with verification performance being a key factor. The
inter-AS protocol must be able to indicate the cypher type as
well as the public key. Excessive variety should be avoided,
however, as all CL4 ASes must be using the same cypher (or
a cookie would have to contain multiple signatures).

SHA-256 could be expensive for generating Bloom filter
indices, especially as its cryptographic quality is redundant.
Non-cryptographic algorithms such as SipHash [22] are usu-
ally lighter-weight (potentially improving throughput of check-
ing smaller packets against whitelists), and hash combination
techniques can be used to generate a series of indices with
no significant loss of accuracy [23]. A cryptographic hash is
still required for p/w computations and cookie signatures, but
there is also no benefit to sharing partial SHA-256 hash states
between Bloom-filter index generation and proof/signature
verification, unless the amount to be hashed is at least 64 bytes,
as the internal hash state only changes on every 64-byte block.

Good behavior of non-TCP protocols: Antidose is de-
signed with the TCP handshake in mind as an indicator of
good behavior. However, it leaves detection of a successful
handshake up to the target agent, so it is not TCP-specific,
and any protocol with a similar handshake phase should be
compatible. Some legitimate interactions that do not involve
handshakes also can be dealt with. For example, under a DNS
reflection attack, most of the errant DNS replies will not be
let through VF nodes, as they are from hosts not legitimately
communicating with the target. However, should the target
need to directly perform an external DNS look-up of its own, it
will be initiating the communication to external DNS servers,
and can pre-emptively whitelist them before sending the DNS
request. (Note also that no proofs of work are required for this,
and a slightly more sophisticated H (e.g., selecting all UDP
:53 to T: traffic) could allow non-DNS traffic to bypass VF.)

Lack of client conformance: It is unlikely that sufficient
momentum would be gathered to upgrade a substantial number

174 bytes for the IPv4 address, 1 for the protocol, and 1 for the counter

of clients with both necessary behaviors of injecting proofs
and responding to flow cookies (although the latter is already
standard behavior, just one that is often disabled out of security
concerns). However, it is the client agent that must actually
perform these tasks and it does not need to be precisely co-
located with the client, only close enough to see all of its
traffic and modify it. The client’s ISP is in an ideal position
to do this, and can act for multiple clients, so the problem is
reduced to a per-ISP upgrade, rather than per-client. Indeed,
this is the argument behind BCP38 in RFC2827 [24], whereby
an ISP filters its customers’ outgoing traffic to eliminate its
contribution to source-address spoofing.

Unlike BCP38, in which one ISP’s actions directly benefit
only other users, Antidose support in ISPs does not require
large-scale participation to benefit a participating ISP’s cus-
tomers. In general, each individual client benefits from par-
ticipating unilaterally, regardless of whether any other clients
also participate. Furthermore, participation is not required at
all under normal circumstances.

ICMP Echo exposure/NAT: ICMP Echo is chosen as a pre-
existing means to accurately deliver flow cookies to only the
whitelists on the path from subject to target, even in the face
of route changes and asymmetric routing. However, hosts may
be unwilling to respond to pings as a security risk, though it
should be trivial to distinguish response-worthy cookie pings
if the host initiated the interaction with the ping sender. In
cases where the ping sender is initiating new interactions (e.g.,
where the target is a DNS client), the receiver (a DNS server)
is already exposing itself to provide its service, and is no
more exposed by responding to echo requests with similarly-
sized echo replies. More widespread client participation would
also open up the possibility of a dedicated protocol as an
alternative to ICMP Echo. Hosts behind Network Address
Translation (NAT) share a single public address visible to the
target. Consequently, it is the NAT’s public address that is
whitelisted and all hosts behind it could be denied access due
to bad behavior of one. This can only encourage users behind
shared addresses to ensure their systems are free of malware.

CL4 conformance requirement: The highest level of con-
formance is required of all ASes within the saturation zone.
The zone is determined by the transmission capability of the
attacker, and the capacity of the ASes nearest to the target.
Antidose has been designed to impose minimal processing
burden on ASes so that deployment remains favorable even
as one attempts to push it deeper into the network, while
also ensuring that it does not open a new attack vector
on such sensitive devices. Whether Antidose is deployed in
practice depends on network operators’ willingness to deploy
emerging technologies such as BPFabric, and on whether the
corresponding costs of this deployment are outweighed by
the costs of other extensions of infrastructure laid out in
anticipation of future DDoS attacks.

Saturation boundary transparency: If the source of the
attack is not well distributed, some ingresses to the satura-
tion zone might not require filtering, so clients using these
ingresses will not need to be whitelisted, nor to attach proofs.
The b parameter is intended to permit a small amount of
such unfiltered traffic, but it will be ineffective as filtered

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2018.2828938, IEEE
Transactions on Network and Service Management

TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 13

and unfiltered flows merge downstream. Potentially, an AS
could avoid this merging by relaying unfiltered flows through
alternative gateways, which need not be physically distinct.
The downstream AS can then issue upstream different b values
to distinct ‘virtual gateways’ according to their contribution
to an attack, allowing more for those that appear to be
contributing minimally. Each AS also could have the option
to avoid merging unfiltered flows, and present them as distinct
virtual gateways downstream. This would allow the ‘shape’ of
the saturation boundary to be transparent to the target AS, as
each entry point to the saturation zone would arrive through
a distinct virtual gateway to the target AS, which could then
configure each one with distinct values of b.

Proof-parameter propagation: Antidose depends on legiti-
mate clients receiving proof-of-work parameters in order to
reliably make initial contact with the target server, and this
requires widespread CL1+ conformance, at least between the
agents of the target and each client. As the set of clients of
any given host is not generally known a priori, this necessitates
global CL1+ conformance, and consequently global flooding
of p/w parameters! This is unlikely to happen, so are there
any alternative parameter-distribution mechanisms that can be
relied upon under an attack? If parameters are not to be
propagated AS-by-AS, receivers must be able to verify that
a challenge is genuine, as an attacker could attempt to pollute
potential clients with fake challenges. Also, the mechanism
must itself not be prone to (D)DoS (which potentially rules
out DNS).

First, we can defer propagation of p/w parameters until a
need arises. A client’s initial packet’s arrival into an AS could
trigger the propagation into the supplying neighbor AS, though
this then requires that the client try to send more packets
to complete the propagation. This still requires global CL1+
conformance, so a bridge is needed to cross the gulf between
the AS and the client agent directly. An AS that knows that
the next AS is CL0 could issue parameters in a packet directly
addressed to the client. To prevent abuse, it would have to keep
track of which clients have been recently informed (to avoid
becoming part of a reflection attack), and include details of
the triggering packet (so that the recipient could use it with
confidence).

VII. RELATED WORK

Many DDoS remedies have been proposed over previous
decades. Under SIFF (Stateless Internet Flow Filter) [25],
intervening routers drop packets to the target if they do not
carry a ‘capability’, a sequence of numbers which, when
indexed by the packet’s TTL, yields a code arbitrarily chosen
by the router. A legitimate client forms a correct sequence (one
matching the codes of routers the packet will pass through)
by issuing an explorer packet, to which intervening routers
add their codes. The target sends the explorer packet with
a complete capability back to the client, so only a client
that did not spoof can receive the capability. This scheme
faces a ‘denial-of-capability’ problem, in that explorer packets
might not reach the target because they compete for bandwidth
with attack packets. Explorer packets cannot be given higher
priority, as they attacker could then use them itself.

Portcullis [26] applies the concept of ‘proof of work’ (a
means by which clients may demonstrate legitimacy to a target
without its prior knowledge of them) to connection initiation.
When applied to (say) SIFF, clients add proofs to their explorer
packets, and which then automatically receive higher priority.
Attackers could do the same, but as unique proofs are required,
they can only attack at the rate that they can generate proofs.

In dFence [27], middleboxes are deployed away from the
target to separate traffic belonging to legitimate connections
from potential attack traffic. Each middlebox pretends to be
the target, and responds directly to incoming connections on
its behalf. If a connection is established, it pretends to be
the client, relaying the connection to the target. Further, it
protects itself from SYN attacks by employing SYN cookies.
VFence [28] proposes a very similar system, but exploiting
Network Function Virtualization (NFV) as a means to dynam-
ically instantiate middleboxes.

‘Flow cookies’ are introduced in [29] to allow a target
to permit traffic from a specific client to pass through a
middlebox. Cookies are generated by the target, and cannot
easily be faked. They are issued to clients, who attach them to
their packets for middleboxes to receive and verify. Packets not
containing verified cookies are disfavored by the middlebox.

In [30], inter-domain collaboration is proposed to block
identified attack flows through commands propagated on re-
verse paths towards a source. It identifies the risks of coarse
filtering leading to loss of legitimate traffic, and the need for
confident inter-domain mitigation signalling. FlowSpec [31]
specifies a means for one domain to identify flows by both
source and destination that require special handling in another
domain. The vision of the IETF Working Group DOTS [32]
includes domains under attack appealing to upstream domains
to report DDoS problems, expecting help in their mitigation,
and receiving status reports to indicate when to withdraw
this help. Inter-domain colaboration exploiting increased pro-
grammability for the purpose of improved security continues
to be explored [33], [34].

Antidose combines several of the above concepts. A partic-
ipating router keeps a whitelist, and populates it on receiving
flow cookies issued on behalf of the target. Proof-of-work
is used on initial connection packets from clients not yet
whitelisted. Proof-of-work and cookie parameters are passed
between adjacent ASes, and trusted only while they apply to
downstream gateways currently used to deliver traffic to the
target.

VIII. CONCLUSION

We have presented Antidose, a scheme allowing partici-
pating ASes to mitigate the effects of a Distributed Denial-
of-Service attack on a target, and which is able to control
whitelists within ASes upstream of the saturation zone of the
attack. Effectively, through interaction with only immediate
neighbors, an AS with only a low-level network view of traffic
is given the ability to discriminate legitimate packets from
likely attack packets using criteria set by the target, which
has a higher-level (transport or application) view. We have
presented an implementation of Antidose’s critical component,

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2018.2828938, IEEE
Transactions on Network and Service Management

TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 14

the verification filter (VF), and analyzed its behavior in the
face of various counter-attacks.

The Antidose VF is sufficiently computationally simple to
be deployed in BPFabric, a restricted execution environment
for switching fabric, with the heavy-weight operations of hash-
ing and signature verification handled externally and therefore
potentially in hardware. We demonstrated that, even in this
restricted environment, the VF correctly discriminates traffic
according to the target’s ever-developing definition of legiti-
mate and malicious peers, and that Bloom filters are effective
as whitelists even when there are thousands of simultaneous
or recent legitimate clients.

The environmental restrictions of BPFabric make it suitable
for hardware acceleration (e.g., with NetFPGA), demonstrat-
ing the feasibility of deployment of Antidose in ASes with
high-performance and low-programmability equipment. The
techniques and principles employed by Antidose reduce the
barriers to AS operators managing the automatic mitigation
of bandwidth-saturating DDoS attacks. Practical and robust
proof-delivery/whitelisting mechanisms remain open issues.

ACKNOWLEDGEMENTS

This work is carried out under the EPSRC-funded projects
SAII (grant ref. EP/L026015/1), TOUCAN (EP/L020009/1)
and MaaS (EP/N033957/1). The authors wish to thank Nic
Hart for input on evaluation.

REFERENCES

[1] J. Mirkovic and P. Reiher, “A taxonomy of DDoS attack and DDoS
defense mechanisms,” ACM SIGCOMM Computer Communication Re-
view, vol. 34, no. 2, pp. 39–53, 2004.

[2] M. Jonker, A. Sperotto, R. van Rijswijk, R. Sadre, and A. Pras,
“Measuring the Adoption of DDoS Protection Services,” in Proceedings
of the 2016 ACM Internet Measurement Conference, IMC 2016. ACM,
Nov. 2016, pp. 279–285.

[3] S. Sharwood, “GitHub wobbles under DDOS attack,” http://www.
theregister.co.uk/2015/08/26/github_wobbles_under_ddos_attack/, Aug.
2015.

[4] S. Khandelwal, “602 Gbps! This May Have Been the Largest DDoS
Attack in History,” https://thehackernews.com/2016/01/biggest-ddos-
attack.html, Jan. 2016.

[5] M. Karami, Y. Park, and D. McCoy, “Stress testing the booters: under-
standing and undermining the business of ddos services,” in Proceedings
of the 25th International Conference on World Wide Web. International
World Wide Web Conferences Steering Committee, 2016, pp. 1033–
1043.

[6] B. Schneier, “Lessons from the Dyn DDoS attack,” https://www.schneier.
com/blog/archives/2016/11/lessons_from_th_5.html, Nov. 2016.

[7] M. McKeay, “Q2 2017 state of the internet se-
curity report,” Akamai, Tech. Rep., 2017. [Online].
Available: https://www.akamai.com/us/en/multimedia/documents/state-
of-the-internet/q2-2017-state-of-the-internet-security-report.pdf

[8] R. Pang, V. Yegneswaran, P. Barford, V. Paxson, and L. Peterson,
“Characteristics of Internet background radiation,” in Proceedings of
the 4th ACM SIGCOMM conference on Internet measurement. ACM,
2004, pp. 27–40.

[9] R. Beverly and S. Bauer, “The Spoofer project: Inferring the extent
of source address filtering on the Internet,” in Proceedings of USENIX
SRUTI workshop, 2005.

[10] W. Scott, “POSTER: A Secure, Practical & Safe Packet Spoofing
Service,” in Proceedings of the 2017 ACM on Asia Conference on
Computer and Communications Security. ACM, 2017, pp. 926–928.

[11] S. Simpson, A. Lindsay, and D. Hutchison, “Identifying Legitimate
Clients under Distributed Denial-of-Service Attacks,” in 4th Interna-
tional Conference on Network and System Security. IEEE, Sep. 2010,
pp. 365–370.

[12] A. Goodney, S. Narayan, V. Bhandwalkar, and Y. H. Cho, “Pattern based
packet filtering using NetFPGA in DETER infrastructure,” in 1st Asia
NetFPGA developers workshop. Daejeon, Korea, 2010.

[13] F. Engelmann, T. Lukaseder, B. Erb, R. van der Heijden, and F. Kargl,
“Dynamic packet-filtering in high-speed networks using NetFPGAs,” in
Future Generation Communication Technology, 2014 Third International
Conference on. IEEE, 2014, pp. 55–59.

[14] A. Ghani and P. Nikander, “Secure in-packet Bloom filter forwarding
on the NetFPGA,” in European NetFPGA Developers Workshop, 2010.

[15] S. Jouet and D. P. Pezaros, “BPFabric: Data Plane Programmability for
Software Defined Networks,” in ACM/IEEE Symposium on Architectures
for Networking and Communications Systems, March 2017. [Online].
Available: http://eprints.gla.ac.uk/138952/

[16] T. Peng, C. Leckie, and K. Ramamohanarao, “Survey of network-based
defense mechanisms countering the DoS and DDoS problems,” ACM
Computing Surveys, vol. 39, no. 1, p. 3, 2007.

[17] D. Moore, C. Shannon, D. J. Brown, G. M. Voelker, and S. Savage,
“Inferring Internet Denial-of-Service Activity,” ACM Transactions on
Computer Systems, vol. 24, no. 2, pp. 115–139, 2006.

[18] J. Niccolai, “Analyst Puts Hacker Damage at $1.2 Billion and
Rising,” https://www.computerworld.com.au/article/91948/analyst_puts_
hacker_damage_us_1_2b_rising/, Feb. 2000.

[19] J. P. Sterbenz, D. Hutchison, E. K. Çetinkaya, A. Jabbar, J. P. Rohrer,
M. Schöller, and P. Smith, “Resilience and survivability in commu-
nication networks: Strategies, principles, and survey of disciplines,”
Computer Networks, vol. 54, no. 8, pp. 1245–1265, 2010.

[20] A. I. Ali, “Comparison and Evaluation of Digital Signature Schemes
Employed in NDN Network,” International Journal of Embedded sys-
tems and Applications, vol. 5, no. 2, Jun. 2015.

[21] B. H. Bloom, “Space/Time Trade-offs in Hash Coding with Allowable
Errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, Jul. 1970.
[Online]. Available: http://doi.acm.org/10.1145/362686.362692

[22] J.-P. Aumasson and D. J. Bernstein, SipHash: A Fast Short-Input PRF.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 489–508.

[23] P. C. Dillinger and P. Manolios, Bloom Filters in Probabilistic Veri-
fication. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp.
367–381.

[24] P. Ferguson, “Network Ingress Filtering: Defeating Denial of Service
Attacks which employ IP Source Address Spoofing,” RFC 2827, May
2000. [Online]. Available: https://rfc-editor.org/rfc/rfc2827.txt

[25] A. Yaar, A. Perrig, and D. X. Song, “SIFF: A Stateless Internet Flow
Filter to Mitigate DDoS Flooding Attacks,” in IEEE Symposium on
Security and Privacy. IEEE Computer Society, 2004, pp. 130–.

[26] B. Parno, D. Wendlandt, E. Shi, A. Perrig, B. Maggs, and Y.-C.
Hu, “Portcullis: Protecting connection setup from denial-of-capability
attacks,” SIGCOMM Comput. Commun. Rev., vol. 37, no. 4, pp. 289–
300, Aug. 2007.

[27] A. Mahimkar, J. Dange, V. Shmatikov, H. M. Vin, and Y. Zhang,
“dFence: Transparent Network-based Denial of Service Mitigation,”
in Proceedings, 4th Symposium on Networked Systems Design and
Implementation, Cambridge, Massachusetts, USA. USENIX, 2007.

[28] A. H. Jakaria, W. Yang, B. Rashidi, C. Fung, and M. A. Rahman,
“VFence: A Defense against Distributed Denial of Service Attacks
Using Network Function Virtualization,” in 2016 IEEE 40th Annual
Computer Software and Applications Conference (COMPSAC), vol. 02,
June 2016, pp. 431–436. [Online]. Available: doi.ieeecomputersociety.
org/10.1109/COMPSAC.2016.219

[29] M. Casado, P. Cao, A. Akella, and N. Provos, “Flow-Cookies: Using
Bandwidth Amplification to Defend Against DDoS Flooding Attacks,” in
Proceedings, 14th International Workshop on Quality of Service (IWQoS
2006), 2006, pp. 286–287.

[30] K. Argyraki and D. R. Cheriton, “Scalable Network-Layer Defense
Against Internet Bandwidth-Flooding Attacks,” IEEE/ACM Transactions
on Networking, vol. 17, no. 4, pp. 1284–1297, 2009.

[31] P. Marques, N. Sheth, R. Raszuk, B. Greene, J. Mauch, and
D. McPherson, “Dissemination of Flow Specification Rules,” RFC 5575,
Aug. 2009. [Online]. Available: https://rfc-editor.org/rfc/rfc5575.txt

[32] R. Danyliw and T. Gondrom, “DDoS Open Threat Signaling,” https:
//datatracker.ietf.org/doc/charter-ietf-dots/, Jun. 2015.

[33] D. Migault, M. A. Simplicio, B. M. Barros, M. Pourzandi, T. R. M.
Almeida, E. R. Andrade, and T. C. M. B. Carvalho, “A Framework for
Enabling Security Services Collaboration Across Multiple Domains,”
in 37th International Conference on Distributed Computing Systems.
IEEE, Jun. 2017.

[34] S. K. Fayaz, Y. Tobioka, V. Sekar, and M. Bailey, “Bohatei: Flexible and
Elastic DDoS Defense,” in 24th USENIX Security Symposium (USENIX
Security 15). Wash., D.C.: USENIX Association, 2015, pp. 817–832.

http://www.theregister.co.uk/2015/08/26/github_wobbles_under_ddos_attack/
http://www.theregister.co.uk/2015/08/26/github_wobbles_under_ddos_attack/
https://thehackernews.com/2016/01/biggest-ddos-attack.html
https://thehackernews.com/2016/01/biggest-ddos-attack.html
https://www.schneier.com/blog/archives/2016/11/lessons_from_th_5.html
https://www.schneier.com/blog/archives/2016/11/lessons_from_th_5.html
https://www.akamai.com/us/en/multimedia/documents/state-of-the-internet/q2-2017-state-of-the-internet-security-report.pdf
https://www.akamai.com/us/en/multimedia/documents/state-of-the-internet/q2-2017-state-of-the-internet-security-report.pdf
http://eprints.gla.ac.uk/138952/
https://www.computerworld.com.au/article/91948/analyst_puts_hacker_damage_us_1_2b_rising/
https://www.computerworld.com.au/article/91948/analyst_puts_hacker_damage_us_1_2b_rising/
http://doi.acm.org/10.1145/362686.362692
https://rfc-editor.org/rfc/rfc2827.txt
doi.ieeecomputersociety.org/10.1109/COMPSAC.2016.219
doi.ieeecomputersociety.org/10.1109/COMPSAC.2016.219
https://rfc-editor.org/rfc/rfc5575.txt
https://datatracker.ietf.org/doc/charter-ietf-dots/
https://datatracker.ietf.org/doc/charter-ietf-dots/

