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Abstract

The use of planning for computing genome edit distances was
suggested by Erdem and Tillier in 2005, but to date there
has been no study of how well domain-independent planners
are able to solve this problem. This paper reports on experi-
ments with several PDDL formulations of the problem, using
several state-of-the-art planners. The main observations are,
first, that the problem formulation that is easiest for planners
to deal with is not the obvious one, and, second, that plan
quality – in particular consistent and assured plan quality –
remains the biggest challenge.

Introduction
For several decades now, the comparative study of biological
sequence data (i.e., DNA or protein amino acid sequences)
has played an increaing role in determining the evolution-
ary history of life on Earth (e.g., Page and Holmes 1998).
While early studies examined differences in the nucleotide
sequences of individual genes, more recent work has also
examined differences in the arrangement of genes across a
whole genome (Sankoff et al. 1992; Boore and Brown 1998;
Snel, Huynen, and Dutilh 2005).

A computational problem that arises in this context is the
calculation of edit distances between sequences: that is, the
number of “mutation events” required to transform one se-
quence into another. The edit operations considered de-
pends on the type of sequence. For DNA sequences, they
are typically insertion, deletion or substitution of individ-
ual nucleotides. Minimising this edit distance is the famous
sequence alignment problem. For genome rearrangement,
the edit operations usually assumed are inversions and trans-
positions (and combined transposition and inversion, called
transversions) of subsequences within the genome, plus in-
sertion/duplication and deletion if needed to account for dif-
ferences in gene content.

Erdem and Tillier (2005) suggested that the calculation of
genome edit distance under these operations can be consid-
ered as a planning problem: The arrangement of genes is the
state, and each edit operation is an action that modifies it.
These actions may furthermore be assigned different costs,
to account for different relative frequencies with which they
are assumed to occur in the organisms studied. They devel-
oped a solution to the problem based on TLPlan, which was
later refined by Uras and Erdem (2010).

However, the system developed by Erdem and colleagues
is a plain depth-first state-space search guided by entirely
domain-specific heuristics. Although the problem is formu-
lated in a planning language, the solver makes essentially no
use of this. Consequently, there has been no comprehensive
study of how well state-of-the-art domain-independent plan-
ners are able to solve the genome edit distance problem.1

In this paper, I discuss alternative encodings of the
genome edit distance problem in PDDL, and evaluate the
ability of some current domain-independent planners to
solve the resulting formulations. My aim is not to show that
domain-independent planners are better than Erdem et al.’s
system (quite unlikely, given the extent to which it is tai-
lored to the domain), but to find out exactly how well – or
badly – such planners perform on this problem, and what
shortcommings of these planners may need to be addressed
to improve their usefulness.

Phylogenetic Reconstruction and
Genome Edit Distance

A phylogeny (evolutionary tree) is a tree where the leaf
nodes represent living taxa (species or species groups) and
interior nodes the ancestral organisms from which they have
evolved. Typically, these ancestors are long extinct. The
problem of phylogenetic reconstruction is to find the best,
i.e., most plausible, such tree, based on observed characters
of the living taxa. In a genome-based phylogenetic analysis,
these characters are the content and arrangement of genes
in the organisms genomes. What constitutes a “most plau-
sible” phylogeny depends on what criteria are assumed. A
common criterion is parismony, i.e., preferring trees with
the smallest total amount of change. Criteria such as maxi-
mum likelihood can also be used, but depend on additional
assumptions about the evolutionary process.

Finding a maximum parsimony phylogeny based on
genome rearrangement events is computationally hard.
Distance-based methods simplify the problem by divding it
into two steps: The first is to compute a matrix of pair-wise
distances between the taxa, and the second to construct a
tree with minimum total distance. Optimal tree construction

1Erdem and Tillier report that they formulated a highly simpli-
fied version of the problem in PDDL, and had little success solving
it using HSP and SATPLAN.
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Figure 1: Edit operations on a circular genome. Above:
Transposition of thex–y segment to afterz. Below: In-
version of thex1–xn segment.

is still hard, but there are widely used and seemingly good
approximate methods (e.g., Saitou and Nei 1987). Comput-
ing the entires in the distance matrix in this setting gives
rise to the genome edit distance problem. Note that the
distance-based tree construction is an approximation: even
if distances correspond to optimal rearrangement sequences,
a minimum distance tree is not necessarily a most parsimo-
nious tree.

Genome Edit Distance
A genome is a linear or circular sequence of genes. In addi-
tion to their order, each gene has an orientation (“normal”
or “inverted”, relative to the, arbitrarily chosen, direction
of the sequence). The definition of an edit distance mea-
sure requires defining the edit operations, and their relative
weights. For comparison of genomes with equal gene con-
tent, i.e., which differ only in the order and orientation of
their genes, the usual edit operations are inversion and trans-
position, and the combination of both, called transversion.
Transposition moves a segment of the genome (which may
consist of a single gene) to a different location, while in-
version reverses a segment and reverses the orientation of
each gene within it. The two operations are schematically
illustrated in figure 1. Transversion simultaneusly inverts
a segment and moves it to a new location. For comparing
genomes with unequal content, operations such as insertion,
duplication and deletion of genes must also be used. The
inversion-only distance can be computed in polynomial time
(Hannenhalli and Pevzner 1995) but no polynomial time al-
gorithm is known for the larger set of edit operations. The
problem is conjectured to be NP-hard.

That edit operations are not equally frequent is reflected
by giving them different weight in the distance calculation.
The relative frequency of apparent occurrence of transpo-
sition and inversion is not known precisely, and varies be-
tween different species groups. Blanchette et al. (1996)
suggest a relative weight of2–2.5 for transpositions and
transversions to1 for inversions. This weight range is where
the number of operations in an approximately minimum
weight transformation between one pair of mitochondrial
genomes (human and aDrosophila) diverges from the num-
ber between random sequences.
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Figure 2: Comparison between compressed genome size and
(weighted) edit distance. Note that this is the smallest known
edit distance, and does not necessarily reflect the true mini-
mum.

Although differences that can be ascribed to inversions
and transpositions can be observed in the genomes of re-
lated organisms, the mechanisms that cause these changes
are not well understood. Some studies have suggested that
the apparent transpositions and inversions are in fact the re-
sult of duplications followed by gene loss (Lavrov, Boore,
and Brown 2002). Thus, there are reasons to experiment
with different sets of edit operations, and different weight-
ing schemes. The generality of domain-independent plan-
ning can offer an advantage in that.

Problem Simplification

Uras and Erdem (2010) describe two simplifications that
they apply to problem instances before attempting to solve
them. The first is only relevant when comparing genomes
with unequal content, and is to remove from both genomes
being compared any gene that appears only in one of them,
and adding the number of such deletions to the edit cost.
(Each such gene must obviously be inserted/deleted, which
can be done at the beginning/end of the plan.)

The second is to “compress” both genomes by replacing
common substrings with (new) atomic symbols, since there
is no reason to apply any edit operation that breaks up such
a substring. Note that common substrings may appear in-
verted in one of the genomes. Compression is done pair-
wise, per problem, so the substrings need not be common
to all genomes in the data set. This simplification turns out
to be very important for performance, since it can drasti-
cally reduce the size of the problem. Genomes in the sec-
ond data set (cloroplast genomes of 13 plants from theCam-
panulaceaefamily) contain 105 genes each, but after com-
pression no pair has more than 26 elements (genes or sub-
strings). Size after compression also turns out to be a fairly
good predictor of the edit distance: figure 2 shows a com-
parison. (This was also noted by Nadeau & Taylor 1984.) In
data set #1 (mitochondrial genomes of 11 animal species),
which generally has a much higher degree of rearrangement
between genome pairs, the effect of compression is much
less dramatic.



Formulation in PDDL
In Erdem and Tillier’s formulation, the arrangement of genes
is described by a binary predicate,(cw ?x ?y), with the mean-
ing that?y is the next gene from?x in clockwise order. I will
call this the “relational” encoding. The alternative is a “po-
sitional” encoding, i.e., to specify the position of each gene
w.r.t. a fixed frame of reference, for example by a predicate
(at ?x ?p) meaning gene?x is at position?p. The orientation
of each individual gene is additionally specified by one of
the predicates(normal ?x) and(inverted ?x) being true. Both
encodings have their advantages and disadvantages.

As noted above, correct and precise relative weights for
transpositions and inversions are not known. What is impor-
tant when formulating edit distance computation as a plan-
ning problem is allowing for the possibility of specifying
different weights, and generating plans that minimise the
weighted distance.

Formulations Based on the Relational Encoding

It is easy to think of each edit operation as an action, but
these actions are not so easy to formulate in PDDL, because
they have complex preconditions and/or effects. Consider,
for example, inversion: the segment to be inverted can be
defined by the two genes at its ends, but the operation will
have an effect also on every gene between them. The pre-
condition of transposition must enforce that the new location
(genez in figure 1) does not lie within the segment that is
moved (i.e., not betweenx andy). Since the relational en-
coding specifies only the “neighbours” in the genome, this
“betweeness” is a transitive closure property. There are (at
least) three ways to formulate the operations:
1. Use PDDL2.2’s derived predicates and axioms to define
thebetween andnot-between properties, and use quantified
conditional effects to encode the effect of inversion. Thisis,
essentially, the formulation used in Erdem et al.’s TLPlan-
based system. Note that the recursive derived predicates
used in this formulation cannot be expressed in ADL, which
allows only first-order pre- and effect conditions.2

2. Break each operation up into a sequence of actions, each
of which affects only a fixed-size genome part (e.g., only
two neighbouring genes). This requires additional predi-
cates to control the sequencing of these actions so that they
actually correspond to complete and correct edit operations.
3. Use a separate action for each size of segment operated
on, with a matching number of arguments (for example, an
action(invert-3 ?x-pre ?x ?y ?z ?z-post) for inverting the seg-
ment?x–?y–?z of length 3).
The third option is used in Erdem & Tillier’s simplified
PDDL formulation, which permits only operations on seg-
ments of limited size. For the general problem, it becomes
infeasible because of the very large number of action pa-
rameters, which make grounding impossible. (Grounding,
which is used by nearly all modern domain-independent

2Because TLPlan, which uses no domain-independent reason-
ing, uses action descriptions only to generate successor states in a
“black box” maner, it has a very expressive input language which
includes, for example, procedurally defined (recursive) functions.

planners, is a significant obstacle for some other formula-
tions as well, as discussed below.)
Single-Step Formulation In the single-step formulation,
each edit operation is performed by one action, using de-
rived predicates and quantified conditional effects to specify
actions’ preconditions and effects. Formulating axioms for
between is straightforward. For example,
(:derived (between ?x ?y ?z) (= ?z ?x))
(:derived (between ?x ?y ?z) (= ?z ?y))
(:derived (between ?x ?y ?z)

(exists (?w) (and (cw ?x ?w) (not (= ?y ?w))
(between ?w ?y ?z)))))

i.e.,?z is between?x and?y, inclusive, iff?z equals either?x
or ?y, or the next gene?w clockwise from?x is not equal to
?y and?z is between?w and?y. (A similar definition can be
written fornot-between, so it is not necessary to use negation
over thebetween predicate.) The effect of reversing thecw
relation in the segment between?x and?y (an effect of the
inversion operation) can then be written as:
(forall (?v ?w)

(when (and (between ?x ?y ?v) (between ?x ?y ?w)
(cw ?v ?w))

(and (not (cw ?v ?w)) (cw ?w ?v))))

Most modern domain-independent planners work (inter-
nally) on a grounded representation, and this is a major ob-
stacle to using this formulation. The transposition operation
involves six distinct genes whose neighbour relations will
change, and thus thetranspose action has six arguments.
Apart from a few disequalities (e.g.,z 6= x′; cf. figure 1), all
possible instantiations lead to potentially applicable actions,
which makes the number of ground actions huge. No prob-
lem with genomes containing more than 7 elements could be
grounded. Note that the issue here is not the (in-)efficiency
of the grounding process, but the size of the grounded prob-
lem. Thus, advanced grounding techniques, such as com-
bined grounding and relaxed reachability analysis (Helmert
2009), will not help.

However, since there are at most binary predicates, the
effect of an operation can be divided into a series of steps
each of which can be performed by an action with only two
parameters (e.g., for transposition: breakx′–x; breaky–y′;
connectx′–y′; etc). Part of the inversion operation must still
be written using quantified conditional effects, but there are
only a quadratic number of instances, each with an at most
quadratic number of conditional effects after grounding the
quantifiers. In this formulation, all problems (up to size 26)
can be grounded effectively.
Multi-Step Formulation The use of derived predicates and
conditional effects can be avoided by “simulating” their ef-
fects through sequences of actions.3 This can be done in
several ways: the following is just one alternative.

The edit operations can all be viewed as first cutting out
a segment of the genome and then re-inserting it somewhere
else (transposition), or inserting it reversed in the same place

3This idea is also used in compilations that remove these fea-
tures (cf. Nebel 2000, and Thiebaux, Hoffmann, and Nebel 2003).
Note that these compilations do not preserve plan length, which
is why zero-cost actions become necessary to model the relative
weight of edit operations in this formulation.
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Figure 3: Cutting segmenta–b–c. The unlabelled arrows
represent thecw relation.

(inversion) or elsewhere (transversion). Cutting, inserting
and inserting-in-reverse a segment can all be done in a gene-
by-gene fashion. Figure 3 illustrates how a segment of
length 3 is cut out. Sequencing of the step actions is con-
trolled by auxiliary predicates: for example, the precondi-
tion of action(continue-cut ?x ?y ?z) requires that(s-last ?x),
(cut-2 ?y) and(cw ?y ?z) hold. At the end of the operation,
the end points and sequence of the cut segment are identified
by these auxiliary predicates, so that this information canbe
used to control insertion. Also marked is the point in the
genome where the cut was made: this permits to distinguish
inversion, which is a reversed insertion at that point, from
transversion, and thus to assign them different weights.

Expressed in a “natural” way, this formulation has actions
with three parameters, which is still enough to make ground-
ing large problems difficult. Through further splitting of the
steps it can be brought down to two parameters, allowing all
problems (up to size 26) to be grounded effectively.

In this formulation, the number of actions in a single edit
operation varies with the length of the transposed or inverted
segment (this is in contrast to the split version of the single-
step formulation described above). Thus, to accurately en-
code relative weights (not dependent on segment length) it
is necessary to assign some actions zero cost.

Formulations Based on the Positional Encoding
In the positional encoding, all complex relations are over
positions. For example, transposing the segment at positions
1–2 to after the gene at position3 (assuming the segment
inbetween slides counter-clockwise) results in a permutation
moving the gene at position1 to position2, the gene at2 to
3, and the gene at3 to position1:

0
1

2 3
4

5

This permutation is the same regardless of which genes oc-
cupy the affected positions. Thus, for a given genome size,
the permutations caused by edit operations can be computed
in advance and provided to the planner through static pred-
icates. For example, the effects of transposing the segment
?x–?y to ?z can be written

(forall (?g - gene ?v ?w - pos)
(when (and (transpose-shift ?x ?y ?z ?v ?w) (at ?g ?v))

(and (not (at ?g ?v)) (at ?g ?w))))

where(transpose-shift ?x ?y ?z ?v ?w) is the static predi-
cate that specifies the permutation, i.e., that the transposi-
tion moves the gene at position?v to position?w. In the
above example, we would have(transpose-shift p1 p2 p3 p1
p2), (transpose-shift p1 p2 p3 p2 p3), and (transpose-shift
p1 p2 p3 p3 p1). (The predicate is false for all positions
not involved in the move.) This allows a single-action-per-
edit-operation domain to be written without derived pred-
icates, and using actions with no more than three param-
eters. Grounding this formulation is still challenging, but
here the size of the grounded problem is moderate (although
the number of ground actions is roughly cubic, most do not
affect a large part of the genome and so have a relatively
modest number of conditional effects). Thus more efficient
grounding techniques may make it practical.

It is also worth noting that the formulation could be made
more compact by making use of the recent addition of “ob-
ject fluents” to PDDL (Helmert, Do, and Refanidis 2008),
which model multi-valued state variables. For example, the
effect of the transposition above could be written

(forall (?v ?w - pos)
(when (transpose-shift ?x ?y ?z ?v ?w)

(assign (gene-at ?w) (gene-at ?v)))

i.e., without quantifying over the possible content of eachre-
assigned position. This would reduce the number of condi-
tional effects to linear. However, there is, to my knowledge,
no planner that natively supports effects of this kind. (Fast
Downward, and planners derived from it, such as LAMA, in-
ternally use a format based on grounded multi-valued state
variables, but allow only constants on the left-hand side of
assignements.)

The positional encoding has another significant drawback
when applied to circular genomes, in that it introduces an
arbitrary fixed reference point. Thus, the fact that two circu-
lar arrangements may be equal but placed differently w.r.t.
this reference point must be taken into account. This can
be done by introducing a “rotate” action, which shifts the
whole genome relative to the reference point without chang-
ing the arrangement. Applications of this action do not count
towards the edit distance, i.e., it must have zero cost.

Genome Data Sets
Experiments were done on two data sets.4. The same data
sets were used by Erdem and Tillier (2005).

Data set #1 comprises the mitochondrial genomes of 11
species of the animal kingdom. They are a diverse collec-
tion, with one to three exemplars from each of six major

4Obtained from http://grimm.ucsd.edu/MGR/
examples.html



Formulation Max # Grnd # Sol
Arity

LAMA
Relational

Single-step (R1) 6 18 (7) 18 (7)
Single-step, partly split (R1′) 4 34 (12) 28 (11)
Single-step, fully split (R1′′) 2 156 (26) 38 (15)
Multi-step (Rm) 3 156 (26) 156 (26)
Multi-step, split (Rm′) 2 156 (26) 156 (26)

Positional
Single-step (P1) 3 122 (19) 40 (15)

Mp
Relational

Multi-step (Rm) 3 156 (26) 36 (14)
Multi-step, split (Rm′) 2 156 (26) 45 (14)

Positional
Single-step (P1) 3 34 (12) 25 (11)

Table 1: Comparison of problem formulations on data set
#2. “Max Arity” is the largest number of action param-
eters. “# Grnd” is the number of instances (out of 156)
that could be grounded (and translated to SAS+) within 2Gb
memory. In parenthesis, the largest problem size that could
be grounded. “# Sol” is the number of instances solved,
within a 30 minute time and 2Gb memory limit. In paren-
thesis, the largest problem size that was solved. Mp was run
with a higher memory limit, 3Gb, but a 30 minute time limit
for grounding and solving combined. However, the time for
grounding and preprocessing is negligeable; when ground-
ing fails it is by exhausting memory.

groups: chordates, echinoderms, arthropods, mollusks, an-
nelids and nematodes. (Each of these groups is believed to
be monophyletic.) Blanchette et al. (1999) used this data to
investigate gene order evidence for different theories about
the evolutionary relationship between these groups. Most
mitochondiral genomes have 37 genes, without duplicates.
However, one gene is missing from all nematodes, so only
the arrangement of the remaining 36 genes is compared.
Genomes of species from different groups generally show
a high degree of rearrangement, and thus compress poorly,
while within some groups the genomes are very similar, re-
sulting in small problems after compression. Thus, in this
set there is an uneven spread of problem sizes (cf. figure 2).

Data set #2 comprises the chloroplast genomes of 13
plants from theCampanulaceaefamily. It was used by Cos-
ner et al. (2000) to compare different phylogenetic analysis
methods. The genomes contain 105 different genes, some
duplicated. Cosner et al. removed duplicate genes, so that
each genome has a length of 105. There are large segments
common to all genomes in the set, and therefore compres-
sion of common substrings reduces the size of problems sig-
nificantly, to an even spread between 3 and 26.

Experiments
The experiments aim to determine which of the different for-
mulations planners find easiest to deal with, and generally

evaluate the ability of some domain-independent planners to
compute genome edit distances. Note that this means abil-
ity to generate solutions of consistent quality. The purpose
of computing edit distances is tocomparethem (i.e, organ-
ism A is assumed to be more closely related to organism B
than to C if the edit distance between the genomes of A and
B is smaller than the distance between A and C.) This does
not mean it is necessary to find optimal plans: as long as
the relative differences between the distances computed for
different pairs is the same as between the minimal edit dis-
tances between the same pairs, any information contained
in the true edit distances is not lost. If, however, the cost
of the plans produced by a planner can differ significantly
and unpredictably from the optimal cost, to the extent that
this “random” difference overshadows any relation between
distances between different pairs, the results are of no use.
Comparison of FormulationsTable 1 summarises the com-
parison of problem formulations. This was done on data set
#2, because it shows a fairly even spread of problem sizes.
To the extent of my knowledge, the only planner capable
of handling all formulations, and trying to minimise plan
cost, is LAMA (Richter and Westphal 2010). Thus, the diffi-
culty of solving each formulation is estimated by how many,
and how large, problems this planner solves. As mentioned,
grounding is major obstactle for problem formulations that
use actions with a large number of parameters. It is, how-
ever, clearly not the only source of difficulty: in all non-
STRIPS formulations, except relational single-step, some
problems that could be grounded were not solved. To get
some idea of how much these results are specific to LAMA,
I also ran the Mp planner (a heuristically enhanced SAT-
based planner; cf. Rintanen 2011). Mp ignores plan quality,
and thus is not really suited to calculating the weighted edit
distance, but its ability to find any solution can still be used
as a measure of problem difficulty. As it does not support
derived predicates, Mp could only be tested on three formu-
lations, but on these it mostly agrees with LAMA.
Comparison of Edit DistancesFigure 4 shows a compar-
ison of the edit distances computed by different planners,
as well the inversion-only distance computed by a domain-
specific system, GRIMM.5 The planners are LAMA, Mp
and several variants of greedy best-first search with the FF
heuristic (Fast Downward implementation). The first two
variants use a cost-sensitive version of the heuristic, i.e., one
that estimates the true cost of the relaxed plan, and the stan-
dard unit-cost version, which estimates the size of the re-
laxed plan, in a standard, single GBFS search. The third
(“cGBFS/FF”) uses the unit-cost heuristic, but continues to
search after the first solution has been found, for a plan of
lower real cost. In the final variant (“GBFS/FF+RR”), some
decisions that are normally made arbitrarily (order of suc-
cessors and the choice of minimum-cost supporting action
in the heuristic) are randomised, and the search repeated as
many times as possible within the time limit, keeping the
best plan found.

The smallest known distance is found by combining the
results of all planners, exploiting the symmetry of the edit

5http://grimm.ucsd.edu/GRIMM/
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Figure 4: Comparison of edit distances found by differ-
ent planners on the relational multi-step split formulation
(Rm′). Problems are sorted by the minimum (known) dis-
tance (shown as a dashed line); this includes the inversion-
only distance obtained from GRIMM. The solid line shows
the highest lower bound proven by A*/LM-Cut. For data
set #2, the lower graph shows a close up of the region below
distance 50, for better vertical resolution. This graph also in-
cludes the distances computed by Erdem & Tillier’s (2005)
system (· · · ). Note, however, that those were computed with
transversion weighted at1, instead of2; the corresponding
distance under the weighting used here may be anywhere in
[1, 2] times that shown in the graph.

distance (the minimum cost of transforming genomeg into
g′ is the same as of transformingg′ into g; both problems
are solved), and the inversion-only distance computed by
GRIMM. (Since a weight of1 for inversions in used in the
planning formulation, the unweighted inversion-only dis-
tance is a valid upper bound on optimal plan cost.) For most
problems, the latter is clearly smaller, but there are a few in-
stances in which a planner finds a lower-cost plan. For data
set #2 the comparison also includes the distances computed
by Erdem & Tillier’s TLPlan-based system. These dis-
tances, however, were computed with transversion weighted
at 1, and thus are not directly comparable. (Note that this
distance is sometimes below the lower bound!) The cor-
responding distance under the weighting used here may be
anywhere in[1, 2] times that shown in the graph. For data
set #1, the weights used by Erdem & Tillier differ too much
from those used here to allow for any meaningful compari-
son. Finally, the highestf -value proven by A* search using
the LM-Cut heuristic is provided as a lower bound.

Three important observations can be made: First, the cost-
ignorant planners exhibit a very large spread in plan costs,
relative to the smallest known. This makes them unusable
for computing edit distances, since the noise that is created
by the planners is clearly enough to drown out any signal
present in the true minimum distances. Second, using the

Data Set #2
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Figure 4 (continued).

cost-sensitive FF heuristic results in plans of much better
quality, but is much less effective; it solves only30% of in-
stances overall (whereas with the unit-cost FF heuristic the
planner solves all but one problem). LAMA, and the two
iterated variants of GBFS with the unit-cost FF heuristic,
achieve more consistent quality, while still solving most in-
stances (90% for LAMA). Even so, the difference between
the lowest cost plan found by any of these planners and the
smallest known edit distance is of the same magnitude as
the edit distance itself, which is clearly too much. Finally,
there is an enourmous gap between the smallest known edit
distance and the lower bound. This is a significant problem,
since it means there is no way to tell how close to the true
minimum these distances are. In other words, we cannot
know for sure if the smallest known edit distances equal the
true minimum, or if they are just noise.

Conclusions
Computing minimum, or at least consistent, genome edit
edistances is clearly a challenging problem for current



domain-independent planners. The “obvious” formulation
(relational single-step) of the problem requires advanced
features of PDDL (e.g., conditional effects with derived
predicates in effect conditions), which are not dealt with ef-
fectively even by the very few planners that support them.
Furthermore, all but very small instances this formulation
cannot be grounded, which rules out all modern domain-
independent planners. However, these problems can be
overcome by formulating the problem in a way that, while
perhaps appearing “unnatural”, is better suited to the plan-
ners. This formulation needs only STRIPS with action costs.

Finding plans of consistent (high) quality, while scaling
up to large problem instances, remains a challenge. It is in-
teresting to note that the time taken by GBFS with the unit-
cost FF heuristic to solve even the largest problems is no
more than around 15 minutes. How to make use of that ef-
ficiency to find high-quality plans is an important question
for future planning research, not only for its application to
the genome edit distance problem. (The simple “randomise
and repeat” scheme tried here is not a good enough answer.)
Most important, however, is the lack of a sufficiently strong
lower bound. As long as the gap between the lower bound
and the smallest known distance is as large as the distance
itself, we cannot be confident that edit distances computed
by planners reflect the truth.

Finally, with these results in hand, we may ask: would
biologists, interested in computing genome edit distances,
want to use domain-independent planners? The promise of
domain-independent planning in this application is its gener-
ality, providing a means to explore different sets of edit oper-
ations without the need to develop new, customised heuris-
tics or special-purpose algorithms for each set. However,
there are clearly hurdles to be overcome before this promise
can be realised. Formulating the problem such that cur-
rent planners can effectively solve it requires insight into the
workings of the planners, and may even be more difficult for
a non-specialist than developing a problem-specific search
heuristic. Better methods of finding high-quality plans, and
of finding lower bounds to provide assurance of the quality
of those plans, are also needed.
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