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Abstract—	Distributed systems are at a watershed due to their 
increasing complexity. The heart of the problem is the extreme 
level of heterogeneity exhibited by contemporary distributed 
systems coupled with the need to be dynamic and responsive to 
change. In effect, we have moved from distributed systems to 
systems of systems. Following on from this, middleware is also at 
a watershed. The traditional view of middleware is no longer 
valid (i.e. as a layer of abstraction, masking the complexity of the 
underlying distributed system and providing a high-level 
programming model). In practice, middleware is often by-passed 
with complex systems constructed in a rather ad hoc manner as a 
mash-up of a variety of technologies. The end result is that 
middleware is no longer sure of its form or purpose and this lack 
of a viable approach is a huge barrier to the emergence of areas 
such as smart cities and emergency response systems. This paper 
argues that there is a need to fundamentally rethink the 
middleware landscape related to complex distributed systems. 
The core contribution of the paper is a set of fresh perspectives, 
which lead us in turn to novel principles and patterns for 
middleware and subsequently to new styles of platform. These 
perspectives include a move to emergent middleware, seeking 
flexible meta-structures for distributed systems, and a step away 
from generic to domain-specific technologies. A number of case 
studies are also presented to demonstrate what this might mean 
for future distributed systems. 

Keywords—	 distributed systems, systems of systems, 
middleware, complexity, systems integration. 

I.  INTRODUCTION 
Distributed systems are at a watershed due to their 

increasing complexity. The heart of the problem is the extreme 
level of heterogeneity exhibited by contemporary distributed 
systems coupled with the need to be dynamic and responsive to 
change. In effect, we have moved from distributed systems to 
systems of systems. Following on from this, middleware is also 
at a watershed. The traditional view of middleware is no longer 
valid (i.e. as a layer of abstraction, masking the complexity of 
the underlying distributed system and providing a high-level 
programming model). In practice, middleware is often by-
passed with complex systems constructed in a rather ad hoc 
manner as a mash-up of a variety of technologies.  The end 
result is that middleware is no longer sure of its form or 
purpose and this lack of a viable approach is a huge barrier to 
the emergence of areas such as smart cities and emergency 
response systems. 

The author argues that there is a need to fundamentally 
rethink the landscape of distributed systems in what the paper 
refers to as complex distributed systems. The overall vision of 
the paper is therefore to examine the problem through fresh 
perspectives, that lead us in turn to novel principles and 
patterns for middleware and subsequently to new styles of 
platform. The fresh perspectives include a move to emergent 
middleware, seeking flexible meta-structures for distributed 
systems, and a step away from generic to domain-specific 
technologies. These findings are strongly influenced by recent 
work by the author in applying distributed systems technology 
in understanding and managing the natural environment as it 
experiences pressures such as climate change. 

The paper is structured as follows. The arguments in this 
paper are derived from experience in applying distributed 
systems principles and techniques in a real-work problem 
domain, that of supporting environmental scientists in 
understanding and managing the natural environment. Section 
II discusses this motivation, highlighting the intrinsic 
complexities in both the resultant underlying distributed 
systems and also associated with supporting environmental 
science. Section III then discusses the state of the art in 
complex distributed systems, examining in detail how existing 
middleware approaches support such complexities and also 
what can be learned from research in systems of systems.  The 
section concludes that there are serious problems in the state of 
the art and a need for fresh perspectives and insights to drive a 
new approach to complex distributed systems. Section IV then 
moves on to the solution space by discussing five potential 
fresh perspectives on the problem that individually and/or 
collectively may point to new solutions and approaches to 
middleware design. Section V then presents four case studies 
that build selectively on the fresh perspectives in different 
combinations, thus further developing the potential solution 
space. Section VI presents some concluding remarks 
highlighting the need for greater focus on complexity in 
distributed ssytems and its application. 

II. MOTIVATION: DISTRIBUTED SYSTEMS IN THE REAL WORLD 

A. Background 
This paper is motivated by recent research by the author in 

applying distributed systems technology in a real world setting, 
namely supporting environmental scientists in their quest to 
both understand the complexities of the natural environment 
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under periods of change (incl. climate change) and in 
developing well-founded mitigation and adaptation strategies.  

Previous research includes the Environmental Virtual 
Observatories project, which examined the support offered by 
cloud computing for a more open and collaborative style of 
science, and also the Environmental Internet of Things project 
which addressed the potential role of Internet of Things (IoT) 
technology in supporting catchment management by providing 
real-time streaming data on a number of environmental facets 
including concerning soils, hydrology and animal movements. 

Ongoing work is examining the natural synergy between 
IoT technology, cloud computing and data science in 
environmental science (generating rich data-sets, having the 
capacity to analyse such data sets, and also providing 
innovative techniques to make sense of this complex 
environmental data). Experience from this work has 
highlighted the complexities of working in this area. The rest of 
this section unpicks these complexities in more detail. 

B. Complex Distributed Systems 
The underlying distributed systems are intrinsically 

complex in terms of their design, programming, deployment 
and maintenance. They are classic examples of systems of 
systems architectures as recognised for example by the GEOSS 
project (Global Earth Observation Systems of Systems) [1]. 
GEOSS has the goal of bringing together a rich range of 
observational data and associated processing systems to 
provide a comprehensive and coordinated resource for a range 
of stakeholders, public and private, related to the state of the 
Earth (see Fig. 1). 

 
Fig. 1. GEOSS System of Systems 

Such systems typical involve rich architectures for data 
capture operating at different scales including ground-based 
sensors, e.g. exploiting emerging IoT technology, coupled with 
airborne sensors on aircraft and drones, and supplemented by 
remote sensing from satellites. Focusing on ground-based 
sensors, there will not just be one Internet of Things, but a 
cascade of deployments examining different environmental 
facets again at different scales. There is then a need to store this 
data and support subsequent discovery and manipulation, 
potentially using cloud technology to provide, e.g., the elastic 
capacity to manage such large volumes of data. Additional 
distributed systems elements may also be introduced. For 
example, there may be the need to support access to the data 
and services from mobile devices, implying support for context 

awareness. Similarly, in emergency response systems, it may 
be necessary to base elements of the design on ad-hoc 
networking principles to support self-organisation of a system.  
More generally, in such systems there is a need for dynamicity 
and to adapt to changes in the operating environment. There is 
also a need to enforce security and dependability across such 
systems. In other words, there is a need to embrace and build 
on many of the developments from the distributed systems 
community over the past 30-years. A key difference is that this 
has to be achieved in a single architecture embracing all of 
these aspects and this raises profound questions: 

• what tools and techniques do we have to design such an 
architecture recognising its intrinsic systems of systems 
nature; 

• what programming paradigms and languages are 
available to develop such complex distributed systems 
in a well-founded manner and that supports reasoning 
about end-to-end properties and evolution of such 
systems; 

• how do we support a basic property of interoperability 
across such a complex architecture; 

• how do we support more demanding properties of such 
systems such as meeting the end-to-end security and 
dependability requirements of such systems; 

• how do you support adaptation and an ability to respond 
to changes in needs and/or context? 

(Note that this complexity is not unique to earth 
observation and management; indeed, a similar case could be 
made for many other areas of real-world application e.g. in 
smart cities and digital health.) 

C. Complex Science 
There are also intrinsic complexities associated with the 

application domain that amplify the difficulties in building 
appropriate systems architectures. As raised above, there has 
been a significant shift in earth and environmental sciences 
towards approaches that are more integrated and collaborative 
and this often has gone hand in hand with more open 
approaches to science (hence the focus on cloud computing as 
a single, logical place to host the science). This stems from the 
need to answer ‘big; scientific questions around for example, 
climate change and the impacts this might have on national and 
international policy and on more local issues such as catchment 
management. This is most evident in the move towards natural 
capital and ecosystem services [2, 3]. Natural capital is 
concerned with the world’s stocks of natural assets, including 
its soil, water, air, energy sources and all living entities on the 
planet. The study of ecosystem services then investigates the 
sustainable and integrated management of complex ecosystems 
in the support of the services we need to live, hence reifying 
the complexity of this management in all its facets including 
environmental, social, health and economic considerations [4]. 

There are a number of intrinsic difficulties that stem from 
the move towards an assessment of ecosystems in all their 
complexities. Many of these are related to the need for, and 
difficulties associated with, integration. First of all, there is a 



need to integrate data from a variety of sources and support the 
subsequent analysis of this data. Environmental data is 
however highly heterogeneous and this is much more difficult 
to deal with. In the data science domain, data is often described 
using the four ‘V’s of data: volume, velocity, variety and 
veracity [5]. In many areas of data science, volume and 
velocity dominate, and hence there is a need to design 
underlying distributed systems that scale in terms of space and 
time, and this is actually relatively well-understood. In the 
earth and environmental sciences, variety and veracity (cf. 
Accuracy or precision) often dominate. This is not to diminish 
the first two ‘V’s as there are areas where these can be very 
important, e.g. in climate science where models can generate 
massive data-sets but this only exacerbates the heterogeneity 
that you encounter. Some observers refer to the long tail of 
science whereby there are a number of very large data sets in 
the environmental sciences but equally there is a long tail of 
much smaller data-sets that can still be very important to the 
overall process of scientific discovery. 

Veracity is equally important in this area of science as data 
is intrinsically linked to its source (cf. accuracy of 
instrumentation, the increasing importance of citizen science 
data, etc.). 

The other key requirement is to support integrated 
modelling, that is the combination of multiple environmental 
models to solve complex real-world problems. This may 
include linking models that focus on different environmental 
facets to understand inter-dependencies, e.g. understanding the 
impact of climate change scenarios on soils and the resultant 
impacts of biodiversity [6]. In additional, individual models 
may be run very large numbers of times to understand potential 
uncertainties in model prediction and sensitivities to different 
parameters. Integrated modelling is complicated further by the 
existence of different styles of model including process models 
(capturing the underlying physical or chemical processes 
inherent in the system being modelled), statistical models 
(derived from the data) and agent-based models (increasingly 
used to capture complex behaviours in such systems). 

Blair et al. [7] contains a more in depth analysis of the 
challenges associated with managing complex data and its 
analysis. The clear message that emerges though is that 
heterogeneity dominates and that designing for variety and 
veracity (effectively a dimension of heterogeneity) is much 
more difficult and less well understood than designing for 
volume and velocity. Equally importantly, this cannot be 
separated from the design of the underlying distributed system 
as they are intrinsically linked; the underlying distributed 
system platforms and services must support heterogeneity in 
the same way that they often successfully support scalability. 

III. STATE-OF-THE-ART IN COMPLEX DISTRIBUTED SYSTEMS 
This section presents an analysis of the state-of-the-art in 

distributed systems, arguing that we are entering a world of 
increasing complexity, partly due to the extreme level of 
heterogeneity in contemporary distributed systems and 
magnified by the move towards systems of systems, and partly 
due to the complexity in the application domains we seek to 
support. The end result is a crisis in distributed systems, and an 

associated crisis in middleware as it struggles to deal with this 
complexity. 

A. Middleware for Complex Distributed Systems 
Middleware refers to a software layer that sits between 

applications/ services and the underlying physical distributed 
systems architecture, that provides appropriate programming 
abstractions and that masks out the heterogeneity and 
complexity of the underlying physical distributed systems 
infrastructure [8, 9]. As such, middleware has a crucial role to 
play in modern software architecture as we move to a world 
where distributed systems are ubiquitous. The earliest 
middleware focused on providing suitable communications 
primitives such as RPC [10, 11] or group communication [12] 
but these solutions lacked abstraction. In this respect, OMG 
CORBA [13] represented a major breakthrough offering a 
higher level programming abstraction based on distributed 
objects. 

One of the key goals of middleware is to manage 
heterogeneity (in terms of underlying networks, machine 
architectures, operating systems and programming languages), 
but very quickly middleware heterogeneity itself became a 
major problem. In other words, the intended solution is now 
part of the problem. This is partly due to competition in the 
marketplace given the importance of middleware in the 
software industry and partly due to technical innovation. The 
first step towards middleware heterogeneity was when 
Microsoft introduced DCOM [14] as a direct competitor to 
CORBA and this competition between major industry players 
has continued to this day. In terms of technical developments, 
there have been two key areas of innovation: 

• The search for appropriate programming abstractions. 
It became clear, for example, that distributed object 
technology suffered from a number of significant 
shortcomings, particularly in larger-scale and more 
dynamic and evolving environments [15], and this led 
to consideration of component technologies as an 
alternative approach, including lightweight component 
technologies to support configurable distributed systems 
[16, 17], and more heavyweight Enterprise platforms 
combining component technology with the concepts of 
containers to introduce a more managed approach to 
distributed systems [18, 19]. Following on from this, 
web services were introduced as an approach that is 
more in line with web standards and hence better 
aligned with Internet-scale distributed systems [20]. 

• The search for appropriate communication 
abstractions. The earliest middleware technologies 
were based on client-server communication in the form 
of remote procedure calls or remote method invocation. 
These styles of communication are still important but 
they suffer from a number of drawbacks due to the tight 
coupling between communicating parties, leading to 
fragility in the underlying distributed systems. As such, 
researchers have investigated more indirect 
communication paradigms and these include message 
passing, group communication, publish-subscribe 



systems, message queues, distributed shared memory, 
and tuple-space communication [8]. 

These two areas are not independent and the different 
solutions can be combined in different ways to provide a rather 
bewildering range of middleware options. The range of options 
(and associated level of heterogeneity) becomes even broader 
in systems of systems.  

B. Middleware for Distributed Systems of Systems 
As argued above, distributed systems are becoming even 

more complex. While some researchers emphasise the 
challenge of scale, as we move towards exascale distributed 
systems [21, 22], the author argues that the real complexity 
stems mainly from heterogeneity and the move from 
distributed systems to (distributed) systems of systems. 
According to Jamshidi [23], systems of systems are “large-
scale integrated systems which are heterogeneous and 
independently operable on their own, but are networked 
together for a common goal”. This style of architecture is 
prevalent in many important areas of application including 
smart cities, intelligent energy management and emergency 
response systems. 

The underlying systems that constitute a ‘systems of 
systems’ architecture can vary enormously. One common 
pattern is the bringing together of cloud computing [24] and 
Internet of Things (IoT) technology [25]. Indeed these two 
great pillars of innovation are highly synergistic, with the IoT 
providing fine-grained and real-time streaming data for a large 
number of facets, but without the capacity to store, process or 
generally make sense of this data. In contrast, cloud computing 
provides large and elastic storage and processing capabilities 
and also the potential for higher level services to analyse and 
visualise and generally make sense of the vast amounts of data 
that will be generated by the Internet of Things. It is also 
common to extend such systems of systems to support mobility 
[26], whereby users can access information on the move from 
smart phones or tablets. We now look at the state-of-the-art in 
middleware for each of these areas independently and then 
consider solutions for (systems of systems) integration. 

• Middleware for cloud computing. Cloud computing is 
arguably the most transformative development in 
distributed systems with its move towards computing as 
a utility, making computational resources from 
(physical or virtualised) infrastructure through 
platforms to software applications available as services 
in the Internet [24]. There has been a corresponding 
burst of innovation in middleware for cloud computing. 
A number of commercial middleware solutions are 
available including Amazon Web Services, Microsoft 
Azure and the Google App Engine. Open source 
solutions are also available including Hadoop [27] and 
OpenStack [28]. There has also been a range of more 
specific innovations in areas such as consistency [29], 
software frameworks for computation [30], and data-
storage services [31, 32]. Again, a prevalent trend is 
increasing heterogeneity with different vendors offering 
different middleware solutions, each with their own 
computational paradigm and set of APIs, leading to a 

real danger of vendor lock-in. While technologies such 
as jclouds [33] have emerged to tackle this problem, 
these are limited in scope, e.g. focusing on basic 
compute and data storage abstractions. Consequently, 
the area of cross-cloud management is now an 
important topic with researchers working on the concept 
of cross-cloud brokerage [34]. Note that the author has 
been heavily involved in such initiatives, organising a 
series of recent workshops on the topic of cross-cloud 
management (at IEEE Infocom’14 and Middleware’14) 
and carrying out research on the broker concept [35]. 

• Middleware for the Internet of Things. The Internet of 
Things is a second area of intense innovation in 
distributed systems with its emphasis on extending the 
scope of distributed systems to encompass not just 
computers but also physical objects with embedded 
sensors, actuators and computational/ communication 
capability [25]. Middleware for the Internet of Things is 
in its infancy, certainly when compared to the explosion 
of research in cloud computing. There have though been 
quite a number of projects looking at middleware for 
wireless sensors networks (a key enabling technology 
for the Internet of Things) [36, 37]. A significant 
number of projects have examined programming 
abstractions for wireless sensor networks, generally 
taking a more data-oriented approach based on SQL-
like queries [38], tuple-spaces [39] or publish-subscribe 
[40]. Macroprogramming, i.e. programming for the 
network as a whole, is an associated interesting 
development [41]. There is also a plethora of research 
projects looking at underlying systems components that 
contribute to middleware architectures, such as 
operating system libraries [42, 43] or ad hoc routing 
protocols [44]. This work is feeding into middleware for 
the Internet of Things and a number of experimental 
platforms [45, 46, 47, 48] have been developed. There 
is generally a lack of maturity in this work, and again 
we see a high-level of heterogeneity at the middleware 
level (and also incidentally in the underlying operating 
systems, machine architectures and programming 
languages used).  

• Middleware for mobile computing. Mobile computing is 
concerned with providing access to distributed services 
from mobile devices such as smart phones and tablets 
[26]. Once again, a large number of projects have 
looked at the design of suitable middleware abstractions 
and techniques to encompass mobile elements. 
Important developments include: i) communication 
paradigms to deal with disconnection, including the use 
of indirect communication technologies such as tuple-
spaces or publish-subscribe [49, 50]; ii) support for 
spontaneous interaction through dynamic service 
discovery [51, 52]; iii) support for location- or context-
awareness [53]; iv) associated techniques to support 
adaptation to varying context [54]. Compared to the 
Internet of Things, this area is more mature and many of 
the techniques developed are available in commercial 
products. Again though, there is a significant level of 
heterogeneity introduced, most notably in the areas of 



service discovery and subsequent interaction where 
multiple approaches co-exist. 

With the move to systems of systems [55], systems 
integration is crucial. In particular, there is a pressing 
requirement for middleware that spans the different systems 
and manages end-to-end properties of the system [56]. In 
particular, there is a need for techniques to support: i) end-to-
end interoperability; ii) end-to-end quality of service (QoS), 
including key properties such as (real-time) performance, 
security and dependability; iii) overall programmability of the 
integrated system; iv) its subsequent management, including 
dealing with changing context. Despite the importance of this 
area, research is absolutely in its infancy. The tendency has 
been for researchers to focus on middleware for the given 
domains (cloud computing, the Internet of Things and mobile 
computing) and to ignore the crucial aspects of systems 
integration across these domains. It is interesting to note that 
there are two communities involved in this work: a community 
looking at systems of systems engineering and one looking at 
distributed systems/ middleware, and it is striking that there is 
little or no overlap between these communities. As an 
indication, if you carry out a Google search for middleware and 
“systems of systems”, you get surprisingly few meaningful 
results despite its obvious importance (with a few notable 
exceptions incl. the work of my own group [57] and that of 
Doug Schmidt [58]). Similarly, looking at the major conference 
in systems of systems, the IEEE Conference on Systems of 
Systems Engineering [59], the technical programme 
emphasises topics such as areas of application, modelling and 
analysis methods, and control techniques, with little attention 
to distributed systems or middleware topics. A number of 
European projects have been launched in this area, including 
COMPASS [60], DANSE [61], Road2SoS [62] and T-AREA-
SoS [63] but again distributed systems perspectives are 
missing. There is clearly a need for further research on 
middleware for systems of systems.  

C. Overall Analysis 
The overwhelming conclusion from this survey is that there 

is an explosion in heterogeneity and this is true in two 
dimensions: i) in the underlying network technologies, 
computer architectures, operating systems and programming 
languages used, and ii) in the middleware itself where there is 
an explosion in styles of middleware used in terms of 
programming abstractions, communication abstractions and 
underlying systems principles and techniques. The author 
refers to this as extreme heterogeneity and argues that this is a 
major problem for distributed systems. There is also a problem 
of dynamism with such systems operating in volatile 
environments, having to respond to changing context. 

This leads the author to the conclusion that, despite its 
many achievements and breakthroughs, distributed systems is 
in crisis in that there is little understanding of how to achieve 
end-to-end interoperability, quality of service, programmability 
or management in such complex distributed systems. This is a 
crisis of complexity. Following on from this, the author also 
argues that middleware is in crisis, and that this is a crisis of 
identity. The traditional approaches to middleware of offering 
generic, layered solutions, simply do not work in the complex 

distributed systems of today: i) such solutions only really work 
in the middle range in multi-scale systems, failing completely 
to address the needs smaller-scale IoT technology or indeed 
large-scale cloud-based environments; ii) they also fail to 
address a systems of systems perspective and the need to span 
multiple domains of usage; iii) they lack support for dynamism 
and the ability to respond to changing context. The end result is 
that developers operating in this space often by-pass 
middleware and develop applications in an ad hoc manner, 
creating mash-ups using a variety of different technologies, and 
being exposed to and having to manage the underlying 
complexity of distributed systems. This leads in turn to the 
crisis of identity, whereby middleware is no longer sure of its 
form or purpose, and this lack of effective solutions is a major 
barrier to the emergence of the areas such as smart cities, 
precision agriculture or emergency response systems. 

It is clear that the solution is not just about making ‘better’ 
middleware. Rather, the author argues that there is a need to 
fundamentally rethink the role of middleware in what we 
refer to as complex distributed systems. This echoes the overall 
vision of this paper to examine the problem through fresh 
perspectives, that lead us in turn to novel principles and 
patterns for middleware and subsequently to new styles of 
platform. This paper is intended to provoke the distributed 
systems community to stand back from the body of work 
amassed over the last 30 years or so, and to go back to basics, 
to rethink the very foundations of distributed systems and 
middleware (and associated areas such as interoperability, 
quality of service, programmability and management) and to 
seek such fresh perspectives. 

IV. FRESH PERSPECTIVES 
As mentioned above, the goal of this paper is to stand back 

from the plethora of work in distributed systems (including the 
key area of middleware) and re-examine the area through fresh 
perspectives/ new lenses. In particular, four fresh perspectives 
are proposed, having been distilled following a period of deep 
reflection by the author, motivated by personal experiences in 
applying distributed systems in environmental science and also 
by the associated perception of a crisis of middleware. These 
are introduced briefly below and expanded on below: 

• from design-time to run-time – the search for emergent 
middleware; 

• from software platform to software frameworks – meta-
structures for distributed systems; 

• from generic to domain-specific – reasoning about 
domains and boundaries; 

• from systems-oriented to application-oriented – raising 
the level of abstraction. 

We look at each of these areas in more detail below. 

A. Emergent Middleware 
Middleware is generally considered as a technology that is 

designed in advance and then deployed as a fixed entity. With 
an emergent middleware approach, middleware is viewed as a 
run-time entity where middleware solutions are generated on-



demand for the current context. Such an approach inevitably 
involves a strong element of machine learning to determine the 
most appropriate structures for different contexts. 

This generative approach offers a radically new perspective 
on middleware design. The advantage of an emergent 
middleware approach is that it is more naturally adaptive and 
able to react to change, including changes not previously seen 
or observed. Initial work was carried out in this area by the 
Connect project (discussed below). 

B. Software Frameworks 
Software frameworks emerged in the software engineering 

community, offering a given behaviour but where key parts of 
the implementation can be specialised or altered [64]. They 
offer a balance between reusability, in that large parts of the 
framework can be used as is, and customisability, in that key 
parts can be specialised, e.g. through over-riding or 
specialisation. They also offer an inversion of control whereby 
the software framework takes responsibility for what 
behaviours should be invoked for a given operation [65]. While 
they have been used extensively in some fields of application, 
their use in distributed systems or middleware is somewhat 
limited.  Bertran et al. [66] experiment with the use of software 
frameworks in the design of sense/ compute/ control 
applications in distributed systems. The cloud computing 
platform, MapReduce, can also be seen as a limited form of 
software framework allowing significant re-use around the 
areas of distributed systems management, and also 
customisation of application behaviour through appropriate 
map() and reduce() functionality [30]. Other aspects though 
remain static. In this paper, we suggest going much further 
whereby the software framework concept acts as a scaffolding 
or meta-structure that can be instantiated in potentially 
radically different ways, achieving a sophisticated balance 
between reusability and customisation. 

C.  Domain-Specific Solutions 
The dominant approach in the middleware community has 
been to seek generic platforms and interfaces that can be 
applied everywhere, hence offering portability and 
interoperability. It is clear though that this generic approach 
no longer works given the level of heterogeneity and the 
challenges of dealing with multi-scale environments. We are 
therefore looking at a move from generic to domain specific 
solutions that, in turn, will imply reasoning about domains and 
their boundaries. The field of domain specific languages is 
increasingly being used in distributed systems to capture 
specific behaviour [67, 68, 69]. This can also potentially help 
with the reasoning about boundaries between domains, 
particularly if languages share a common meta-model to 
support this reasoning. In	general, though, there is less work 
on dealing with boundaries between domains. Lee et al. 
introduce the concept of a TerraSwarm, describe highly 
heterogeneous cyber-physical systems where systems must 
deal dynamically with resources they encounter at run-time 
[70]. This is though only at the vision stage. The Dionasys 
project, featured in Section V below, have introduced a 
generalised approach to the programming of systems of 

systems, based around the abstraction of holons (with holons 
meeting in real-time and having to dynamically reason about 
properties such as interoperability) [71]. Dionescu et al. [72] 
have also experimented with such a holonic abstraction for the 
goal-oriented self-management of complex systems. Finally, 
the ANA project introduces a similar concept called 
compartments but this only operates at the network level [73]. 

D. Raising the Level of Abstraction 
There has been surprisingly little research on raising the 

level of abstraction in middleware. One notable exception is 
the vertical CORBA Facilities, which are functionalities that 
are useful to particular vertical application domains, including 
manufacturing, distributed simulation and accounting. 
Compared to the rest of the CORBA architecture, this though is 
rather under-developed and is now quite old. 

It is though becoming increasingly important to offer higher 
levels of abstraction in middleware given the complexity of 
both the underlying distributed systems and also the 
applications and services being developed on these complex 
distributed environments. This is particularly true in the 
environmental science domain as discussed in Section II where 
it is essential to provide more abstract interfaces whereby 
scientists can focus on their science and not on the 
complexities of the underlying distributed systems. 

The work on domain specific languages mentioned above is 
highly relevant in this context. Domain specific languages 
alongside associated model-driven engineering techniques have 
the capability to offer higher levels of abstraction that are more 
tailored towards given areas of application. An example of 
using such technologies is given in Section V. 

E. Summary 
In summary, while there have been some developments in 

each of these areas, work is generally at an infancy and no-one 
has looked at all these perspectives in tandem. Taken together, 
the author argues that this offers a manifesto for a new 
landscape for complex distributed systems and a new kind of 
middleware designed specifically to address the complexity in 
such systems. 

To take this further, also implies a new style of working. 
Historically, the distributed systems community has been quite 
siloed in its approach, working on principles and techniques in 
isolation from other disciplines. To address the challenges in 
this paper, this must change. This paper promotes a more 
holistic approach whereby software engineering 
methodologies and systems principles are developed in tandem. 
It is too often the case that methodologies, systems platforms, 
and indeed programming languages are developed in isolation 
from each other and this is untenable given the complexity of 
contemporary distributed systems. There are some notable 
positive examples in this area. The long-running SEAMS 
workshop (Software Engineering for Self-Adaptive Systems) 
has also helped to bring the two communities together [74]. 
Equally, there is a need for more cross-disciplinary initiatives 
where complex distributed systems are developed alongside 
their end users so that we offer solutions that meet their 
increasingly sophisticated needs. 



V. EXPERIMENTS IN COMPLEX DISTRIBUTED SYSTEMS 
The following projects have all been selected to illustrate 

the potential of the four proposed fresh perspective either 
individually or in combination. All projects have included the 
author and his research team, in collaboration with others. 

A. Connect: An Experiment in Emergent Middleware 
1) Motivation 
The Connect project was a consortial project funded under 

the EU Framework 7 programme, under Future and Emerging 
Technologies (FET) [75, 76]. The project focused on 
interoperability recognizing the increasing level of 
heterogeneity in future systems and also the needs to adapt to 
change. Motivations include the emergence of ubiquitous 
computing and increasing use of mobile devices.  

The project pioneered the concept of emergent middleware, 
seeking to develop an approach to synthesizing connectors at 
run-time instead of relying on static middleware to perform this 
role. Particular attention was paid to ensuring the resultant 
connectors also met specified security and reliability 
constraints. The consortium was cross-disciplinary in that it 
brought together experts in distributed systems, theory, 
software synthesis, machine learning and dependability. 

2) Technical Approach 
The overall Connect approach is captured in Fig. 2. 

	
Fig. 2. The overall Connect process, including enablers 

In this approach, connectors are developed through a 
comprehensive dynamic process, which is supported by 
dedicated middleware functions (referred to as enablers) that: 

• “Extract knowledge from, Learn about, and Reason 
on the interaction behaviour of networked systems, so 
as to: 

• Synthesize new interaction behaviours out of the ones 
exhibited by the systems, and further: 

• Generate and deploy corresponding connector 
implementations to actually realize interoperability in 
the involved systems; and 

• Analyze dependability/security of the realized system 
at predeployment time and runtime.” [75] 

Through this approach, Connect generates an appropriate 
connector dynamically that works for that context with this 
also being constantly re-evaluated over time. The intention is to 
have an approach that is better able to manage change, 
including the emergence of new protocols, standards and 
modes of interaction. 

An underlying middleware technology called Starlink [77] 
was developed to support the dynamic deployment of 
connectors. This middleware is based on the concept of k-
coloured automata as a concrete model representing the output 
of the synthesis project, which is the mediation solution 
designed to overcome the heterogeneity in the networked 
system. The underlying architecture of Starlink is as shown in 
Fig. 3. 

	

Fig. 3. The Starlink middleware technology 

Connect was evaluated through two case studies, one on 
systems of systems for forest fire management, and another 
supporting mobile, collaborative working where heterogeneous 
mobile platforms interact with an increasingly diverse range of 
applications and services, including cloud services. Further 
details on Connect can be found on the project webpage: 
https://www.connect-forever.eu/. 

3) Lessons Learned 
Connect is important as it pioneered the concept of 

emergent middleware in the context of interoperability. The 
project also provided real insights into the underlying 
technology (enablers) that are required to support an emergent 
middleware approach, including crucial support for learning 
and synthesis, alongside a target environment for deployment. 
The case studies also demonstrated that the approach could be 
effective in dealing with important problem areas, notably 
related to extreme heterogeneity. Connect was a long-term 
research project and clearly significant research problems 
remain with further work needed in particular in the key 
enabling technologies including learning and synthesis. It 
would also be interesting going forward to look at broader 
areas of distributed systems and also application domains to 
provide more experience of using this style of emergent 
middleware in different settings. 

B. Emergent Software Systems: The Role of Self-adaptation 
1) Motivation 
Emergent software systems is a recently completed PhD 

project by Roberto Rodrigues at Lancaster University. In this 
work, Emergent Software Systems are defined as “systems 
built from small and reusable units of software behaviour, and 
are capable of self-compose and self-optimise as a result of the 
characteristics of its operating environment” [78]. The 



realisation of the concept relies on the brining together of 
component technology with machine learning techniques. The 
key motivation for the work is the sheer complexity of 
contemporary software systems that typically consist of 
millions of lines of code and operate over complex and 
potentially highly distributed infrastructures that are also prone 
to change. The work is therefore closely related to the Connect 
project but looking more generally at discovery of optimal 
software architecture at run-time without human intervention. 

2) Technical Approach 
The implementation work is carried out using Dana, a 

multi-purpose programming language developed at Lancaster 
featuring a fine-grained component model and offering run-
time support for component configuration and re-configuration 
[79]. 

The framework to support Emergent Software Systems then 
consists of two parts: a local framework supporting the concept 
on a single machine instance, followed by an extension to 
allow this to extend to a distributed setting. 

The local framework consists of three key modules, namely 
Perception, Assembly and Learning (PAL), with the overall 
approach summarized in Fig. 4 below. 

	
Fig. 4. The PAL Architecture (Perception, Assembly and Learning) 

The Assembly module searches for components in an 
underlying repository of possible component implementations 
of different functions, creates an in-memory representation of 
all available architectural compositions the system can be 
assembled into, and supports composition changes at runtime. 
The Perception module generates and adds proxy components 
to the system's architectures to monitor the system health status 
and the operating environment. Finally, the Learning module 
leads the overall autonomous design process, based on a 
reinforcement learning algorithm. This overall approach is 
referred to in the thesis as design by composition. The 
approach is then extended to operate in a distributed setting by 
the introduction of a hierarchical coordination strategy. Further 
details of this can be found in [78, 80]. 

The approach has been evaluated through a substantive case 
study, the development of an emergent web server, that is a 
web server that can autonomously adapt its own software 
architecture acceding to current operational conditions. The	
results	 from this case study are strongly encouraging, 
demonstrating that the PAL architecture is capable of 
successfully configuring and reconfiguring the web server 
under changing operational environments.	 

3) Lessons Learned 
This project takes the concept of emergent middleware 

further. Whereas Connect focused on the specific function of 
connectors to provide interoperability, the emergent software 
systems project takes this a stage further by seeing to assembly 
arbitrary software architectures for arbitrary purposes. The 
successful implementation of an emergent web server has 
shown that the approach is feasible and that it can work in both 
local and distributed settings. This is promising research and 
further work is now required to prove and refine the concept in 
other areas of application. 

C. Dionasys: Programming for Systems of Systems 
1) Motivation 
The DIONASYS project is a joint initiative of four research 

institutions (Universities of Neuchâtel, Bordeaux, Lancaster 
and Technical University of Cluj-Napoca) in four countries, 
funded by the CHIST-ERA ERA-NET. The goal of 
DIONASYS is to make the programming of complex and 
heterogeneous Systems-of-Systems simpler, more 
straightforward by allowing a higher level of abstraction and 
allowing advanced features such as automatic adaptation, 
automatic interoperation, and support of programmable 
networks for these tasks. The project started in January 2015. 

2) Technical Approach 
The research carried out in Dionasys is wide-ranging, 

covering a number of different aspects related to systems-of-
systems and full details can be found on the website: 
http://www.dionasys.eu/. Here, we focus on the core approach 
to programming systems of systems, namely the use of a 
holons abstraction to offer a systematic way of composing 
systems of systems. 

Our first principle is to model a given distributed system as 
a unitary first-class programmatic entity that we call a holon, 
that can be specified, manipulated, and reasoned about in a 
program; and then to provide programmatic concepts that 
enable a developer to construct systems of systems through 
programmatic holon composition. This composition process is 
intended to be very simple and straightforward, requiring only 
a few program lines or simple graphical tools. An important 
aspect of holons is that it allows us to abstract away from the 
node-level detail and focus on the behaviour of a given 
system/subsystem and use this as the basis of reasoning when it 
interacts with other holons. This is therefore a direct realisation 
of what was discussed in Section IV, in terms of reasoning 
about given domains and their boundaries, and how they then 
interact with other domains. As concrete examples, holons can 
be used to specify how different mobile ad-hoc networks 
(MANETs) should interact if they meet dynamically. Other 
examples can be found in Blair et al. [81]. 

In more detail, a holon is recursive, hierarchical 
composition of other systems or holons, with holons at the 
level below referred to as sub-holons The hierarchy bottoms 
out with leaf holons representing the smallest possible systems 
in our model. A given holon also has an associated service, that 
is a specification of the value-added functionality that a holon 
offers over and above its sub-holons. Holons are subject to 
both vertical composition and horizontal composition allowing 



the construction of arbitrarily complex distributed systems of 
systems. 

Blair et al takes this concept further by presenting a systems 
architecture for the specification, implementation, management 
and deployment of systems of systems using holons, with this 
architecture showing in Fig. 5. 

	
Fig. 5. Supporting holons 

3) Lessons Learned 
The research in the Dionasys project has shown that is 

increasingly important to deal with level of complexity of 
contemporary distributed systems structures and that it is 
becoming increasingly imperative to provide architectures and 
approaches that allows us to reason about such systems as 
systems of systems, abstracting away from detail and also 
allowing such systems to reason about how they may 
interoperate if they encounter each other dynamically. Holons 
represent one potential abstraction that serves this purpose. In 
comparison to other perspectives introduced in this paper, this 
is perhaps the most demanding and immature and further 
research is required to gain experiences of reasoning over 
complex systems of systems. 

D. Models in the Cloud: Raising the Level of Abstraction 
1) Motivation 
The ‘models in the cloud’ project is a 3-year EPSRC-

funded initiative involving computer scientists and 
environmental scientists at Lancaster University. The central 
hypothesis underlying the research is that a combination of 
model-driven engineering and software frameworks will enable 
a paradigm shift in terms of the flexible and tailored support 
offered by cloud computing for given application domains, 
including the key area of environmental modelling. 

Environmental modelling is a large and diverse research 
field, spanning many areas of environmental management (e.g. 
weather or climate prediction, flood prediction) and at different 
scales (e.g. global, national and local). For a given area, there 
are many models with different assumptions, level of 
parameterisation, modelling approach and complexity. Some 
models run on individual workstations while others execute on 
dedicated supercomputers. In addition, model simulations are 
often combined as ensembles: i) through running the same 
model multiple times while varying the starting point or 
assumptions; or ii) through running multiple (distinct) models 
with different parameters and assumptions but which predict 

the same output variables. Additionally, different models can 
be combined in predictive cascades (e.g. cascading climate and 
hydrology models to project future flooding). 

Moving environmental models to the cloud has the 
potential to revolutionise Environmental Science through 
supporting a more open, collaborative and integrative 
approach. This area, however, is in its infancy. In order to 
achieve out vision of ‘models in the cloud’, it is necessary to 
significantly raise the abstraction of the underlying cloud 
services, to manage the distributed computation and to allow 
scientists to operate in their domain and express their domain 
specific knowledge, effectively allowing scientists to do their 
science rather than spending too much time dealing with low 
level details of the distributed infrastructure. 

2) Technical Approach 
The overall approach is as shown in Fig. 6. 

	
Fig. 6. Models in the cloud – overall approach 

This highlights the central role of model driven engineering 
in supporting the execution of environmental model runs. The 
initial scientific objectives and experiment are described 
through a domain specific language. From this, an appropriate 
model execution setup is generated and passed on to the cloud 
for execution making use of appropriate software frameworks 
in the cloud (cf. Platform as a Service). 

More specifically, two domain specific languages are used: 

• DSL for scientific experiment. This DSL captures the 
scientific intend in terms of the environmental models 
to be used and associated assumptions. This may be a 
single model run or could involve arbitrarily complex 
configurations of models including ensemble models 
and/or predictive cascades. The experiment may also 
involve additional elements to reason about uncertainty. 
The design of this DSL is informed by a series of in-
depth interviews with environmental modellers [82]. 

• DSL for cloud deployment.  This DSL captures details 
of how the environmental models should be deployed 
into the cloud including consideration of mapping to 
containers and possibly micro-services and also the 
style and number of virtual machines required. This 
may also include additional elements to manage the 
execution, including exploiting the natural elasticity in 
the cloud. 



The first case study, which is nearing completion, provides 
support for the cloud deployment of the Weather Research and 
Forecasting model (WRF), a complex atmospheric numerical 
weather prediction system. This was initially deployed on 
Microsoft Azure but we are now utilising the container 
technology, Docker, to provide platform independence. 

Current work is looking at the role of machine learning to 
further raise the level of abstraction of the DSLs. For cloud 
deployment, this would allow the scientific team to express 
their desired performance and indeed cost vs. performance 
trade-offs in terms of goals allowing underlying machine 
learning modules to determine how to achieve these multi-
criteria goals (with this building on previous work by Samreen 
et al. [83]). For scientific experimentation, machine learning 
also potentially has a role in determining how a model should 
be set up in terms of parameterisation, configuration and 
assumptions to best match the characteristics of a given place 
of study, cf. Beven’s Models of Everywhere philosophy 
whereby models are trained automatically to best fit a given 
place or situation of use. Future research will involve 
additional case studies featuring different environmental 
models operating at different scales, and also examining in 
more depth ensemble modelling and model cascades. 

3) Lessons Learned 
This work is a relatively early stage but the results so far 

have been strongly encouraging. The research has strongly 
reinforced our view that we need to raise the level of 
abstraction of distributed systems technologies and it is 
particularly striking how long a scientific team will spend on 
getting environmental models to execute correctly and 
efficiently on distributed infrastructure. Automating this 
deployment and execution is therefore a huge step forward for 
the environmental modelling community, and DSLs have the 
potential to go significantly further in capturing scientific 
processes in a more sophisticated manner with this also 
supporting a step towards reproducibility in science. 

E. Overall Reflections 
The intention of the four perspectives in this paper is to 

stimulate thinking about new principles and patterns for 
distributed systems and subsequently to new styles of 
middleware platform. The four projects described above 
provide more concrete glimpses about what this may entail. 
They all apply one or two of the perspectives (see Fig. 7) but 
interestingly no one project embraces all four perspectives.  

Perspective Connect  Emergent 
Software 
Systems 

Dionasys Models in 
the cloud 

Emergent 
middleware 

✔ 
 

✔ 
 

  

Software 
frameworks 

   ✔ 
 

Domain-specific 
solutions 

  ✔ 
 

 

Raising the level 
of abstraction 

   ✔ 
 

Fig. 7. Projects vs. perspectives 

This opens the door for researchers to experiment further 
with the four perspectives and to see what might emerge. 
Interestingly, all four projects have embraced cross-disciplinary 
thinking as a fundamental part of their research design and this 
has contributed to the level of innovation in the projects. 

VI. CONCLUSIONS 
This paper has examined the increasing complexity in 

distributed systems both in terms of the underlying distributed 
systems architectures and their areas of application. It has been 
argued that, while distributed systems have responded 
successfully to demands over scalability, the extreme level of 
heterogeneity is proving to be much more challenging. There is 
also a pressing need to address the fact that we are dealing with 
distributed systems of systems. This paper argues that the field 
of distributed systems is at a watershed and that new 
approaches are urgently needed. The main contribution of the 
paper is four fresh perspectives on distributed systems, 
emphasizing: i) the importance of run-time techniques and 
emergent middleware; ii) the role of software frameworks as 
meta-strictures; iii) modeling systems as domains and 
reasoning about boundaries; iv) raising the level of abstraction 
in distributed systems. The paper concluded with a set of four 
projects that pick up on one or more of the perspectives, 
offering insights into what this might mean for platform design. 
Clearly, this work is at an early stage and the author concludes 
the paper by calling out to others in the community to 
collaborate and seek new insights and principles of distributed 
systems going forward that in turn will lead to a new 
generation of middleware technologies. 
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