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Abstract: The development, implementation and enforcement of policies involving the 
rational use of the land and the conservation of natural resources depend on an adequate 
characterization and understanding of the land cover, including its dynamics. This paper 
presents an approach for monitoring vegetation dynamics using high-quality time series of 
MODIS surface reflectance data by generatingfraction images using Linear Spectral Mixing 
Model (LSMM) over Soth America continent. The approach uses physically-based fraction 
images, which highlight target information and reduce data dimensionality. Further 
dimensionality was also reducedby using the vegetation fraction images as input to a Principal 
Component Analysis (PCA). The RGB composite of the first three PCA components, 
accounting for % of the dataset variability, showed good agreement with the main ecological 
regions of South America continent. The analysis of 21 temporal profiles of vegetation 
fraction values and precipitation data over South America showed the ability of vegetation 
fractions to represent phenological cycles over a variety of environments. Comparisons 
between vegetation fractions and precipitation data indicated the close relationship between 
water availability and leaf mass/chlorophyll content for several vegetation types. In addition, 
phenological changes and disturbance resulting from anthropogenic pressure were identified, 
particularly those associated with agricultural practices and forest removal. Therefore the 
proposed method supports the management of natural and non-natural ecosystems, and can 
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contribute to the understanding of key conservation issues in South America, including 
deforestation, disturbance and fire occurrence and management. 

Keywords: vegetation dynamics; land cover; disturbance; phenology; MODIS; spectral 
mixing model; principal component analysis; time series. 

 

1. Introduction 

An adequate implementation of environmental management policies depends on an 
accurate characterization and understanding of the land cover. In particular, a proper 
representation of vegetation cover, including its dynamics, is essential for supporting the 
development, implementation and enforcement of policies involving the rational use of the 
land and the conservation of natural resources. The description of the Earth’s surface has 
traditionally involved the identification and characterization of land use and land cover 
classes, with emphasis on their location and their spatial arrangement. Remote sensing has 
been a useful tool for conducting these tasks due to, among other factors, the synoptic view of 
large geographic regions and the lower associated costs, when compared to other acquisition 
data methods.  

In spite of these advantages, analyses using remote sensing techniques have prioritized the 
understanding of space and have often used a single date or “snapshot” approach. 
Traditionally, less attention has been given to time and, in particular, to the high-frequency 
dynamics of several land cover types. Reasons include the limited availability of high-quality 
chronosequences of remotely-sensed images and the lack of adequate methodological 
approaches to process this type of data. The increasing availability of time series of satellite 
images, specifically provided by MODIS sensor, and the potential contribution of these 
images to environmental management and conservation emphasize the need for the 
development of specific approaches to properly deal with the unique nature and volume of 
these data [1]. 

Time series analyses address pressing issues involving the temporal characterization of 
land cover. These issues include the identification of types and patterns of changes in time 
and the incorporation of seasonality and phenological cycles of vegetation into analyses [2-3]. 
Many of these investigations have focused on regional and continental scales, incorporating 
products derived from one or more remote sensors onboard satellites orbiting the Earth. 
Examples of these applications include the Advanced Very High Resolution Radiometer 
(AVHRR, NOAA), Vegetation (SPOT) and Moderate Resolution Imaging Spectroradiometer 
(MODIS, Terra and Aqua) [2-10]. In particular, MODIS products have received significant 
attention from the scientific community, motivated by improvements in system design, data 
processing and product distribution. The geolocation accuracy of MODIS pixels, combined 
with the daily global coverage, moderate spatial resolution (0.25 to 1 km), rapid availability of 
various products, and cost-free status (Lobell and Asner 2004)of the sensor support time-
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series analyses and the use of MODIS products for monitoring temporal changes of 
biophysical parameters of vegetation [11-12]. 

Vegetation indices (VI) are arguably the most used remote sensing products applied to 
regional and global studies of land use and land cover changes. Patterns of variations in VI 
values have been used to investigate physiological and structural seasonal changes in 
vegetation over large areas, including the identification of time of dormancy and the duration 
of vegetation cycles [2-8,10]. A large number of studies and operational applications have 
traditionally used the Normalized Difference Vegetation Index (NDVI), considering its simple 
formulation and its ability to describe biophysical properties of vegetation [13]. However, the 
biophysical limitations of NDVI when estimating structural vegetation parameters over dense 
canopy are well known in the remote sensing literature [13-16]. Then the images derived from 
spectral mixing models representing fractions of vegetation and other target types have been 
presented as an alternative to overcome some of VI limitations. Among other advantages, 
vegetation fractions offer a physically-based representation of vegetation conditions and are 
less prone to saturation when representing dense canopies, when compared to NDVI [17].  

South America accounts for around 12% of the Earth’s land surface, being one of the most 
physically and biologically diverse regions on the planet. The large meridional extent of the 
continent, coupled with its topographic features and other physiographic characteristics, result 
in considerable climatic variability. The climate of South America ranges from equatorial at 
its northern fringe to icy-cold polar in the south. As a result, the continent is home to multiple 
biomes and ecoregions, including the largest remnant of tropical rainforest on the Earth, arid 
deserts and permanent ice caps [18]. South America also accounts for nearly a quarter of the 
world’s potentially arable land, representing around 12% of the current cropland and 17% of 
all pasturelands [19]. The continent is under strong pressure for land occupation and resource 
utilization, resulting in several high-biodiversity areas currently being threatened. 

In this context, this work has the objective to present a new toolset for environmental 
managers and decision makers by presenting and showing the applicability of a novel method 
to provide information for policy definition and environmental monitoring. The method 
supports the representation and analysis of land use and land cover dynamics, particularly the 
dynamics associated with high-frequency temporal variations in land cover classes and 
vegetation. The primary objective of this work was to verify the ability of time series of 
vegetation fractions derived from a linear spectral mixture model (LSMM) to represent and to 
describe seasonal changes in land cover and vegetation disturbance over highly-diverse 
terrestrial landscapes at a continental scale. Although the study considered the spatial 
representation of those fractions, we were particularly interested to know how the proposed 
method would perform when representing temporal variability, including seasonal and 
phenological changes of different land cover types and particularly relevant vegetation 
typologies. We showed the potential of the proposed approach over biomes of South America 
using approximately nine years of images acquired by the MODIS sensor onboard the Terra 
platform. 
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2. Material and Methods 

2.1. Study area 

We demonstrate the usefulness of the proposed remotely-sensed based method to represent 
spatial and temporal vegetation variability in South America by identifying and sampling 
areas representative of a diverse conditions over the continent. Sampling took into account the 
MODIS dataset analyzed and previous field experiences of our research team and aimed to 
represent: (a) different vegetation types and densities; (b) seasonal pattern variability; and (c) 
different histories of disturbance and land use patterns. Samples include: areas along the 
interface between ecoregions; areas inside ecoregions; and agricultural areas (Figure 1). 

 

 

Figure 1. Distribution of South America Biomes [18] and selected areas: (a) Caatinga 
biome; (b) Pantanal biome; (c) transition region of physiognomies predominantly 
grassland (savanna-steppe, savanna and steppe grassy-woody); (d) Amazon biome; (e) 
transition forest region between the Amazon and Cerrado biomes; (f) transition region 
between the Amazon and Colombian llanos ecosystems (seasonal flooded savanna); and 
(g) temperate rain forest, Valdivian forests, temperate mixed forest, matorral and steppes. 
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2.2. Data 

We used approximately nine years of data acquired by the MODIS sensor onboard the 
Terra platform to extract vegetation seasonality patterns of selected points over South 
America. The MODIS surface reflectance bands from the Monthly 1km product (MOD13A3) 
were used as input to a LSMM [20] to produce fraction images covering the entire continent. 
According to [21-22], reflectance bands from MOD13A3 have improved data quality due to 
the Constrained View Angle-Maximum Value Composite (CV-MVC) algorithm used in the 
generation of these products and to the screening of these data for clouds, aerosols and sensor 
artifacts (e.g., those resulting from large viewing angles and sensor noise). Although the CV-
MVC algorithm has been shown to be effective in selecting the highest-quality pixels 
available, we acknowledge that CV-MVC outputs may still be affected by residual 
contamination, particularly in the northern part of South America [23], but have not impacted 
our analyses as showed in the results section. See in the next section 2.3 for a more detailed 
discussion on the quality of the MOD13A3 dataset analyzed. We used all available bands 
from the MOD13A3 product: band 1 (620-670 nm), band 2 (841-876 nm), band 3 (459-479 
nm) and band 7 (2105-2155 nm). We processed 3,103 MODIS granules (29 tiles per month; 
107 months) covering the entire surface of South America, corresponding to the tiles h09 to 
h14 and v07 to v14 of the MODIS reference grid. We also used the 1km resolution yearly 
land cover classification product of MODIS (MCD12Q1) to support the identification of land 
cover classes and vegetation types for the sampled areas. MODIS data used in this work 
spanned from February 2000 to December 2008 time period. The work incorporated monthly 
precipitation data from the Tropical Rainfall Measuring Mission (TRMM), product 3B43 
(V6). Precipitation data at 0.25 x 0.25 degree were produced by the TRMM Multi-Satellite 
Precipitation Analysis and incorporate precipitation estimates by TRMM and other satellites, 
global rain gauge data produced by NOAA's Climate Prediction Center and/or global rain 
gauge product created by the Global Precipitation Climatology Center (GPCC) [24]. We used 
the TRMM 3B43 (V6) monthly accumulated rainfall from February 2000 to December 2008 
available at https://giovanni.sci.gsfc.nasa.gov/. 

 

2.3 Considerations about the quality of MOD13A3 over South America and implications to 
studies of vegetation 

The quality of products derived from MODIS can be affected by factors related to the 
image acquisition process, including the presence of clouds, cloud shadows and aerosols, and 
the geometry of image acquisition, among others. MODIS products bring improvements in 
data quality assurance and carry multiple metadata fields describing the quality of each pixel 
in the image. We used these metadata to investigate the spatial distribution of quality 
descriptors associated with images created by the MOD13A3 CV-MVC algorithm over South 
America.  
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The work involved decoding and analyzing quality metadata for all MOD13A3 tiles used 
during the spectral unmixing procedure. Results of these analyses were then used to create 
quality summaries for the period 2000-2008, considering multiple quality flags of the 
MOD13A3 VI Quality Scientific Dataset. Quality flags considered included VI Quality 
(MODLAND, Figures 10A and 10B), Aerosol Quantity (Figure 10C), Adjacent Cloud 
Detected, Mixed Clouds, Possible Snow/Ice and Possible Shadow. The reader is referred to 
[21-22] for a description of those flags, including their encoding. 

 

Figure 10. Summaries for the detailed Vegetation Index Quality Assessment Science Data 
Sets for MOD13A3, showing percentages of pixels acquired between 2000 and 2008 and 
including (A) pixels produced with good quality [MODLAND=0]; (B) pixels produced, but 
other quality descriptors should be checked [MODLAND=1]; (C) pixels with low aerosol 
quantity [Aerosol Quantity=1] and (D) cumulative frequencies of pixel categories based on 
the percentage of Good Quality months during the 2000-2008 period. 

Figure10A shows a summary for the MODLAND VI Quality metadata flag showing good 
quality data (MODLAND=0). For each pixel location, quality images were stacked and the 
number of good quality months for the period 2000-2008 was counted. The resulting total was 
then divided by the number of months analyzed by this work (107). The majority of pixel 
locations analyzed had more than 70% of their monthly pixels flagged as good quality (Figure 
10D). The quality of the MOD13A3 composite bands over the continent is higher and 
approaches its maximum (green areas) over a large stretch from Patagonia to northeastern 
Brazil, including the northern part of Chile, southern Bolivia and the southern coast of Peru. 
Areas with reduced quality (brown and yellow areas) include the Pacific side of the southern 
tip of the continent, the northeastern coast of Brazil and a vast region in the northern part of 
the continent, including the Amazon region. MODIS metadata indicate that less than 34% of 
all pixel locations over the continent have 50% or less of their monthly pixels labeled as good 
quality (Figure 10D). We followed recommendations by [21-22] and inspected multiple 
quality assurance flags for pixel locations with reduced quality (MODLAND=1; Figure 10B). 
From all flags analyzed, the best match with the MODLAND=0 flag was observed for the low 
aerosol quantity flag (Aerosol Quantity=1, Figure 10C) of the VI Quality Assessment Science 
Dataset. 
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Four of the areas we selected for detailed sampling (areas “a”, “b”, “c” and “g”) are located 
in regions with high percentages of good quality pixels. Area “e” is situated in a transitional 
region, characterized by good quality occurring for approximately half of the months 
considered. Further interpretations for areas “d” and “f” should take into consideration the 
limited number of monthly composites labeled as having good quality. Reduced image quality 
can affect the analysis of time series and multiple methodologies have been proposed to deal 
with time-series reconstruction through gap filling and spike removal. However, no definitive 
method or procedural consensus exists involving those topics. We agree with [56] that the 
application of smoothing and filtering should be considered in a case-by-case basis. If judged 
necessary, these methodologies can be easily incorporated into our workflow as a pre-
processing step. In particular, a spike removal approach could be used when identifying low-
frequency/low-amplitude variations in phenology, often characterized by gradual transitions 
in vegetation response. In other situations, including the current work, the nature of the 
analyses requires the ability to identify abrupt changes in data series.  

 

2.4. Methods 

The proposed method (Figure xx) uses the surface reflectance data of MOD13A3 product 
from 2000 to 2008 time period, Linear Spectral Mixture Model (LSMM), Principal 
Component Analysis (PCA), precipitation data from TRMM 3B43, and Ecoregion and Land 
Cover maps. 
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Figure Images derived from sensors with large instantaneous field of view (IFOV), such as 

MODIS, are prone to contain multiple scene objects inside a single pixel, that is known as the 
mixture problem. In these situations, pixel values do not represent a single object, but rather 
result from a mixture of the spectral contributions of multiple scene components. The problem 
of the mixed pixel has been addressed in numerous studies using linear mixing model (e.g., 
[20]Shimabukuro and Smith, 1991). These approaches model the reflectance of a pixel as a 
linear combination of endmember reflectances, weighted by the areal proportion of each 
endmember within the pixel.  

 
Several approaches have been proposed to deal with this mixture problem and related 

solutions usually employ model inversion and the decomposition of pixels into their 
constituent components. Basically, two alternatives can be used to solve mixing equations: 
numerical methods or statistical methods. Different authors [25-26] have stated, however, that 
the algorithm employed to perform unmixing had little influence on the results. On the other 
hand, the linear approach has been demonstrated in numerous applications to be a useful 
technique for interpreting the variability in remote-sensing data and a powerful means for 
converting spectral information into data products with physical meaning such as abundance 
of materials on the ground surface [27]. Although different unmixing approaches have been 
described in the literature, when working with multispectral images, the most widely used 
method employs a single set of endmembers (typically three or four) on the whole image and 
uses a linear model to unmix the image pixel (constrained least squares method or inverse 
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estimator) [28].When using these approaches, aspects such as the spectral response of these 
components (endmembers) and their fractional contribution to the final pixel value are 
considered [20,27]. 

We used a well-tested and widely-used LSMM approach for fraction image generation, 
following the works of [17,20,27,29-32]. The pixel decomposition method chosen is based on 
our previous results while processing MODIS images for the Amazon region [30] and 
included a least-square algorithm to decompose pixels into fraction values representing three 
components: green vegetation, soil and shade. The processing approach considered a time 
series of monthly MODIS reflectances spanning the period from February 2000 to December 
2008, for the entire South American continent. Then fraction images representing the selected 
components were generated using a least-square mixing model following [20]. Below, we 
provide concepts regarding the linear unmixing of remotely-sensed spectra used by this 
investigation. Details on the implementation of the least-square mixing model are beyond the 
scope of this article and the reader is directed to [20] for further information. The linear 
unmixing approach used image endmembers to estimate the composition of every pixel [31], 
where a linear relation was assumed to represent the spectral mixture of components within 
the resolution element (pixel) of the remote sensing system [20]. The linear spectral mixture 
model used in this work can be formally presented as: 

d" = s"%a% + e"

)

%*+

 (1) 

where di is the observation for the ith band; aj is the fractional area or proportion covered by 
the jth component; sij is the ith component of the vector for the jth mixture component (the 
vector is often the reflectance of the mixture components, i.e., the component signatures) and; 
ei is the error term for the ith band. The matrix of endmember reflectances sij is typically 
assembled using reflectance field measurements [33] or by identifying samples of pure pixels 
in the scene for each cover type [32]. We selected the endmembers by identifying samples of 
pure pixels based on the analysis of MODIS dates corresponding to the dry and rainy seasons. 
Due to the high probability of existence of areas of bare soil during the dry season, an image 
acquired during this season (July 2005) was used to obtain reflectance values representing the 
pure soil component. Conversely, due to greater vegetative vigor, an image acquired during 
the rainy season (February 2002), was used to select the vegetation pure component. The 
shade pure component was collected over an area of clean water, due to the spectral similarity 
between these components.  
 
Similar endemember selection was conducted by [34] that use a soybean plantation in the wet 
season as the vegetation endmember, an agricultural area in the dry season as the soil 
endmember and the shade endmember was from clean water bodies considering the spectral 
similarity between shade and water targets and the invariance of shade. The same set of pure 
components was used during the unmixing of the entire time series of MODIS reflectance 
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images, producing fraction results that are comparable over time. The constrained unmixing 
solution for aj is determined by: 

1
1

r

j
j
a

=

=∑
 and 0ja ≥  for all components. 

(2) 

The constraint equations above are strictly true only if the chosen components and their 
spectral signatures are an adequate representation of the mixture occurring within the pixel 
under analysis. Following [20] we determined the aj by using constrained least squares 
method. All four original MOD13A3 reflectance bands were considered during the unmixing 
procedure, aiming to generate fraction images representing green vegetation, soil and shade. 
This procedure reduces the data volume to be analyzed and also highlights the surface 
information. Vegetation fraction images enhance the cover status and conditions of 
vegetation, soil fraction images enhance the presence of bare soil, and shade fraction images 
enhance the dark components in the scene, including water bodies and burned areas. In this 
work, 107 sets of fraction images were generated, one set of fraction images for each month 
of the period analyzed. We inspected the quality of fraction images by analyzing its values in 
space and in time, but accuracy assessment for mixed pixels is challenging because (1) it is 
difficult to collect ground truth for each endmember considered at a scale compatible with the 
resolution of the remotely-sensed data and (2) traditional classification accuracy analysis 
measurement tools are not suitable for mixed pixel analysis [35]. Addressing the first 
challenge above, [36] found the following limitations when measuring proportions in the 
field: (1) uncertainties regarding the spatial boundaries of each pixel always exist; (2) noise 
resulting from atmospheric effects; and (3) internal variabity of each ground cover type. 

Considering our interest in representing the temporal variation of vegetation, this work 
performs a  analysis of the vegetation fraction time series. However, due to the 
complementary nature of fraction images, other components (particularly the soil fraction) 
were considered during the investigation. Moreover, we assumed that variations in vegetation 
fractions inside pixels occur primarily due to changes (increase or reduction) in ground cover 
by green photosynthesizing material, represented mainly by leaves. Several factors occurring 
at multiple spatial and temporal scales may be involved when changes are verified, including: 
leaf flushing, senescence and abscission, changes in species composition, vegetation removal, 
succession and cropping. 

Following the generation of the fraction images, a Principal Component Analysis (PCA) 
was performed using the entire time series of vegetation fractions as input data. PCA has been 
widely used in remote sensing, meteorology and oceanography for temporal dataset analysis 
[9,37-41] and was selected due to its well-tested dimensionality reduction capabilities. The 
PCA algorithm involves a feature space transformation through linear combinations of 
variables and generation of uncorrelated principal components bands (PC). Among the 
resulting principal components, the first few bands concentrate most of the variance of the 
dataset, while the original total variance of the data is preserved. The contribution of each 
input band to a given PC is defined by corresponding eigenvectors and their signals, whether 
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positive or negative, indicating direct and inverse relationships. The variance of these 
components is represented by eigenvalues. We used PCA as a data dimensionality reduction 
strategy, while aiming to preserve most of the variance and uniqueness of the original time 
series. To achieve that, the first three principal components resulting from PCA were used to 
represent the spatial and temporal variability of vegetation over South America. Random 
noise, clouds or cloud shadows are not depicted by the first PCA if they do not occur 
frequently, being represented by the remaining components [39]. Selecting three PCAs also 
allowed the generation of a PCA-based color composite by associating the first PCA 
component with the red channel (PC1=Red), the second component with the green channel 
(PC2=Green) and the third component with the blue channel (PC3=Blue).  

The time-series of fraction images was also analyzed by representing temporal variations 
of vegetation fractions for multiple vegetation/land cover types over the continent. For that, 
the MODIS land cover product (MCD12Q1) was used to support the selection of 21 non-
random sampling points. Temporal profiles representing vegetation fraction for each month of 
the time series were generated by averaging fraction values inside a 3 x 3 pixel window 
positioned over a given sampling point. Temporal profiles of precipitation were used as 
ancillary data to investigate relationships between vegetation fractions and rainfall. 

3. Results and Discussion 

The results of two approaches used to investigate the spatiotemporal variation of land 
cover over South America are presented and discussed. Both methodological strategies make 
use of fraction images derived from a linear spectral mixture model and 3,103 monthly 
reflectance granules from MODIS-Terra. These approaches differ, however, in the way these 
fraction images were processed and presented. The following results include a PCA color 
composite derived from fraction images,temporal profiles of vegetation fractions coupled with 
rainfall data plotting, and how the information provided by this work can be used for 
environmental management and policy making. 

3.1. Representing seasonal variations in land cover using principal components from 
vegetation fractions 

The first three PCA components accounted for 92.9% of the total variance. All vegetation 
fraction images positively influenced the first principal component (PC1) which, as shown by 
the eigenvalues, mainly represents growing season months. For the second component (PC2), 
the highest positive influence was observed for the months of September, October and 
November, while maximum negative influence (inverse relationship) was observed for 
February, March and April. Relationships for the third component (PC3) were essentially 
similar to those observed for PC2, but a lag of three months was observed for this image. As a 
result, December, January and February had the highest positive influence over PC3, while 
May, June and July presented the highest negative influences. The variability presented by 
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PC2 and PC3 highlights the seasonality of vegetation cycles over the South America 
continent (Figure 2A). 

The color composite of the first three principal components generated using the time series 
of vegetation fraction images adequately represents the biomes present in South America. 
Results indicate boundaries and limits being particularly well defined when significant 
transitions in vegetation density occur (Figure 2B). It is noteworthy that the spatial 
distribution of surface features shown by this color composite presents high similarity to the 
more detailed ecoregion map proposed by [18]. Thus, despite the reduced number of spectral 
bands used and the relative coarse spatial resolution of MODIS, the use of vegetation fraction 
images and PCA allowed us to discriminate well the main ecoregions of South America. 
These results are in agreement with [9] who also suggested using PCA to define ecoregions. 

 

 C
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Figure 2. PCA analysis: (A) First three Eigenvectors, (B) Color composite of the first three principal 
components of vegetation fraction images and the vector boundary (in light yellow) of the major 
ecoregions in South America [18] and Red squares are areas selected for detailed sampling and further 
analyses, and (C) Color composite of the first three principal components of vegetation fraction 
images without the vector boundary.  

Analyses based on the interpretation of the PCA color composite considered the strong 
contribution of PC1 and its representation of annual periodicity and amplitude of the 
vegetation fraction signal. The color composite resulting from PCA and presented by this 
work are based on the component-color combination: PC1=Red, PC2=Green and PC3=Blue. 
For these figures, red tones represent vegetation with periodical and well defined cycles [9]. 
In addition, vegetation types represented in red tend to exhibit higher amplitude of the 
vegetation fraction signal (sampling points 1, 6 and 14). Green tones (PC2) are associated 
with a time lag in seasonality when compared to PC1, being representative of vegetation types 
where small or large amplitudes in vegetation fraction could be observed (sampling points 4, 
10, 17 and 19). The third component presents signals shifted in time when compared to PC2, 
adequately representing flooded areas and rivers (sampling point 12). In several instances, we 
observed an overlap between PC3 and PC1, showing the association between this third 
component and periodical signals (sampling points 8 and 15). Orange tones result from 
regions where contributions from PC1 and PC2 predominate, which are characteristic of areas 
with annual periodicity not well defined (sampling points 11, 13 and 18). These results are in 
agreement with [40] and [41] that investigated the relationship between PCA and vegetation 
cycles in different regions of Brazil. 

 3.2 Representing seasonal variations in land cover using temporal profiles of vegetation 
fraction images 

This section characterizes temporal changes in vegetation cover, represented by 
chronosequences of vegetation fraction values for several sampling points over South 
America. Seven regions were selected for analysis and multiple points have been considered 
within those areas, aiming to represent their surface variability. The following text describes 
each of these regions. 

The Caatinga (Figure 1a and Figure 3A) is a semi-arid area with native xerophilous 
species, characterized by well-defined wet and dry seasons, and lack of regularity in total 
annual rainfall [42]. We found three distinct regions within this area (Figure 3A). Region #1 
represents the hypo-xerophytic Caatinga, a vegetation type associated with higher water 
availability, when compared to other Caatinga physiognomies. As a result, this region 
presents characteristic denser vegetation, which is stratified in three layers. The time series of 
vegetation fraction values for this region present pronounced peaks with maximum values 
usually following maximum precipitation. Conversely, fractions of vegetation are usually 
lowest following periods of reduced precipitation. This pattern is strongly associated with 
physiological/physiognomical responses of vegetation to seasonal rainfall variations. Plants 
respond to the water availability by increasing leaf mass, which affects the region’s spectral 
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response and increasing the vegetation fraction values (Figure 3B). Region #2 represents an 
area of transition between vegetation types (savanna and pluvial-nebular forest) and is 
characterized by higher water availability, caused by topographic gradients. The 
characteristics of the region contribute to the presence of evergreen species and dominance of 
a tree stratum. Figure 3C shows the temporal variation of vegetation fraction values for this 
region, indicating that despite the observable seasonal reductions in fraction values, the lowest 
fractions are still much higher than those observed for the savanna. These responses illustrate 
a characteristic of semi-deciduous vegetation during periods of lower rainfall (Figure 3C). 
Region #3 refers to the hyper-xerophytic Caatinga which, due to low rainfall and long periods 
without precipitation (7 to 10 months without rain), is dominated by low vegetation and 
thorny shrubs. This vegetation is leafless during the dry season, while leaves grow after 
precipitation, during the rainy season [42]. On this site, the maximum fraction values are 
lower than those observed for Regions #1 and #2, indicating less exuberant vegetation even 
when water becomes available (Figure 3D). These results are in agreement with [6,40,43] that 
investigated the relationship between a vegetation index and precipitation in Northeastern 
Brazil. These lower fractions of vegetation can be explained by the reduced amount of green 
photosynthetic material covering the ground and by higher soil fraction values (not shown). 
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Figure 3. (A) Selected area “a”, showing the Caatinga biome and sampled temporal 
profiles representing monthly vegetation fractions and precipitation from 2000 to 2008, 
and including: (B) Semi-arid area with native xerophilous species. (C) Transition 
between savanna and pluvial-nebular forest. (D) Semi-arid area with hyper-xerophytic 
Caatinga. 

 

The Pantanal (Figure 1b and Figure 4A) consists of a flooded savanna physiognomy, 
which extends across a relatively flat area with altitudes below 200 m. The climate of this area 
is characterized by strong seasonality, with marked wet and dry seasons [44]. We analyzed 
multiple temporal patterns of vegetation fraction and identified three distinct regions in this 
area [45] (Figure 4A). Region #4 is located in a permanently flooded alluvial area, with 
predominance of grassy shrub associations. The observed fraction values were particularly 
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low, mainly due to the strong spectral contribution of water, an important scene component in 
this region [41] (Figure 4B). Region #5 represents a transition area between grassland and 
savanna woodland. This sampling point represents a landscape dominated by grasslands, with 
the presence of water bodies interspersed with trees and shrubs, which are typical of a higher 
altitude Cerrado. During the dry season, the herbaceous vegetation and soil in areas 
surrounding the water bodies strongly influence the spectral response of this region. As a 
result, low values of vegetation fraction are observed (Figure 4C). Region #6 represents areas 
of non-flooded, higher altitude savanna woodland with three strata and semi-deciduous forest 
species [42,45]. Oscillations in vegetation fraction for this area are characterized by high 
amplitude, particularly associated with variations in leaf mass content of the semi-deciduous 
vegetation (Figure 4D). 

 

 

Figure 4. (A) Selected area “b”, showing the Pantanal biome and sampled temporal profiles 
representing monthly vegetation fractions and precipitation from 2000 to 2008, and including: (B) 
Permanently flooded alluvial area, with predominance of grassy shrub associations. (C) Transition 
area between grassland and savanna woodland. (D) Savanna woodland. 
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The Grassland area (Figure 1c and Figure 5A) comprises a transition of physiognomies 
dominated by grasses (e.g., savanna-steppe, savanna and steppe grassy-woody) in an area of 
gentle to wavy slope. The characteristic climate is subtropical humid with four well defined 
seasons [42,46]. This area concentrates intensive agro-forestry activities, with cattle and sheep 
ranching over natural pastures and vast areas of soybean and forest plantations, mainly Pine 
spp. and Eucalyptus spp. We describe temporal patterns of vegetation fractions for four 
regions of this area (Figure 5A). Region #7 represents a forest plantation, associated with a 
recent change in land use. Reduced seasonality can be observed for this site, as demonstrated 
by the moderate to low amplitudes of vegetation fractions. The low fraction values observed 
correspond to winter times (Figure 5B). Region #8 presents high amplitude and short phases 
of vegetation fraction values, characteristic of areas being cropped. A reduction in vegetation 
fraction maxima can be observed for the period 2001-2005, possibly associated with 
agricultural areas being left to rest, often also associated with the use of these areas for 
grazing. After 2005, the presence of annual summer crops is observed (Figure 5C). Region #9 
represents an area of intensive agriculture. Contrary to Region #8, no resting period is 
observed for this area, although a reduction in vegetation fraction maxima can be observed for 
the years 2004-2005. Region #9 also presents alternating high and low maxima, suggesting 
that this area is cultivated all year long with summer and winter crops (Figure 5D). Region 
#10 represents an area of natural pasture, with temporal variations in vegetation fraction 
values being possibly associated with the local climate. Minimum fraction values possibly 
result from drier periods or occurrence of severe frosts (Figure 5E). 

We selected the confluence of the Tapajós and Amazonas rivers to illustrate the Amazon 
region (Figure 1d and Figure 6A). The area is characterized by a tropical super-humid climate 
without a dry season, flat topography and the presence of vegetation physiognomies under 
fluvial influence [42]. Three regions (Figure 6A) were selected for temporal description of 
their vegetation fractions. Region #11 represents a dense tropical forest with large diversity of 
species, typical of the area. Vegetation fractions values for this region range from 0.4 to 0.8 
and present little to no periodical signal, resulting from high water availability and associated 
evergreenness of the forest [6]. The observed variations in vegetation fraction values may be 
explained by changes in canopy roughness, which may increase shadows and proportionally 
reduce the contribution of vegetation (Figure 6B). Region #12 represents an Amazon River 
floodplain with the presence of seasonally flooded forest. Due to frequent flooding, this area 
is characterized by reduced vegetation diversity, when compared to Region #11 [47]. The 
observed peaks in vegetation fraction values correspond to periods when the Amazon River is 
at its normal riverbed and the floodplain is not flooded. Conversely, when flooding occurs, 
water reaches these areas and reduction in vegetation fraction values can be noticed (Figure 
6C). The sampling site for Region #13 corresponds to a previously deforested area. This 
region is subject to strong human pressure being intensely occupied and used for agriculture 
[48-49]. Vegetation fraction values for this area present peaks with high values, as well as 
periodical signal, possibly associated with agricultural practices. The characteristic vegetation 
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fraction variability resulting from the mixture of different land cover types can also be 
observed (Figure 6D). 
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Figure 5. (A) Selected area “c”, over Grassland area, and sampled temporal profiles 
representing monthly vegetation fractions and precipitation from 2000 to 2008, and including: 
(B) Forest plantations. (C) Agricultural areas. (D) Intensively cultivated areas. (E) Natural 
pasture.  
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Figure 6. (A) Selected area “d”, over the Amazon region, and sampled temporal profiles 
representing monthly vegetation fractions and precipitation from 2000 to2008, and including: 
(B) Dense tropical forest. (C) Amazon river floodplain. (D) Deforested areas.  

The transition area between the Amazon and the Cerrado (Figure 1e and Figure 7A) is 
characterized by a semi-humid climate with a dry season lasting four to five months. The area 
has flat topography and comprises the Brazilian agricultural frontier. It is therefore under 
particularly strong anthropogenic pressure. Activities found in this area include high-
technology intensive agriculture (mainly soybeans and corn), cattle ranching and logging [49]. 
Region #14 lies in an agricultural area, which witnessed intensification in cultivation practices 
in recent years and the production of two crops annually [50]. The profile of vegetation 
fraction values is characteristic of areas being cropped, depicting high amplitude and short 
phases. Maximum vegetation fraction values are reached during the rainy season, when 
vegetation proportions are saturated due to total ground cover by crop canopies. At the peak 
of this season, soil and shade fractions reach zero (Figure 7B). Region #15 is located in an 
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area of Cerrado (savanna woodland and park) in the Xingu Indian reserve. Due to an 
increased presence of a graminoid stratum, spectral responses for this region are more 
influenced by the soil, resulting in lower vegetation fraction values. The periodicity of the 
vegetation signal for this region is particularly well defined, as fraction values reflect the 
occurrence of a dry season (Figure 7C). Similar results were obtained by [6,40] while 
studying areas of Cerrado. Region #16 represents an area of forest cleared in 2004, as 
indicated by the sudden drop in vegetation fraction values. These values also indicate that the 
area was being used for agriculture after the second year following clearing (figure 7D). 

 

 

Figure 7. (A) Selected area “e”, over transition area between the Amazon and Cerrado, and 
sampled temporal profiles representing monthly vegetation fractions and precipitation from 

2000 to2008, and including: (B) Agricultural areas. (C) Cerrado in Xingu Indian reserve. (D) 
Deforested areas. 
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The transition area between the Amazon and the Colombian llanos (seasonal flooded 
savanna) (Figure 1f and Figure 8A) is marked by a sudden break in landscape continuity 
(enclave) between the high Amazonian plains and the lower altitude floodplain, where the 
llano plains are. The area presents high monthly average temperatures and a seasonal climate, 
with the occurrence of wet and dry seasons. Region #17 is located in an area of savanna with 
palms, ecologically characterized by water log and saturated soils during flooding periods 
[51]. The profile of vegetation fraction values illustrates the marked seasonality of this region, 
with peaks coinciding with periods of higher precipitation (Figure 8B). Region #18 is located 
in an area of dense tropical rain forest (Figure 8C), presenting variations in vegetation 
fractions similar to Region #12, with no observable seasonal pattern. 

 
 

 
PRECISA TROCAR A POSIÇÃO DOS PONTOS NA FIGURA (17 E 18)  

Figure 8. (A) Selected area “f”, over area of transition between the Amazon and 
the Colombian llanos, and sampled temporal profiles representing monthly 
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vegetation fractions and precipitation from 2000 to2008, and including: (B) 
Colombian llanos. (C) Dense tropical rain forest.  

The region representing the Valdivian forests, the temperate mixed forest and the steppes 
of South America (Figure 1g and Figure 9A) is marked by a large diversity of environments 
and climates. On the east side of the region, factors such as continentality, topographic effect 
exerted by the Andes and Austral influence favor low temperatures and reduced precipitation, 
preventing the survival of trees and contributing to the presence of steppes. Along the coastal 
region, at higher latitudes, still under coastal influence, the climate is milder and stable with 
mild/wet winters and dry summers, characteristic of areas of Mediterranean vegetation. Areas 
with cold temperatures and high precipitation present forest types typical of temperate 
climates [52]. Region #19 represents the grassy steppes of Patagonia with woody xeric 
characteristics. The temporal variation of the vegetation fraction for this site indicates the 
seasonal pattern of vegetation, which is strongly influenced by the arid and cold climate [53]. 
The low values displayed by the vegetation fraction indicate low density of the vegetation 
component and the contribution of other scene elements, particularly of soil (Figure 9B). 
Region #20 is located in a formation of Valdivian forests (relict of past geographical and 
climatic conditions), characterized by the presence of evergreen broadleaf hydrophilic species 
[54]. This vegetation type is under high human pressure and is considered one of the most 
threatened ecosystems in the world [55]. The temporal profile of vegetation fraction values 
for this region reflects a vegetation type with well-defined seasonality. Maximum vegetation 
fraction values are reached just before summer, while minimum values are observed before 
winter time (Figure 9C). Region #21 represents a temperate mixed forest with the presence of 
Araucaria spp. This area has a rainy temperate oceanic climate, with dry periods extending for 
one to two months [54]. Due to its high biodiversity and to the presence of endemic species, 
the conservation of this region, currently threatened by the logging and agro-forestry industry, 
is very important [55]. Temporal variations in vegetation fraction values for this region 
exhibit a characteristic seasonal profile (Figure 9D). 
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Figure 9. (A) Selected area “g”, over Valdivian forests, temperate mixed forest and steppes, 
and sampled temporal profiles representing monthly vegetation fractions and precipitation 
from 2000 to2008, and including: (B) Grassy steppes of Patagonia. (C) Valdivian forest 
formation. (D) Temperate mixed forest.  
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3.3 information for environmental management and policy making 

An adequate implementation of environmental management policies and practices depends 
on the accurate characterization and understanding of the land cover. Traditional land cover 
characterization strategies based on single-date and hard-classification methods often 
oversimplify the landscape, thus failing to address the complexity of important ecosystems. 
The methodology proposed by this investigation overcomes these limitations by integrating 
space and time, more accurately representing and synthetizing the fuzzy nature of 
environmental data. Furthermore, environmental management and decision making are highly 
dependent on the ability to measure, understand and respond to changes on ecosystem 
descriptors. The proposed physically-based method using time series of vegetation fractions 
contributes to the toolset available to managers and decision makers, supporting analyses and 
facilitating the assimilation of results.  

In South America, this enhanced characterization capability can lead to a better 
understanding and management of the complexity associated with areas of savanna. These 
areas, characterized by a number of endemic species and the co-existence of grasses and trees 
in a gradient of proportions, have important ecological and societal roles, being often 
associated with disputes involving conservation and the use of land and natural resources. 
Laws and policies regulating the use of savanna areas frequently refer to specific facies of this 
vegetation type. For instance, the state of São Paulo, in Brazil, uses a tree-density based four-
class stratification of the state savannas to regulate licensing and enforcement (Sao Paulo state 
law 13,550). This stratification is supported by the methodology proposed by this 
investigation. In this context, vegetation fractions can be used for vegetation density 
identification and principal components from these fractions can be employed to represent 
seasonality characteristic of savannas. Besides, the proposed approach generates continuous 
fields, more naturally representing the natural gradients associated with these areas. If needed, 
thresholds representing the limits of a particular class could be used to generate hard 
classifications.  

Although savanna ecosystems depend on fire for organic matter mineralization and 
nutrient recycling, uncontrolled fires can have devastating effects on these systems and 
profoundly affect their biota. Decisions associated with vegetation fire management, 
including the definition of areas to burn and time elapsed between prescribed burning events, 
should incorporate the knowledge of the amount of dead material available to be consumed by 
fire. Temporal profiles of vegetation fractions and the monitoring of changes in these 
fractions can be used to support inferences regarding biomass accumulation, including the 
incorporation of these variables into fire models in support to decision making. Fire events 
and their timing can also be identified, considering the associated reduction in vegetation 
fraction values that can be observed in our results. 

Deforestation is a major concern in many parts of South America, being a critical issue in 
the Amazon region. Forest removal in the Amazon, usually associated with cattle ranching, 
agriculture and timber industry, has been linked to local, regional and global environmental 
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impacts. Recent international and domestic pressures have led South American countries to 
set and enforce laws regulating forest removal. The proposed strategies for deforestation 
regulation rely on monitoring vegetation status, either by identifying total vegetation removal 
or, more recently, by recognizing signs of forest degradation. It has been demonstrated that 
clear cut of forested areas can be easily identified in time series of vegetation fractions, as cut 
events result in abrupt reductions in fraction values. Forest degradation, however, has a more 
subtle signal than total forest removal, resulting in greater identification and quantification 
challenges. Difficulties in investigating forest degradation are particularly relevant when the 
methods employed do not consider the dynamics of the degradation process and rely solely on 
single-date analysis. Our results show that successive temporal reductions in vegetation 
fraction values for a given region can be used to flag areas where further assessment of 
potential forest degradation would be appropriate. 

The understanding of the aforementioned vegetation disturbance process and results is 
essential to support conservation practices and the recovering of these areas. Despite the 
incorporation of disturbance into legislation involving the management of successional stages 
of vegetation, in practice, the implementation and enforcement of the resulting policies have 
proven to be difficult. In particular, methods for the classification of successional stages based 
on single-date analyses fail to capture the complexity and dynamics of the affected areas. 
Because the characteristics of the successional process result from multiple factors, including 
the original natural vegetation, land uses and practices, as well as time, it is fundamental to 
understand the history of areas recovering from disturbance. Aspects such as the nature and 
intensity of the disturbance, land uses, practices and time elapsed after disturbance can be 
jointly analyzed to derive a more complete identification of the successional process, 
supporting comparative analyses between successional areas. For instance, the legislation 
protecting areas of savanna in Brazil is based on a three-class classification system for 
savanna regrowth (i.e., initial, intermediary and advanced). These classes can be better 
identified using temporal profiles of vegetation descriptors as presented in this work. 

Initiatives associated with carbon market and credit have considered the potential of 
allocating large areas in South America for carbon offset, including forest preservation, 
afforestation and reforestation. Such markets require the monitoring and quantification of 
carbon stocks and can benefit from remote-sensing based strategies to verify compliance with 
the legislation and estimate of carbon stored. Series of vegetation fractions can be used to 
identify deviations from predefined allocation, including total vegetation removal, selective 
logging and forest degradation, as well as the non-implementation of 
afforestation/reforestation.  

4. Conclusions  

The increasing availability of high quality time-series of remotely sensed images 
emphasizes the need for methodologies able to process and support the analysis of the 
resulting high data volume. Although vegetation indices are often used when analyzing image 
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chronosequences, reduction in sensitivity under high biomass and the contribution of the soil 
background and atmosphere limit the applicability of these indices over certain areas. We 
proposed a method to analyze temporal variations in land cover (particularly vegetated areas), 
based on the generation of fraction images, resulting from a linear spectral mixture model 
considering three components: vegetation, soil and shade. Vegetation fraction images 
represent the proportional contribution of vegetation to the total energy received by a remote 
sensor having, therefore, close relationship with biophysical characteristics of the vegetation 
cover. Results from a Principal Component Analysis of vegetation fraction images showed 
good correspondence with the main ecological regions of South America, highlighting 
seasonality and the spatial-temporal variability of vegetation. Moreover, the generated time-
series of vegetation fraction were used to present temporal profiles of 21 sampling points 
distributed over important vegetation cover types in South America. The analysis, considering 
also the corresponding precipitation dataset, showed the ability of the vegetation fraction 
profiles to represent vegetation phenological cycles over a variety of environments. The 
regions analyzed demonstrated high variability in temporal responses, exemplified by the 
strong seasonality in vegetation fraction observed for savannas and the less evident seasonal 
signal of tropical forests. Besides analyzing cycles of natural vegetation, we demonstrated the 
utility of the methodology to capture phenological and disturbance-related changes over areas 
under anthropogenic pressure, particularly when associated with agricultural practices and 
forest removal. Changes in ground cover and soil exposure during crop development can be 
adequately represented using time series of vegetation fractions. Moreover, comparisons 
between vegetation fractions and rainfall data indicated the close relationship between water 
availability and leaf mass/chlorophyll content for several vegetation types. This relationship 
was particularly strong for areas with marked seasonality and well-defined dry season. 
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