
Partial-Order Support-Link Scheduling

Debdeep Banerjee and Patrik Haslum
Australian National University & NICTA
firstname.lastname@anu.edu.au

Abstract

Partial-order schedules are valued because they are flexible,
and therefore more robust to unexpected delays. Previous
work has indicated that constructing partial-order schedules
by a two-stage method, in which a fixed-time schedule is first
found and a partial order then lifted from it, is far more effi-
cient than constructing them directly by a least-commitment
partial-order scheduling algorithm. However, the two-stage
method is limited to exploring only a fraction of the space
of partial-order schedules, namely those that can be obtained
from the given fixed-time schedule. We introduce a novel
constraint formulation of partial-order scheduling, which es-
tablishes explicit resource-providing “links” between activ-
ities instead of detecting and eliminating potential resource
conflicts. We show that this yields an algorithm that is much
faster than previous (precedence constraint posting) partial-
order scheduling methods, and comparable to the two-stage
method in terms of the quality and robustness of the sched-
ules it finds. This algorithm is also complete, and because
it searches the entire space of partial-order schedules, can be
adapted to optimising different robustness criteria.

Introduction
A partial-order schedule is one which does not specify a
fixed start time for each activity, but only a set of time con-
straints between tasks such that any realisation that meets
these time constraints is guaranteed to also respect resource
constraints. Thus, a partial-order schedule represents a set of
possible fixed-time schedules, all of which are feasible. The
time constraints of the schedule must be efficiently check-
able, and therefore are normally represented by a simple
(i.e., non-disjunctive) temporal constraint network (STN).
Partial-order schedules are useful because they retain more
flexibility, and are therefore more robust to deviations at ex-
ecution time. If, for example, an activity takes more time
than expected, only future activities constrained by that ac-
tivity need to be delayed, and their adjusted start times can
be efficiently determined from the STN.

Recently, Policella et al. (2004; 2007; 2009) examined
different algorithms for generating partial-order schedules,
comparing them both in terms of the efficiency of the
scheduling algorithm and the quality of the resulting sched-
ule. In this setting, schedule quality is measured both by
the traditional makespan objective and measures of how ro-
bust the schedule is to disturbances. The algorithms they

compared are a least-commitment, precedence constraint-
posting algorithm which generates a partial-order schedule
directly (called the envelope-based algorithm, or EBA), and
a two-stage procedure which constructs a fixed-time sched-
ule that is then transformed into a partial-order schedule by a
post-processing step (called the earliest-start time algorithm
with chaining, or ESTAC). Somewhat surprisingly, they
found that the two-stage method outperformed the partial-
order scheduling algorithm, both in terms of efficiency and
the quality of schedules generated.

In this paper, we present a new, constraint-based, method
for generating partial-order schedules, which we call partial-
order support-link (POSL) scheduling. Like the EBA, this
algorithm searches in the space of partial-order schedules
directly, rather than “deordering” a fixed-time schedule
like the two-stage method, ESTAC , does. Applied to the
RCPSP/max problem, the POSL scheduling algorithm pro-
duces schedules as good as those found by ESTAC , and
does so much faster than the EBA, although not as fast as
ESTAC . There are, however, advantages other than speed
to constructing a partial-order schedule directly, which jus-
tify exploring such methods. For one, the search can be di-
rected towards maximising some measure of flexibility or
robustness over the entire space of partial-order schedules,
whereas the two-stage method is limited to finding only the
most flexible or robust partialisation of one or a few given
fixed-time schedules. The POSL scheduling algorithm is
also complete, and it can be easily extended to problems
with more complex choices and constraints, such as multi-
mode scheduling problems.

Precedence constraint-posting scheduling algorithms, like
the EBA, or the methods described by Laborie (2003), work
by identifying resource conflicts – sets of activities that may
overlap in time and whose combined resource use exceeds
capacity – and resolving those conflicts by adding prece-
dence constraints between some of the conflicting activities.
Partial-order support-link scheduling, in contrast, works by
selecting for each activity a support that provides the re-
sources it requires. In a scheduling problem with multi-
capacity, non-consumed resources, such as RCPSP/max,
this support will be a set of activities using the same re-
sources: when those activities finish, they will release the
resources they were using, thus providing them to the next
activity. Thus, support is indicated by links between activi-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The Australian National University

https://core.ac.uk/display/156648636?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ties, and those links imply precedence constraints.
As the name suggests, POSL scheduling is inspired by

partial-order causal-link (POCL) planning methods (e.g.
McAllester and Rosenblitt 1991; Vidal and Geffner 2004).
Readers familiar with POCL planning may find this analogy
helpful: In planning, to execute an action one must ensure
that its preconditions are satisfied, and a POCL planner does
this by posting, to each precondition, an explicit link from
an earlier action that establishes the truth of the condition.
In scheduling, to execute an activity one must ensure that
its required resources are available, and the POSL scheduler
does this by posting explicit links from earlier activities that
provide those resources.

The RCPSP/max Problem
Following Policella et al., we use the single-mode
RCPSP/max (e.g. Kolisch and Padman 2001) problem to
evaluate the POSL scheduling algorithm. A RCPSP/max
problem instance consists of a set of activities, A =
{0, . . . , n + 1}, where 0 and n + 1 are “dummy” activ-
ities marking the start and end, and a set of resources,
R = {1, . . . ,m}, each with a given capacity cap(r). Each
task i has a fixed processing time, di, and a requirement
req(i, r) for each resource (which may be zero, if the task
does not use resource r). The processing time of the start
and end activities is zero. Additionally, there is a set of
given time constraints, in the form of differences between
activity start times: Sj − Si ≥ δij . That Si − S0 ≥ 0 and
Sn+1−Si ≥ di, for i = 1, . . . , n, i.e., that each real activity
takes place in between the start and end, is given. The ob-
jective is to schedule all tasks, respecting time and resource
constraints, so as to minimise makespan.

The RCPSP/max problem is very flexible. For example,
an ordinary precedence constraint, i ≺ j, is expressed as
Sj − Si ≥ di, while a maximum delay, i.e., that j must start
no later than t time units after the start of i, can be expressed
as Si−Sj ≥ −t. For this reason, even deciding if a problem
has a feasible solution is NP-hard.

The POSL Scheduling Algorithm
The POSL scheduling algorithm is constraint-based, i.e., it
consists of a constraint model of the problem, a collection of
propagation rules and a branching/search scheme.

Constraint Model
Each activity is associated with a start time Si and an end
time Ei, where Ei = Si + di. The given time constraints
map directly to constraints on the start time variables, as
shown above. For each resource r, the model contains a
support matrix, Pr(·, ·), where Pr(i, j) is the amount of re-
source r that activity i will provide to activity j. The re-
source constraints of the problem translate into the follow-
ing: ∑
j=0,...,n

Pr(j, i) = req(i, r) =
∑

j=1,...,n+1

Pr(i, j)

for each i = 1, . . . , n, i.e., for each real activity, the amount
of the resource provided to it equals the amount it requires,

and this also equals the amount it provides to other activities.
For the dummy start and end activties we have∑
j=1,...,n+1

Pr(0, j) = cap(r) =
∑

j=0,...,n

Pr(j, n+ 1).

and
∑
j Pr(j, 0) =

∑
j Pr(n+ 1, j) = 0. As can be seen,

these are essentially flow constraints: the start activity is the
only source, the end activity the only sink, and all real ac-
tivities preserve flow. This is because resource use is non-
consuming. If Pr(i, j) > 0, we say there is a support
link from i to j. This implies a precedence constraint, i.e.,
(Pr(i, j) > 0)→ (Sj − Si ≥ di).

Propagation and Search
During search, we maintain bounds on the differences be-
tween activity start times, similar to an STN. Let li,j and
ui,j denote the lower and upper bounds on the difference
Sj − Si, respectively. (We do not perform complete propa-
gation of upper bounds, as explained below.)

Implicit in the time bounds is a precedence relation, de-
fined by i ≺ j iff li,j ≥ di, i.e., j must start an amount of
time after the start of i that is at least the duration of activity
i, or, equivalently, j must start after the end of i. Likewise,
we can define an “anti-precedence” relation, meaning that i
cannot end before the start of j, as i ≺ j iff ui,j < di.1 Note
that ≺ and ≺ are not each others negation: if the start times
of i and j are loosely constrained, we can have i 6≺ j and
i 6≺ j. However, the relations are mutually exclusive, i.e., it
will never be the case that both i ≺ j and i ≺ j hold.

Let Ur(i, j) and Lr(i, j) denote upper and lower bounds
on Pr(i, j). The remaining, i.e., currently unsatisfied, de-
mand (for r) of activity i is req(i, r) −

∑
j Lr(j, i). Simi-

larly, the remaining, i.e., currently unallocated, support (of
r) of i is req(i, r) −

∑
j Lr(i, j). We say that i is a possi-

ble predecessor of j (on r) if (Ur(i, j) − Lr(i, j)) > 0 and
i 6≺ j. This means that it is possible to establish a support
link from i to j, but that this has not yet been done. (It could
also mean it is possible increase the flow along an existing
link. However, when establishing a new support link from i
to j we always assign it the maximum flow, so this case does
not arise.)

Initial Bounds Clearly, we have Pr(i, j) = 0 whenever
i ≺ j, since a support link from i to j implies i ≺ j. If
i 6≺ j, we have Pr(i, j) ≤ min(req(i, r), req(j, r)).

Branching Rule and Strategy The branching rule is a
binary choice between Pr(i, j) = Ur(i, j) and Pr(i, j) <
Ur(i, j), i.e., between establishing a support link with max-
imum flow and lowering the upper bound on maximum flow
by 1. To choose a pair of activities to branch on, we take
a j with minimum earliest start time, and a resource r such
that the remaining demand of j for r is non-zero: if there are
several, we take the j and r such that the smallest Ur(i, j)
over all possible predecessors i of j on r is minimum. (This

1This is not the same as the anti-precedence graph introduced
by Muscettola (2002), which is a relation over time points rather
than activities (i.e., intervals). Note that ≺ is not transitive.

aims to choose a most constrained activity that is not fully
supported.) Then we choose a possible predecessor i of j
(on r) such that the remaining demand of i (for r) is zero,
and the earliest end time of i is minimum.

Additional Propagation The basic model constraints
yield some obvious propagation rules, e.g., from bounds on
the temporal constraints we can infer anti-precendence rela-
tions, from which we can infer impossible supports. Apart
from these, we use the following special propagation rules.

1. For each resource r and activity i that uses r, we cal-
culate the reserved flow, which is the amount of the resource
provided to i that is accounted for by complete chains of
activities from the start. This is given by the fixpoint of

RF(i, r) =
∑
j

min(Lr(j, i),RF(j, r))

and RF(0, r) = cap(r). Then, for any activity j with re-
maining demand for r greater than cap(r) − RF(i, r), we
can infer that i ≺ j. This is because the amount RF(i, r) is
already “allocated”, to either an activity or a support link, at
every point from the begining to the start of i, and thus not
available to support j until after i has completed.

2. For any activity i with non-zero remaining demand for
resource r, let W be any subset of the possible predecessors
of i (on r) such that the total support that activities in W
can provide to i, i.e.,

∑
j∈W Ur(j, i), is at least equal to the

remaining demand of i, and let eet(W) be the latest earliest
end time among activities in W . The earliest start time of i
is lowerbounded by minW eet(W), because some such set
W must eventually be chosen to support i. To find the lower
bound, we sort the possible predecessors of i by increasing
earliest end time and add their maximum support until the
point where it is sufficient.

Incremental Maintenance Although the precedence and
anti-precedence relations, sets of possible predecessors, etc.,
are defined in terms of the basic model constraints, we do
not compute them that way. Instead, they, and the bounds
on support matrices, are maintained by incremental updates
following each branching choice.

We also do not use complete propagation of temporal
constraints, because this is computationally expensive. We
compute only transitive updates to the lower bounds (based
on minimum time lags and posted precedences), and check
them against the maximum time lags given in the problem
instance. This is sufficient to detect any inconsistency, since
during the search we never post new maximum time lag con-
straints. However, it does mean that some anti-precedence
relations may not be detected, and thus that we may overesti-
mate the sets of possible predecessors and therefore explore
branches that could have been cut off earlier.

Evaluation
We evaluated the POSL scheduling algorithm on the J10,
J20, J30 and C100 RCPSP/max problem sets.2

2Available from PSPLib, http://129.187.106.231/
psplib/.

% solved |flex| |fldt| Time Makespan
J10
POSL 97.86

first 0.235 0.656 0.56 46.91
best (mksp) 0.237 0.660 0.85 45.75
best (fldt) 0.266 0.674 3.29 46.89

EBA 97.78 0.16 0.65 0.19 55.47
ESTAC

(2007) 98.15 0.20 0.68 0.03 46.70
(2009) 96.3 0.19 0.68 0.02 49.49

J20
POSL 88.58

first 0.242 0.600 0.28 78.17
best (mksp) 0.235 0.588 1.05 76.65
best (fldt) 0.255 0.613 4.15 78.19

EBA 89.63 0.13 0.58 1.99 94.03
ESTAC

(2007) 96.67 0.19 0.64 0.19 72.75
(2009) 95.6 0.16 0.65 0.12 83.97

J30
POSL 81.08

first 0.250 0.532 1.21 96.46
best (mksp) 0.243 0.528 2.42 94.38
best (fldt) 0.257 0.545 6.93 96.60

EBA 82.22 0.16 0.56 10.94 116.10
ESTAC

(2007) 97.04 0.25 0.64 0.83 78.55
(2009) 96.3 0.25 0.59 0.41 107.08

C100
POSL 60.15

first 0.144 0.560 26.84 403.37
best (mksp) 0.138 0.545 36.53 400.31
best (fldt) 0.145 0.561 47.17 403.32

EBA 27.04 0.11 0.56 183.79 632.27
ESTAC

(2007) 99.26 0.07 0.50 0.48 374.35
(2009) 99.3 0.05 0.50 2.07 440.79

Table 1: Average results achieved by different scheduling
algorithms. Results for EBA and ESTAC are taken from
Policella et al., 2007; 2009. Note that averages are taken
over different sets of problems for each algorithm, and thus
not directly comparable.

Like Policella et al., we use two measures of the temporal
robustness of a schedule: flexibility, defined as the fraction
of pairs of activities that are not sequenced, and fluiditity,
which aims to measure the ability of the schedule to absorb
delays. Fluidity is defined as the slack between activities i
and j (i.e., the difference between their maximum and min-
imum separation) as a percentage of the schedule horizon,
averaged over all distinct pairs i, j. This measure depends
on the horizon, which is taken to be the sum of all activ-
ity durations and the sum of all minimal time lags in the
problem. (This ensures that there is a valid schedule with
a makespan less than or equal to the horizon, if any valid

schedule exists.) The flexibility and fluidity of a schedule are
a function of the time constraints, both those given as part of
the problem specification and those added by the scheduler
to ensure resource feasibility. Therefore, Policella et al. re-
port normalised values, |µ(S)| = µ(S)/µ(P), where µ(S) is
the measure (flexibility or fluidity) computed for the solu-
tion, and µ(P) is the same measure computed taking into
account only the original problem time constraints. To facil-
itate comparison, we follow the same formula.

Table 1 summarises our results. For reference, we include
the results achieved by EBA and ESTAC (from Policella et
al., 2007; 2009; both are for the quadratic MCS variant).
Our results, and those of Policella et al. 2009, are averages
over solved instances in each problem set, while the results
reported by Policella et al. in 2007 (for EBA and ESTAC)
are averages over the set of instances solved by all algo-
rithms they compared, which is in each case a much smaller
set. Also, our tests were run on a roughly twice as fast com-
puter. Thus, the average values are not directly comparable.
Nevertheless, they indicate that POSL is faster than EBA,
and solves more problems, while achieving schedule robust-
ness comparable to that of ESTAC . However, the iterated
chaining methods introduced by Policella et al. in 2009 still
yield higher robustness measures.

Integrated into a systematic search, the POSL scheduling
algorithm is complete. For the purpose of experimental eval-
uation, we count an instance as unsolved if no solution was
found in 60 seconds. EBA and ESTA are both incomplete
algorithms.

Optimising Makespan or Robustness
Because it is a complete search scheme, it is easy to turn
POSL scheduling into an optimising algorithm by using it in
a branch-and-bound search. We implemented two variants:
one optimises makespan, while the other aims to optimise
schedule robustness, as measured by flexibility and fluidity.

In table 1, we show results for the first solution found,
which is unaffected by the optimisation objective and thus
the same for both, and for each of the two variants the best
solution found within the 60 second time limit.

Flexibility is simply the size of the precedence relation,
which is straightforward to put a bound on. Fluidity, how-
ever, is a more complex measure to optimise, particularly as
we do not perform complete temporal propagation. There-
fore, we use a surrogate objective, which we believe corre-
lates reasonably well with fluidity. This is given by∑
i=1,...,n

lst(i)− est(i)
|{j | i ≺ j}|

i.e., summing the slack of each activity divided by the num-
ber of activities ordered after it. The branch-and-bound
search works on both robustness measures at the same time,
i.e., when a solution is found, constraints are added to en-
sure that the next solution improves both flexibility and our
surrogate fluidity measure.

The makespan-optimising search is quite good: 48% of
schedules found are optimal w.r.t. makespan, and on average
makespan is only 1.5% above best known. The robustness-
optimising search is not as good, yielding only a small,

though steady, increase in flexibility and fluidity. (Note,
however, that this is at the cost of only a very small increase
in makespan.) The likely reason for this is that we do not
implement any effective propagation of the bounding con-
straints, which thus serve mainly to cut off search branches
when the bounds are exceeded, and not to direct the search
towards better solutions.

Conclusions
Previous work has indicated that constructing partial-order
schedules by a two-stage method, in which a fixed-time
schedule is first found and a partial order then lifted from
it, is far more efficient than constructing them directly, by a
least-commitment partial-order scheduling algorithm (Poli-
cella et al. 2004; 2007). We have demonstrated that search-
ing in the space of partial-order schedules is not as hopeless
as previous results may have suggested. The key innova-
tion is a change of problem formulation, from detecting and
eliminating potential resource conflicts to ensuring activi-
ties’ resource requirements are met by establishing explicit
support links. The resulting POSL scheduling algorithm
convincingly outperforms EBA, the least-commitment algo-
rithm introduced by Policella et al. (2004), but does not yet
reach the performance of the two-stage method. However,
these results are preliminary, and there is scope for devel-
oping the POSL method further. In particular, improving
propagation of bounds on various measures of schedule ro-
bustness, such as flexibility and fluidity, has the potential to
effectively direct the search to the most robust partial-order
schedules across the entire space of solutions.

References
Kolisch, R., and Padman, R. 2001. An integrated survey of
project scheduling. OMEGA International Journal of Man-
agement Science 29(3):249–272.
Laborie, P. 2003. Algorithms for propagating resource con-
straints in AI planning and scheduling: Existing approaches
and new results. Artificial Intelligence 143:151–188.
McAllester, D., and Rosenblitt, D. 1991. Systematic nonlin-
ear planning. In Proc. 9th National Conference on Artificial
Intelligence.
Muscettola, N. 2002. Computing the envelope for stepwise-
constant resource allocations. In Principles and Practice of
Constraint Programming (CP’02), 139–154.
Policella, N.; Smith, S.; Cesta, A.; and Oddi, A. 2004.
Generating robust schedules through temporal flexibility. In
Proc. 14th International Conference on Automated Planning
& Scheduling (ICAPS’04), 209–218.
Policella, N.; Cesta, A.; Oddi, A.; and Smith, S. 2007. From
precedence constraint posting to partial order schedules. AI
Communications 20(3):163–180.
Policella, N.; Cesta, A.; Oddi, A.; and Smith, S. 2009.
Solve-and-robustify. Journal of Scheduling 12:299–314.
Vidal, V., and Geffner, H. 2004. Branching and pruning:
An optimal temporal POCL planner based on constraint pro-
gramming. In Proc. 19th National Conference on Artificial
Intelligence (AAAI’04), 570–577.

