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Abstract: Fullerenes and carbon nanotubes are of considerable interest 
throughout many scientific areas due to their unique and exceptional properties, 
such as low weight, high strength, flexibility, high thermal conductivity and 
chemical stability. These nanostructures have many potential applications in 
nano-devices. One concept that has attracted much attention is the creation of 
nano-oscillators, which can produce frequencies in the gigahertz range, for 
applications such as ultra-fast optical filters and nano-antennae. In this paper, 
we provide the underlying mechanisms of the gigahertz nano-oscillators and we 
review some recent results derived by the authors using the Lennard-Jones 
potential together with the continuum approach to mathematically model three 
different types of nano-oscillators including double-walled carbon nanotube, 
C60-nanotube and C60-nanotorus oscillators. 
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1 Introduction 

Both single- and multi-walled carbon nanotubes have been extensively studied by 
researchers from many disciplines aiming to create new nano-devices or to employ these 
structures for applications, such as labs on chips and targeted drug and gene delivery. 
This is due to their unique mechanical and electrical properties, and we refer the reader to 
Dresselhaus et al. [1], Harris [2], Rao et al. [3] and Qian et al. [4] for details of these 
properties for both single- and multi-walled carbon nanotubes. Recently, it has been 
found that the oscillation of the inner tube of a multi-walled carbon nanotube can 
generate frequencies in the gigahertz range, providing the potential for devices such as 
ultra-fast optical filters and ultra-sensitive nano-antennae. In this paper, we review these 
developments and summarise the authors’ recent work on the mathematical models for 
three types of gigahertz oscillators, which are a double-walled carbon nanotube oscillator, 
a C60-nanotube oscillator and a C60-nanotorus oscillator/orbiter. We note that the last 
configuration is novel and has not been studied previously, either experimentally or 
theoretically. While research in this area is dominated by experimental and highly 
computational molecular dynamics studies, we emphasise here the use of elementary 
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mechanics and applied mathematical modelling techniques to generate results that are 
comparable to those of molecular dynamics simulations. 

The discovery of double-walled carbon nanotube oscillators originated with 
experiments by Cumings and Zettl [5] on multi-walled carbon nanotubes, where they 
remove the cap from one end of the outer shell and attach a moveable nanomanipulator to 
the core in a high-resolution transmission electron microscope. By pulling the core out 
and pushing it back into the outer shell, they report an ultra-low sliding frictional force. 
This result is also confirmed by Yu et al. [6]. Further, Cumings and Zettl [5] also observe 
that the extruded core, after release, quickly and fully retracts inside the outer shell due to 
the restoring force resulting from the van der Waals interaction acting on the extruded 
core. These results led Zheng and Jiang [7] and Zheng et al. [8] to study the molecular 
gigahertz oscillators, where the sliding of the inner shell inside the outer shell of a  
multi-walled carbon nanotube can generate oscillatory frequencies up to several 
gigahertz. They consider this problem by using the Lennard-Jones potential and 
Newton’s second law to calculate the frequency of oscillation. They find that the 
oscillatory frequency is in the gigahertz range and their results also support the 
experimental findings of Cumings and Zettl [5] that the frictional effect of the intershell 
sliding is negligibly small. Moreover, this phenomenon is confirmed by molecular 
dynamics simulations of Legoas et al. [9] and Rivera et al. [10,11]. In Baowan and Hill 
[12], the force distribution for double-walled carbon nanotubes and the oscillation of the 
inner tube are investigated. This study uses the continuum approach of the Lennard-Jones 
potential and Newton’s second law, where the frictional force is neglected. They obtain 
an exact analytical expression for the interaction energy between the inner and outer 
tubes and the van der Waals interaction force. This model also predicts the gigahertz 
frequency oscillatory behaviour of the double-walled carbon nanotube oscillator. 

Regarding the frequency of oscillation, Zheng et al. [8] observe that the shorter the 
inner tube, the higher the frequency. Instead of using an inner tube, Liu et al. [13] find 
that a higher frequency can be generated by the oscillation of a C60 fullerene inside a 
single-walled carbon nanotube. For further details of fullerenes, we refer the reader to 
Dresselhaus et al. [1]. While Liu et al. [13] and Qian et al. [14] study a C60-nanotube 
oscillator using molecular dynamics simulations, Cox et al. [15,16] employ elementary 
mechanical principles, utilising the continuum approach to provide a classical applied 
mathematical model. In particular, Cox et al. [15] express analytically the suction energy 
of a C60 molecule upon entering a carbon nanotube. This energy is imparted onto the C60 
molecule in terms of kinetic energy and thus induces the oscillating motion. These 
authors also determine the condition on the radius of carbon nanotubes that will accept 
the C60 molecule at rest in the vicinity of an open end of the tube. Further, a novel 
mathematical model for the oscillation of the C60 fullerene inside a single-walled carbon 
nanotube is shown in Cox et al. [16], where the axial van der Waals restoring force of the 
C60 molecule is approximated by two equal and opposite Dirac delta functions operating 
at both ends of the nanotube. The results of the classical mathematical model of Cox et al. 
[15,16] are shown to be in good agreement with numerical results of Girifalco et al. [17] 
and Hodak and Girifalco [18], and molecular dynamics simulations of Liu et al. [13] and 
Qian et al. [14]. 

There may exist many such oscillators at the nanoscale, and Hilder and Hill [19] 
examine the possibility of creating a C60-nanotorus oscillator/orbiter, where a C60 
fullerene orbits inside a carbon nanotorus. Liu et al. [20] observe single continuous 
toroidal carbon nanotubes, and subsequently term them fullerene ‘crop circles’.  
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Martel et al. [21] succeed in forming rings using straight single-walled carbon nanotubes, 
where the ring circumference is equal to the initial tube length. Effectively, the toroidal 
nanotube structure can be viewed as a single-walled carbon nanotube closed around onto 
itself to form a perfect torus. In this paper these toroidal structures are referred to as 
nanotori. 

Creation of a C60-nanotorus oscillator/orbiter may involve either closing a nanotube 
already containing an oscillating buckyball into a torus; injecting a buckyball into the 
torus just prior to closure; or closing a nanotube containing a stationary buckyball to form 
a torus and subsequently initialising the oscillation by some applied external field 
(electric, magnetic or chemical doping), thereby inducing a velocity on the enclosed 
buckyball. These procedures pose numerous practical challenges that need to be 
overcome before an actual C60-nanotorus oscillator can be realised. The ultra-low friction 
effect demonstrated by Cumings and Zettl [5] may also be exhibited in the C60-nanotorus 
oscillator, and if so, the buckyball might orbit almost indefinitely inside the nanotorus.  
A sealed structure is ideal in terms of working devices, and the C60-nanotorus oscillator 
may well be the ultimate oscillator. As far as the authors are aware a C60-nanotorus 
oscillator has yet to be constructed. Hilder and Hill [19] aim to assess its feasibility by 
considering the basic mechanics of such a system. Regardless of the speculative nature of 
these potential nanoscale devices, such a study must inevitably precede any practical 
implementation. 

In this paper, we review the work of Baowan and Hill [12], Cox et al. [15,16] and 
Hilder and Hill [19], and summarise the essential mechanisms of the three types of 
gigahertz nano-oscillators. In the following section, we introduce the Lennard-Jones 
potential for the non-bonded interaction energy between two molecules. Using the 
continuum approach, we determine the interaction energies of the inner and outer shells 
of a double-walled carbon nanotube, a C60 fullerene located inside a single-walled carbon 
nanotube and a C60 fullerene inside a carbon nanotorus. From the potential energies of 
each configuration, the van der Waals restoring forces are obtained, which are then used 
in Sections 3–5 to describe the oscillatory behaviours of the three nano-oscillators, 
respectively. 

2 Interaction energy  

The non-bonded interaction energy between two carbon molecules can be obtained by 
summing the potential interaction for each atom pair 

 ( ),ij
i j

E r= Φ∑∑  (1) 

where Φ(rij) is a potential function for atoms i and j on each molecule a distance rij apart. 
Following Girifalco et al. [17] and Hodak and Girifalco [18], we adopt a continuum 
approach where carbon atoms are assumed to be uniformly distributed over the surfaces 
of the molecules. Thus, instead of the double summation in equation (1), the interaction 
energy can be obtained equivalently by performing double surface integrals, averaging 
over the surface of each entity 

 1 2 1 2( ) d d ,E n n r= Φ Σ Σ∫∫  (2) 
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where n1 and n2 are the mean surface density of atoms on each molecule and r denotes the 
distance between two typical surface elements dΣ1 and dΣ2 on each molecule. In this 
paper, we adopt the Lennard-Jones potential given by 

 6 12( ) ,r Ar Br− −Φ = − +  (3) 

where A and B are the attractive and repulsive constants, respectively. We note that there 
are a number of empirically motivated models of potential in the literature, for example, 
the Morse potential is used in Wang et al. [22] for the problem of two C60 fullerenes in 
contact. We refer the reader to Qian et al. [4] and Rieth [23] for details of the other 
models and their applications. Alternatively, the Lennard-Jones potential (equation (3)) 
can be written in the form 

 
6 12

( ) 4 ,r
r r
σ σω

    Φ = − +    
     

 (4) 

where σ is the van der Waals diameter and ω denotes the energy well depth,  
ω = A2/(4B). From equation (4), the equilibrium distance r0 for two atoms is given by 
r0 = 21/6σ = (2B/A)1/6. 

The Lennard-Jones potential has been used in a number of studies to determine the 
van der Waals interaction energy and force for two carbon nanostructures. Girifalco [24] 
determines the interaction energy between two C60 fullerenes, and then extend the study 
in Girifalco et al. [17] to find the energy between two identical parallel carbon nanotubes 
of infinite length and between a carbon nanotube and a C60 fullerene (both inside  
and outside the tube). Girifalco et al. [17] also provide the value of the interaction  
constants in the Lennard-Jones potential for carbon atoms in graphene-graphene, C60-C60 
and C60-graphene, as shown in Table 1. Further, Hodak and Girifalco [18] propose an 
energy formula for universal graphitic systems, which also include the interaction of an 
ellipsoid inside a single-walled carbon nanotube. Henrard et al. [25] use a similar 
technique to Girifalco [24] and obtain the potential for single-walled carbon nanotubes in 
bundles. Following Henrard et al. [25] and Girifalco et al. [17], Zheng et al. [8] use the 
Lennard-Jones potential to determine the van der Waals restoring force between the inner 
and outer shells of a multi-walled carbon nanotube and subsequently predict a gigahertz 
frequency of the oscillatory motion. 

Table 1 Lennard-Jones constants in the graphitic systems (Girifalco et al. [17]) 

 A (eV × Å6) B (eV × Å12) r0 (Å) |ω | (meV) 

Graphene-graphene  15.2 24.1 × 103 3.83 2.39 
C60-C60 20.0 34.8 × 103 3.89 2.86 
C60-graphene 17.4 29.0 × 103 3.86 2.62 

We note that the integral (2) can be difficult to evaluate, particularly for certain 
configurations, such as an ellipsoidal fullerene inside (or outside) a carbon nanotube and 
a C60 fullerene interacting with a carbon nanotorus. While Girifalco et al. [17], Hodak and 
Girifalco [18], Zheng et al. [8] and others express the potential energy in terms of integral 
forms and subsequently perform their analysis using numerical integration, the authors 
[12,15,16,19] perform these integrations analytically and express the potential in closed 
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form in terms of hypergeometric and other special functions. Furthermore, the authors’ 
choice of using the continuum approach rather than the discrete atom-atom model  
is justified as pointed out by Girifalco et al. [17] that from a physical point of  
view both discrete (e.g., molecular dynamics simulations) and continuum models  
(e.g., [12,15–19,24]) make assumptions that are incorrect, but it can be argued that the 
continuum model is closer to reality. 

In the following subsections, we look at the interaction between the following carbon 
nanostructures; inner-outer tubes of a double-walled carbon nanotube, C60-nanotube and 
C60-nanotorus. These results are then used in subsequent sections to determine the  
van der Waals restoring forces and the oscillatory frequencies. 

2.1 Interaction between the inner and outer tubes of a double-walled carbon 
nanotube 

In this subsection we determine the potential energy E between the inner and outer tubes 
of a double-walled carbon nanotube using the continuum approximation as described in 
Section 2. With reference to the rectangular Cartesian coordinate system, the inner  
and outer tubes are in the same co-axial direction with parametric equations 
(acosθ1, asinθ1, z1) and (bcosθ2, bsinθ2, z2) respectively. As shown in Figure 1, a and b 
denote radii of the inner and outer tubes, respectively, −π ≤ θ1, θ2 ≤ π, −L1 ≤ z1 ≤ L1 and 
−L2 ≤ z2 ≤ L2. From Figure 1, the distance ρ is given by 

 2 2 2 2
2 1 2 1 2 1( cos cos ) ( sin sin ) ( ) .b a b a z zρ θ θ θ θ= − + − + −  (5) 

Figure 1 Double-walled carbon nanotube with the inner and outer tubes of lengths  
2L1 and 2L2, respectively 

 

Thus, by performing the integrals shown in equation (2) we obtain the total  
potential energy E for the inner and outer shells of a double-walled carbon nanotube, 
namely 

 2
6 12( ) 8 ( ),gE Z n ab AN BNπ= − +  (6) 

where ng is the mean surface density of carbon atoms on a nanotube, and N6 and N12 are 
given by 
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where F1(α; β, β1; γ; x, y) is an Appell’s hypergeometric function of two variables  
[26–28] and β1 = −L1 − L2, β2 = L1 − L2, β3 = L1 + L2, and β4 = −L1 + L2. These lengthy 
expressions (7) and (8) may be readily evaluated using the algebraic computer package 
MAPLE. We note that positions β1, β2, β3 and β4 as depicted in Figure 2 are the four 
critical positions for the two concentric carbon nanotubes, which give rise to an 
interesting behaviour for the potential energy and force distribution, as discussed in 
Baowan and Hill [12] and also in Section 3. For full details of the mathematical 
derivations, we also refer the reader to Baowan and Hill [12]. In Section 3, the potential  
E as shown in equation (6) is used to determine the van der Waals restoring force for the 
oscillatory behaviour of double-walled carbon nanotube oscillators. 

2.2 Interaction of C60 with a single-walled carbon nanotube 

In axially symmetric cylindrical polar coordinates, we assume that the C60 fullerene of 
radius b is located at (ε, 0, 0), as shown in Figure 3, in a carbon nanotube of infinite 
extent with a parametric equation (acosθ, asinθ, z). We note that ε is the distance 
between the centre of the offset C60 fullerene and the central axis of the tube, a is the tube 
radius, −π ≤ θ ≤ π  and −∞ < z < ∞. 
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Figure 2 Four critical positions for two concentric carbon nanotubes 

 

Figure 3 Offset C60 fullerene inside a single-walled carbon nanotube 

 

In this subsection, we determine the potential energy of a C60 fullerene inside a  
single-walled carbon nanotube and its preferred position with reference to the  
cross-section of the tube. The preferred position is where the molecule admits the 
minimum potential energy. From Figure 3, we find ρ = (a2 + ε2 − 2aεcosθ + z2)1/2, thus by 
performing the integrals shown in equation (2) over the entire surfaces of the C60 
fullerene and the carbon nanotube, we obtain the potential energy E for the offset  
C60 fullerene inside the carbon nanotube, namely 
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where nf and ng denote the mean surface density of carbon atoms on a buckyball and a 
carbon nanotube respectively, and the integrals In are defined by 

 ( 1/ 2)( cos ) d ,n
nI

π

π
α β θ θ− +

−
= −∫  (10) 

and α = a2 + ε2 – b2 and β = 2aε. We note that the integrals In can be evaluated in terms 
of elliptic integrals or in terms of hypergeometric functions (see Cox et al. [16]). Also, we 
refer to [15,16] for the full mathematical derivations. 

In Figure 4, the potential energy E is plotted with respect to the radial distance ε from 
the tube axis. It can be seen that the preferred position for the C60 fullerene inside a 
(10, 10) carbon nanotube (a = 6.784 Å) is where the centre of the C60 fullerene lies on the 
tube axis (ε = 0). For a (16, 16) carbon nanotube (a = 10.856 Å), we find ε = 4.314 Å. 
Further, we observe that as the tube radius gets larger, the location where the minimum 
energy occurs tends to be closer to the nanotube wall. These results agree with the 
findings of Girifalco et al. [17]. 

Figure 4 Potential of an offset C60 fullerene inside a (10, 10) and (16, 16) carbon nanotube,  
with respect to distance ε 

 

2.3 Interaction of C60 inside a single-walled carbon nanotorus 

Here we determine the potential energy for a C60 fullerene orbiting inside a carbon 
nanotorus. The position of the C60 fullerene centre is illustrated in Figure 5 and  
defined by 

 1 1 1 1 1( cos ) cos , ( cos )sin , sin ,x c y c zε ϕ θ ε ϕ θ ε ϕ= + = + =  (11) 

where c is the nanotorus ring radius taken as 1500 Å [20], b is the nanotorus tube  
radius and the centre of the buckyball is a distance ε from the cross-sectional tube  
centre, at an angle φ1 from the horizontal. The radius of the buckyball a, is taken to  
be 3.55 Å [18]. 
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Figure 5 C60-nanotorus oscillator and its coordinates 

 

Using equations (2) and (3) we can evaluate the Lennard-Jones energy between the 
buckyball and the nanotorus, 
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 (12) 

where nf and ng are respectively the mean surface densities of carbon atoms on the 
buckyball and nanotorus (assumed to be created from closing a carbon nanotube), 
δ = (b + ε)2 – a2, α = 4bε/δ and β = 4bε/[4c(c + ε) + δ]. Note that the energy potential 
given above is only valid for |ε| ≤ |b – a| and F1(α; β, β1; γ; x, y) is an Appell’s 
hypergeometric function of two variables [26–28]. We refer the reader to Hilder and Hill 
[19] for full details of the mathematical derivations. 

Using the algebraic computer package MAPLE, we plot the Lennard-Jones  
energy against buckyball position, shown in Figure 6 for both a nanotorus created  
from closing a (10, 10) (b = 6.784 Å) and a (16, 16) (b = 10.856 Å) nanotube. The gravity 
potential is found to be negligible when compared to the centrifugal and Lennard-Jones 
potentials, hence we assume φ1 = 0. The buckyball’s minimum energy or equilibrium 
position is found to depend on the nanotorus tube radius b, where the buckyball  
moves closer to the nanotorus wall as the radius increases. For example, the equilibrium 
position for the (10, 10) nanotorus is ε = 0.9 Å, while for the (16, 16) nanotorus  
we obtain ε = 5.25 Å. These represent distances from the tube wall of 2.334 Å  
and 2.056 Å, respectively. A similar observation is made in Section 2.2 (Cox et al. [16]). 
The inclusion of the centrifugal potential moves the minimum energy position  
further from the centre of rotation. The position also depends on the angular velocity, 
where it is more dominant for larger velocities. In the limit as c tends to infinity in 
equation (12), we obtain overall agreement with Cox et al. [16]. However, to obtain  
an equation for the Lennard-Jones energy of the buckyball in the nanotorus,  
only the leading order terms are included and as a result there is a distinction between the 
two models. 
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Figure 6 Lennard-Jones energy with respect to the buckyball position ε, for (10, 10) and (16, 16) 
carbon nanotorus 

 

In the following sections, we use the Lennard-Jones potential energies to determine the 
van der Waals interaction forces and subsequently study the oscillatory behaviours of the 
three types of gigahertz oscillators. 

3 Double-walled carbon nanotube oscillators 

In order to study the oscillatory behaviour of double-walled carbon nanotubes, we use 
Newton’s second law, which on neglecting the frictional force becomes 

 
2

2

d ( ) ,
d

tot
Z

Z EM F Z
Zt

∂= = −
∂

 (13) 

where M is the mass of the inner tube. Following Cumings and Zettl [5], we pull the inner 
tube out a distance d and release it, so that the distance between their centres becomes 
Z0 = L2 – L1 + d, which leads to the geometric constraint d ≤ 2L1. Using the equations of 
motion, for the particular case that the initial velocity is zero, the oscillation frequency 
may be written 

 
4

,
4(2 )

df
d

α
β

=
+

 (14) 

where α2 = |E(0)|/(ML1) and E(0) is the potential energy at Z = 0. We note that the 
equation (14) has a maximum value for d = (L2 − L1)/2. We note that the case L1 = L2 
gives rise to small oscillations near a stable equilibrium point. The oscillation period is 
very short and as a result, we obtain the maximum frequency value. 
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From Girifalco et al. [17], Hodak and Girifalco [18] and Ma et al. [29], we obtain  
the constant values used in the model for double-walled carbon nanotube oscillators.  
By using the algebraic computer package MAPLE, we plot the potential energy and  
van der Waals force vs. the difference between the centres of the tubes Z, as shown in 
Figures 7–9 for variations of the inner tube lengths. As shown in Figure 7 for the case of 
equal lengths of the inner and outer tubes, the minimum potential energy occurs at Z = 0, 
which is the position where the tubes overlap. Moreover, the forces at this point balance 
each other and therefore represent an equilibrium position. By perturbing the inner tube 
in the axial direction away from its preferential position Z = 0, it will oscillate and 
quickly return to the position Z = 0. On the other hand, if the overall inner tube is outside 
the outer tube, the repulsive forces at the ends of the outer tube will not allow the inner 
tube to get inside unless an initial force is provided to overcome these repulsive forces, 
Figure 7(c). 

Figure 7 (a) Potential; (b) van der Waals force and (c) repulsive force, for a double-walled 
carbon nanotube of inner tube length L1 = 500 Å and outer tube length L2 = 500 Å, 
where Z represents the distance between centres of the tubes 

 

Figure 8 (a) Potential; (b) van der Waals force and (c) repulsive force, for a double-walled 
carbon nanotube of inner tube length L1 = 250 Å and outer tube length L2 = 500 Å, 
where Z represents the distance between centres of the tubes 
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Figure 9 (a) Potential and (b) van der Waals force, for a double-walled carbon nanotube of inner 
tube length L1 = 1 Å and outer tube length L2 = 500 Å, where Z represents the distance 
between centres of the tubes 

 

The potential energy and the force distribution for L1 = 250 Å and L2 = 500 Å are  
shown in Figure 8. The minimum potential energy is also at the position Z = 0, and 
maintains this constant value in the range between β2 to β4 which are the two critical 
positions defined in Section 2.1. In terms of the van der Waals force, there are  
two attractive forces at both ends of the outer tube, which keep the inner tube oscillating. 
We note that the ends of each phase for the attractive forces are also the critical  
positions, β1 and β3. Again, the repulsive forces at the outer tube ends will not allow the 
inner tube inside. An initial force is then needed for an oscillation of the inner tube  
to occur. 

Next, we further reduce the length of the inner tube. As L1 becomes less than the  
inner tube radius a, the inner tube behaves like a buckyball. The minimum energy is 
everywhere along the outer tube and there are two strong attractive forces at the ends to 
keep the inner tube oscillating. As shown in Figure 9, we observe that the forces are close 
to zero everywhere except at both ends of the outer tube. Accordingly, these forces can 
be estimated by two equal and opposite Dirac delta functions, similar to the observation 
shown in Section 4 (Cox et al. [16]). 

By using Newton’s second law, we obtain an oscillation frequency for the  
double-walled carbon nanotube with the inner tube oscillating, as depicted in Figure 10. 
The inner tube is pulled out a distance d from the end of the outer tube and released, the 
inner tube then moves back into the outer shell with the potential energy of the tubes and 
a kinetic energy resulting from an initial velocity. Moreover, there are repulsive and 
attractive forces at the ends of the outer tube to keep the inner tube in and maintain the 
oscillatory behaviour. In particular, for zero initial velocity the maximum frequency 
occurs when the inner tube is pulled out a distance d = (L2 − L1)/2. We comment that the 
frequency adopted in this context refers to the period (T = 2π/f) for which the oscillating 
molecule travels at a constant velocity apart from the instantaneous reversal occurring at 
the tube extremities. 
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Figure 10 Frequency profile for inner tube with varying lengths vs. the extrusion distance d  
(for colours see online version) 

 

4 C60 single-walled carbon nanotube oscillators 

In this section, we review Cox et al. [15,16] and summarise the underlying  
mechanisms of an oscillating C60 molecule inside a single-walled carbon nanotube.  
From the molecular dynamics study of Qian et al. [14], it is shown that a C60 molecule 
located on the axis of a nanotube and in vicinity of the tube’s open end will get sucked 
into the tube and begin the oscillatory motion spontaneously. As such, in this section we 
first deal with an issue of determining the suction and repulsion condition for a C60 
molecule locating near an open end of a carbon nanotube. In the second part, we consider 
the fullerene which gets sucked in by the nanotube and thus oscillates between the tube 
ends. 

4.1 Acceptance and suction energies 

In this subsection, we investigate the suction of a fullerene C60 into a single-walled 
carbon nanotube. In an axially symmetric cylindrical polar coordinate system (r, z), the 
centre of a fullerene C60 of radius b is assumed to be located at (0, Z) which can be inside 
or outside a carbon nanotube of semi-infinite length, centred around the positive z-axis 
and of radius a, as depicted in Figure 11. From Cox et al. [15] upon using equations (2) 
and (3), we find the potential of an atom on the carbon nanotube interacting with all 
atoms of the spherical fullerene to be given by 

 
4 4 10 10( ) ( ) ( ) ( )( ) ,52f f

b b b bP n bA n bBρ ρ ρ ρρ π π ρρ
− − − −   

   
     

+ − − + − −= −  (15) 

where ρ is the distance between the centre of the C60 molecule and an atom on the carbon 
nanotube, as shown in Figure 11. 
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Figure 11 Geometry of a C60 fullerene entering a single-walled carbon nanotube 

 

The van der Waals interaction force between the fullerene molecule and an  
atom on the tube is given by FvdW = −∇P, thus from Figure 11 the axial force is  
of the form 

 ( ) d .
dz

Z z PF
ρ ρ
−= −  (16) 

As a result, the total axial force tot ( )zF Z  of the entire carbon nanotube (0 ≤ z < ∞) 
interacting with the fullerene can be obtained by performing a surface integral of 
equation (16) over the tube, which upon simplifying gives 

 
2

tot
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8 2 80 336 512 256( ) 1 5  ,
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f g
z

n n a BF Z A
b b

π
λ λλ λ λ λ λ

    = + − + + + +        
 (17) 

where λ = (a2 – b2 + Z2)/b2. In Figure 12, we plot equation (17) and find that there are at 
most two real roots Z = ±Z0 for equation tot ( ) 0zF Z =  and these roots only exist when the 
radius a is less than some critical value a0, where b is given. In the case of a C60 fullerene 
(b = 3.55 Å) we find a0 = 6.509 Å. 

Figure 12 Force experienced by a C60 fullerene due to van der Waals interaction  
with a semi-infinite carbon nanotube 
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The integral of tot ( )zF Z  represents the work imparted to the fullerene and equates directly 
to the kinetic energy. Therefore, the integral of tot

zF  from Z = −∞ to Z0 represents the 
acceptance energy (Wa) for the system and must be positive for a nanotube to accept a 
fullerene by a suction force alone. If Wa is negative, then the magnitude of Wa represents 
the initial kinetic energy needed by the fullerene in the form of the inbound initial 
velocity for it to be accepted into the nanotube. In Figure 13, we show the acceptance 
energy Wa for a fullerene and a nanotube of radii in the range 6.1 < a < 6.5 Å. From the 
figure, Wa = 0 when a = 6.338 Å and nanotubes which are smaller than this will not 
accept C60 fullerenes by a suction force alone. This implies that a (10, 10) nanotube 
(a = 6.784 Å) will accept a C60 fullerene from rest, however a (9, 9) nanotube 
(a = 6.106 Å) will not. The result of this model is in excellent agreement with Hodak and 
Girifalco [18] and Okada et al. [30]. 

Figure 13 Acceptance energy threshold for a C60 fullerene to be sucked into a carbon nanotube 

 

The suction energy W for a fullerene, which is the total work performed by the  
van der Waals interactions on a C60 molecule entering a carbon nanotube, can be 
determined in a similar manner to Wa but the integral is performed over the entire range 
Z = −∞ to ∞. In Figure 14, we plot W for a C60 molecule entering a nanotube with  
radii in the range 6 < a < 10 Å. We note that W is positive when a > 6.27 Å and has a 
maximum value of W = 3.242 eV at a = amax = 6.783 Å. Accordingly, a (10, 10) carbon 
nanotube with a = 6.784 Å is almost exactly the optimal size to maximise W and 
therefore have a C60 fullerene accelerate to a maximum velocity upon entering the tube. 
Our model predicts that a C60 molecule in a (10, 10) carbon nanotube will accelerate to a 
velocity of 932 m/s; this result is in reasonable agreement with a molecular dynamics 
simulation of Qian et al. [14], which predicts a velocity of 840 m/s for a C60 molecule 
entering the tube. 
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Figure 14 Suction energy for a C60 fullerene entering a carbon nanotube 

 

4.2 Oscillatory behaviour 

In axially symmetric cylindrical polar coordinates (r, z), we assume a C60 fullerene is 
located inside a carbon nanotube of length 2L, centred around the z-axis and of radius a. 
As shown in Figure 15, we assume that the centre of the C60 fullerene lies on the z-axis. 
This assumption is valid for a (10, 10) carbon nanotube, since from Section 2.2 the centre 
of the C60 fullerene will be forced on the tube axis to minimise the potential energy. 

Figure 15 Geometry of the C60 fullerene oscillation 

 

Again, we adopt Newton’s second law to describe the oscillatory motion of the molecule 
inside a single-walled carbon nanotube, namely 

 
2

tot
2

d ( ),
d z

Zm F Z
t

=  (18) 

where Z is the distance between the centres of the C60 fullerene and the carbon nanotube, 
m is the total mass of the fullerene and due to the symmetry of the problem, we only 
consider the total axial van der Waals restoring force, tot ( )zF Z , in the range –L ≤ Z ≤ L, 
which generates the oscillatory motion of the C60 fullerene. Following Cumings and  
Zettl [5], we neglect the frictional effect. Further, inside the carbon nanotube (10, 10), the 
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C60 fullerene tends to move along the axial direction and not suffer rocking motion since 
its preferred location is on the z-axis. From Cox et al. [15,16], the total axial force is 
shown to be of the form 

 tot
2 1( ) 2 [ ( ) ( )],z gF Z an P Pπ ρ ρ= −  (19) 

where P(ρ) is defined by (15) and ρ1 = [a2 + (Z + L)2]1/2 and ρ2 = [a2 + (Z − L)2]1/2.  
In Figure 16, we plot tot ( )zF Z  as given in equation (19) for a (10, 10) carbon nanotube of 
length 2L = 129 Å, and it can be seen that the force is close to zero everywhere except at 
the tube extremities. The pulse-like force at the tube ends operates to attract the C60 
fullerene back towards the centre of the tube. 

Figure 16 Total axial force for a C60 fullerene oscillating inside a (10, 10) carbon nanotube 

 

For b < a << 2L, we find that tot ( )zF Z  can be estimated by the Dirac delta function.  
As a result, equation (18) becomes 

 
2

2

d [ ( ) ( )],
d

Zm W Z L Z L
t

δ δ= + − −  (20) 

where W is a constant representing the pulse strength or the work (energy) of the C60 
fullerene, given by 

 
0 tot tot

0
( ) d ( ) d .z zW F Z Z F Z Z

∞

−∞
= = −∫ ∫  (21) 

By utilising the Heaviside step function, equation (18) can be integrated to give 

 
1/ 2
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0

d 2 ,
d
Z Wv v
t m

 = = + 
 

 (22) 

for –L ≤ Z ≤ L, where v0 is the initial velocity that the C60 fullerene is fired along  
the z-axis towards the open end of the tube in the positive z-direction. We note that the 
initial velocity v0 is introduced for the case where the C60 fullerene is not sucked into  
the tube solely by the suction force due to the strong repulsion. From equation (22),  
it implies that the C60 fullerene travels inside the carbon nanotube at the constant speed v. 
As shown in Cox et al. [16], upon using equations (21) and (22) we obtain the velocity 
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v = 932 m/s for the case of the C60 fullerene initially at rest outside the carbon nanotube 
(10, 10) and the C60 fullerene gets sucked into the tube due to the attractive force alone. 
This obtained velocity agrees with the results of the molecular dynamics study by Qian  
et al. [14]. As such, we obtain the frequency f = v/(4L) = 36.13 GHz. Figure 17 shows the 
variation of the oscillatory frequency with respect to the nanotube length. This result is in 
good agreement with the molecular dynamics simulation of Liu et al. [13], which 
confirms their findings that the shorter the carbon nanotube the higher the oscillatory 
frequency. 

Figure 17 Variation of the oscillatory frequency of a C60 fullerene with respect to the length  
of a (10, 10) carbon nanotube 

 

5 C60- single-walled carbon nanotorus oscillators 

In order to study this problem, it is assumed that it is possible to close a C60-nanotube 
oscillator around onto itself so as to form the C60-nanotorus seamlessly. The vacuum 
effect, where a buckyball is sucked into one end of the nanotube [15,16], generating an 
initial velocity, is presumed to occur just prior to the closure of the nanotorus. 

There are three forces which act on the orbiting buckyball inside a nanotorus; the  
van der Waals force (resulting from the Lennard-Jones potential), the centrifugal force; 
and the force of gravity, and each force has an associated potential energy function. 
Following the findings demonstrated by Cumings and Zettl [5], Hilder and Hill [19] 
assume that the friction is negligible when compared to the other remaining forces.  
Using the Lennard-Jones potential Hilder and Hill [19] derive the van der Waals 
interaction force, given as F = −∇E(x, y, z), where x, y, z refer to the coordinates of the 
buckyball and E is the Lennard-Jones potential defined by equation (12). As the 
buckyball orbits inside the nanotorus it experiences a centrifugal force, which is the force 
experienced by a body spinning on an axis and is directed away from the centre of 
rotation. The centrifugal force is Fc = −mRω2, where m is the mass of the buckyball, with 
corresponding energy Ec = −mR2ω2/2. The buckyball also experiences a gravitational 
effect as it rotates, defined by Fg = mg, where g is acceleration due to gravity (9.81 m/s2). 
The corresponding potential energy can be written as Eg = −mgh, where h is the height 
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above some datum level and we assume the plane of the nanotorus is aligned to the 
horizontal. The total energy becomes Et = E + Ec + Eg, and the position of the buckyball 
is located where this energy is a minimum. 

Since gravity is found to be negligible, Newton’s second law can be shown to  
reduce to 

 2 ,E mR
R

ω∂ =
∂

 (23) 

where E is the Lennard-Jones energy given by equation (12), m is the buckyball mass, ω 
is the angular velocity and R is the distance from the centre of rotation to the centre of the 
rotating body (R = c + εcosφ1 and φ1 = 0). By rearranging equation (23), a relationship 
between the angular velocity ω and the buckyball position ε is determined. Figure 18 
illustrates the angular velocity of a nanotorus created from closing a (10, 10) tube against 
the buckyball position, ε. At rest, the buckyball will locate itself to its equilibrium 
position (ε = 0.9 Å, shown in Figure 6) and as a result there is no angular velocity until 
this position is reached. To move the buckyball from the equilibrium position, away from 
the centre of the nanotorus, an angular velocity must be applied. As shown in Figure 18, 
this velocity increases exponentially as the distance ε increases. This shift away from the 
centre of rotation occurs for angular velocities in the gigahertz range, where the shift is 
greater as the angular velocity increases. For example, for the (10, 10) carbon nanotorus, 
a frequency of 34 GHz moves the buckyball 0.4 Å away from the equilibrium  
position, whereas a frequency of 150 GHz moves the buckyball 1 Å away. In contrast, in 
Section 4.2 (Cox et al. [16]) a frequency of 36.13 GHz is found for the C60-nanotube 
oscillator comprised of a (10, 10) carbon nanotube. 

Figure 18 Angular velocity of (10, 10) nanotorus against buckyball position ε 

 

6 Summary 

In this paper, we review the recent work of the authors on modelling the mechanisms of 
nano-oscillators, for which the oscillatory motion generates frequencies in the gigahertz 
range. Three different types of oscillators are presented; double-walled carbon nanotubes, 
C60-nanotube and C60-nanotorus oscillators. For all three configurations, we use the 
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Lennard-Jones potential together with the continuum approach to determine the  
formal mathematical expressions for the energy and the van der Waals interaction force. 
We emphasise that the major contribution of the authors in this area is the use of 
elementary mechanics and classical applied mathematics to formulate explicit analytical 
expressions and ideal model behaviour in a scientific context previously only elucidated 
through experiments and molecular dynamics studies. 

For double-walled carbon nanotube oscillators, we determine mathematical 
expressions that can be used to describe the force distribution and oscillation behaviour 
for double-walled carbon nanotubes of arbitrary lengths 2L1 and 2L2 for the inner and 
outer tubes, respectively. The oscillatory behaviour is most likely to occur when the inner 
tube end coincides with the outer tube end due to the strong repulsive force. We note that 
the period of these forces act when the inner tube position is in the regions β1–β2 and  
β3–β4, where β1 = −L1 − L2, β2 = L1 − L2, β3 = L1 + L2, and β4 = −L1 + L2. Furthermore, it 
can be seen that if we pull the inner tube out with the extrusion distance d < 2L1 and 
release it, the inner tube will oscillate inside the outer tube without escape. This is 
because the strong attractive forces at the ends of the outer tube maintain the oscillatory 
behaviour. We observe that in general the longer the extrusion distance and the shorter 
the inner tube length, the higher the oscillatory frequency. 

For the case of a C60 fullerene inside a single-walled carbon nanotube, we prescribe 
the potential energy of the system and the results show that as the tube radius gets larger, 
the C60 fullerene is likely to be closer to the tube wall. For a (10, 10) carbon nanotube, we 
find that the centre of the buckyball is located at the centre of the cross-section of the 
tube due to this being the position of minimum energy. These results are in excellent 
agreement with Girifalco et al. [17] and Hodak and Girifalco [18]. For the suction of C60 
fullerenes into single-walled carbon nanotubes, we find that the carbon nanotube with 
radius a > 6.338 Å will suck in the C60 molecule from rest. For smaller tubes, an initial 
velocity is required for a buckyball to penetrate into the tube. We further find that a C60 
fullerene admits the maximum velocity when it enters a carbon naotube with  
radius a = 6.783 Å. In terms of the oscillatory behaviour of a C60 fullerene inside a 
single-walled carbon nanotube, we find that the interaction force is close to zero 
everywhere except at the tube extremities, where two pulse-like forces operate to keep 
the C60 fullerene oscillating between both ends. We use the Dirac delta function to 
capture this essential phenomena and find that our mathematical model predicts the 
velocity of the C60 fullerene and the gigahertz oscillation frequency well in agreement 
with molecular dynamics simulations of Liu et al. [13] and Qian et al. [14]. 

For the C60 fullerene orbiting inside a horizontally inclined carbon nanotorus, we find 
that the effect of gravity is considerably less than that arising from the Lennard-Jones 
interaction energy and centrifugal force. Similar to the C60-nanotube oscillator, we find 
that as the nanotorus tube radius increases the buckyball moves close to the tube wall. 
The addition of the centrifugal force causes the buckyball to move closer to the tube wall 
and further from the centre of rotation. As the angular velocity increases this effect is 
increased. Frequencies are in the gigahertz range and values as high as 150 GHz can be 
reached by a change of buckyball position of 1 Å without the need for any structural 
change. We note that the C60-nanotorus oscillator is speculative in nature and presents 
exciting possibilities, however, there are still numerous practical challenges that need to 
be overcome before the C60-nanotorus oscillator can be realised. 
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