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Abstract

Novel methods are proposed for self-calibrating a pure-
rotating camera using semidefinite programming (SDP).
Key to the approach is the use of the positive-definiteness re-
quirement for the dual image of the absolute conic (DIAC).
The problem is couched within a convex optimization frame-
work and convergence to the global optimum is guaranteed.
Experiments on various data sets indicate that the proposed
algorithms more reliably deliver accurate and meaningful
results. This work points the way to an alternative and
more general approach to self-calibration using the advan-
tageous properties of SDP. Algorithms are also discussed
for cameras undergoing general motion.

1. Introduction

Self-calibration is the process by which camera param-
eters are automatically determined from image point data
that has been matched across multiple images [17]. It
has proven a remarkable development in computer vision
in that it has often obviated the need in vision applica-
tions for a tedious prerequisite step involving a known cal-
ibration pattern. Elemental in the formulation of the self-
calibration problem are Kruppa’s equations [12], and some
early self-calibration techniques were based directly upon
solving these equations [17]. However, their use has not
subsequently found favor as these techniques are suscep-
tible to noise and often fail to produce physically mean-
ingful results [15]. A discussion of the difficulties associ-
ated with methods based upon Kruppa’s equation can be
found in [16]. Favored techniques for self-calibration have
been the linear method [8], based upon simple algebraic
least squares, and nonlinear iterative methods, such as bun-
dle adjustment [18]. It emerges that a key constraint can-
not be incorporated by these methods. Furthermore, the
bundle-adjustment approach is typically highly sensitive to
initialization accuracy. In this paper, we seek to overcome
the disadvantages associated with the direct use of Kru-
ppa’s equations. In the context of self-calibrating a ro-
tating camera, we develop novel techniques cast within a

semidefinite programming (SDP) framework. In this way,
the positive-definiteness constraint of the dual image of ab-
solute conic (DIAC) is fully incorporated and global con-
vergence is guaranteed. This paper further develops work
presented in [14].

1.1. Related work

For a general overview of camera self-calibration, the in-
terested reader is referred to [12]. The work most closely
related to this paper is due to Agrawal et al. [3, 2]. Here use
is made of the positive-definiteness constraint of the DIAC.
In contrast with our formulation, however, Agrawal [2] es-
timates only the focal length and assumes other parameters
are known. The optical center is assumed coincident with
the optical center of the camera, and this is known to be
problematical. Indeed, Hartley and Kaucic [10] have shown
that errors in the assumed optical center can have a deleteri-
ous influence on the estimated focal length of the cameras.
In [3] three images of a sphere are used to calibrate a cam-
era. Both of these papers use the spectral matrix norm as
the cost function. In contrast with these works, for the rotat-
ing camera self-calibration problem, we utilize the Kruppa’s
equations, estimate all camera parameters, adopt three pos-
sible norms and devise a semidefinite programming frame-
work that guarantees convergence to the global optimum.

A global optimization method, termed interval analysis,
has been applied to camera self-calibration by Benedetti et
al. [4]. Like many other global methods, the computational
complexity of interval analysis is very high. Moreover the
algorithm is not easy to implement. Since [11] introduced
`∞ minimization into multi-view geometry, there has been
a growing interest in seeking a globally optimal solution us-
ing mathematical programming tools. For example, [13] hi-
erarchically convexifies nonconvex optimization problems
with polynomials. At each step an SDP is solved. In [1]
several geometry problems are formulated as fractional pro-
grams and a branch and bound procedure is implemented to
find the global optimum.

Notation. The (m,n) entry of a matrix X is repre-
sented by Xmn. The trace of X is denoted by Tr(X).
The operator vec(X) stacks all the columns of the ma-
trix X into a column vector. The inner product of two
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matrices is defined as 〈X,Y 〉 = Tr(X>Y ). The spec-
tral norm (a.k.a. matrix norm) of a matrix X , denoted by
‖X‖2, is the square root of the largest eigenvalue of X>X ,
i.e., ‖X‖2 =

√
λmax(X>X). The Frobenius norm of X

is given by: ‖X‖F =
√∑

mnX
2
mn. The `1 norm of X is

defined as ‖X‖1 =
∑
mn |Xmn|. A positive semidefinite

(p.s.d.) matrix X is represented by X < 0. For a p.s.d. ma-
trix X , we have v>Xv ≥ 0, ∀v.

2. Rotating cameras

We consider the self-calibration of cameras with pure
rotation. An algorithm for calibrating a rotating camera
was given in [8] and was generalized in [7] to allow for
zooming and possible variation of the optical center of the
camera. We briefly summarize below the linear calibra-
tion method given in [7]. Assume that we have a set of
images taken with cameras located at the same point in
space, which is defined as the coordinate origin. The in-
ternal matrix, Ki, of each camera is a 3×3 matrix given by
Ki = [f κf u0; 0 αf v0; 0 0 1], where f is the focal
length, α is the aspect ratio, u0 and v0 are the coordinates
of the optical center and κ is the skew parameter.

For a camera undergoing pure rotation, any two images
of a static scene are related by a planar homography, which
is a pure geometric relationship independent of scene con-
tents. We denote the homography between the ith and jth
images as Hij . The homographies can be calculated by
direct measurement of matching points in the set of im-
ages [12]. Denoting by Xi the DIAC in the ith image,
the following simplified form of the Kruppa equations de-
fines the rules for transforming conics under homographies:
Xi = HijXj(Hij)>. The DIAC is related to the cam-
era’s internal matrix by the formula Xi = Ki(Ki)>. These
equations serve as the basis for camera self-calibration. The
calibration matrix Ki can be easily computed from Xi by
Cholesky decomposition. Specifically any symmetric posi-
tive semidefinite matrix can be uniquely factored as product
ofKK> such thatK is an upper triangular matrix with pos-
itive diagonal entries. Clearly Xi must be positive semidef-
inite.

2.1. Semidefinite programming

We briefly recall some important results on semidefinite
programming (SDP). These results can be found in [5]. The
SDP approach minimizes a linear objective under a linear
matrix inequality (LMI) constraint. An LMI is a constraint
on a vector x = {x1, x2, · · · , xm} of the form F(x) =
F0 +

∑m
i xiFi < 0, where Fi = F>i , i = 0, 1, · · · ,m

are symmetric matrices. SDP optimization is a special case
of the more general convex programming, which has the

standard form

minimize c>x, s.t.F(x) < 0.

Here c is a vector that models the problem at hand. Note
that multiple LMIs and linear inequalities can be included
and transformed into the standard form of SDP [5]. An
SDP is convex, hence global optimality is guaranteed, and
can be solved in polynomial time with interior-point meth-
ods. It is observed that the number of iterations of interior-
point methods is almost constant, independently of problem
size. The problems we are interested in here are small and
can be solved very efficiently. Off-the-shelf SDP software
packages are available, e.g., SeDuMi and CSDP. If the ma-
trices Fi are all diagonal, then the LMI is a set of linear
inequalities, and the SDP reduces to a linear program. In-
deed, several optimization techniques, such as second-order
cone programming (SOCP) and quadratically-constrained
quadratic programming (QCQP), are special cases of SDP.
An extremely useful tool for converting a problem into SDP
forms is the Schur complement method described below.

Theorem 2.1. Consider a symmetric matrix X partitioned
as X = [A B;B> C], where A is symmetric. If det(A) 6=
0, the matrix S = C − B>A−1B is the Schur complement
of A in X . Then we have: (1) X � 0 if and only if A � 0
and S � 0; (2) If A � 0, then X < 0 if and only if S < 0.

See [5] for the proof. Next we show how camera calibra-
tion under various cost functions can be cast as semidefinite
programming problems.

2.2. SDP formulation for constant internal
parameters

We consider the case that the camera only undergoes a
two-axis rotation, and no zooming is allowed. In this case
the camera’s internal parameters remain constant through-
out the sequence. Under this assumption, camera self-
calibration is achieved by solving the following equations1

X ' HijX(Hij)>, (1)

where ' denotes equality up to a nonzero scalar factor.
Given this scale ambiguity, the entry (3, 3) of K can be as-
sumed to be 1. It is easy to see that the constraint K33 = 1
is equivalent toX33 = 1. For simplicity, we describe our al-
gorithm for three image frames. However, the presented al-
gorithm can be trivially extended to arbitrarily many views
in a straightforward way. Inevitably, with noise in the mea-
surement, and hence the homographies, it is not possible
that Equation (1) will be exactly satisfied. Instead we wish

1The superscripts of X are dropped because we are considering the case
that the internal calibration matrix is constant.
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to minimize a cost function under some certain criterion.
Mathematically, we want to solve:

minimizeF (X,HijX(Hij)>) s.t. X < 0, X33 = 1.
(2)

Here, F (·, ·) measures the proximity of two matrices. How
should this proximity be measured? There are many met-
rics defined in matrix analysis. Typical choices are the `1,
Frobenius and spectral norms.

2.2.1 The `1 norm cost

The `1 norm is one of the most widely used metrics to mea-
sure the distance between vectors or matrices. In the case
of the `1 norm, we want to minimize∥∥X −H12X(H12)>

∥∥
1

+
∥∥X −H13X(H13)>

∥∥
1
.

For ease of presentation we define

Z12 = X −H12X(H12)>, (3)

Z13 = X −H13X(H13)>. (4)

Both Z12 and Z13 are linear inX . Introducing the auxiliary
variables δmn and δ′mn ( m,n = 1, 2, 3; and m ≤ n). The
optimization problem is then equivalent to

minimize
X,δmn,δ′mn

∑
m,n=1,2,3;m≤n

(δmn + δ′mn)

s.t. δmn ≥ 0, δ′mn ≥ 0,

− δmn ≤ Z12
mn ≤ δmn,

− δ′mn ≤ Z13
mn ≤ δ′mn, (m,n = 1, 2, 3;m ≤ n)

X < 0, X33 = 1. (5)

Here, we have converted the `1 norm optimization into an
SDP since all the constraints are linear except for the LMI.
Note that the summation above can be restricted to the range
m ≤ n, since the involved matrices are symmetric.

2.2.2 The Frobenius norm cost

The Frobenius norm is of interest because almost all the pre-
vious rotating camera self-calibration algorithms minimize
this particular least-squares cost function [8, 7] which can
be expressed as∥∥X −H12X(H12)>

∥∥2

F
+
∥∥X −H13X(H13)>

∥∥2

F
.

This is actually a (generalized) semidefinite least-squares
(SDLS) problem [6]. Methods exist for solving large-scaled
SDLS problems. Nevertheless for camera calibration, the
problem size is relatively very small. Therefore in this work

we formulate this generalized SDLS problem as an SDP. We
rewrite the original problem as

minimize
X,δ1,δ2

(δ1 + δ2)

s.t.
∥∥X −H12X(H12)>

∥∥2

F
≤ δ1∥∥X −H13X(H13)>

∥∥2

F
≤ δ2

X < 0, X33 = 1. (6)

Recalling Z12 in (3), the first constraint in (6) is equiva-
lent to [vec(Z12)]>[vec(Z12)] ≤ δ1. Again, with the Schur
complement lemma this constraint can be expressed as an
LMI:

[δ1 [vec(Z12)]>; vec(Z12) I] < 0.

Here I is an identity matrix. We also have

[δ2 [vec(Z13)]>; vec(Z13) I] < 0.

for the second constraint. We have thus converted the
Frobenius cost minimization into an SDP. These two con-
straints are second-order cones. Unfortunately it is impos-
sible to convert (6) into an SOCP due to the p.s.d. constraint
X < 0.

2.2.3 The spectral norm cost

The spectral norm of a symmetric matrix is its largest eigen-
value value. Obviously when the spectral norm is close to
zero, each entry of the matrix approaches zero. In this case,
the cost function becomes∥∥X −H12X(H12)>

∥∥
2

+
∥∥X −H13X(H13)>

∥∥
2
.

By introducing two non-negative auxiliary variables δ1 and
δ2, we rewrite the optimization problem as:

minimize
X,δ1,δ2

(δ1 + δ2)

s.t.
∥∥X −H12X(H12)>

∥∥2

2
≤ δ1∥∥X −H13X(H13)>

∥∥2

2
≤ δ2

X < 0, X33 = 1. (7)

With the Schur complement lemma, the first two con-
straints can be converted into LMIs as follows

[δ1I (XH12X(H12)>)>;XH12X(H12)> I] < 0,

and

[δ2I (XH13X(H13)>)>;XH13X(H13)> I] < 0.

Now the first three constraints are all LMIs and the last one
is a linear equality. Furthermore, the cost function is linear,
so the problem is an SDP.
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3. Experiments

We now test the SDP algorithms on synthetic image data
and compare the results with those of the linear method.

Simulated data are generated as follows. A set of 200
uniformly random 3D points is distributed within in a cube
and sampled. The 3D points are projected onto images via
a perspective camera. Multiple images are generated via
pure rotation of the camera. The simulated image size is
256×256, and image coordinates are corrupted by Gaussian
noise with various levels of standard deviation.

In the first experiment, we compare the accuracy of fo-
cal length estimation. The experiments are repeated over
150 runs and the average error is presented. For the pro-
posed SDP algorithms, the three different norms give simi-
lar results. Figure 1 (left) plots the error of the focal length
with SDP (`1 norm) and the standard linear algorithm. The
linear algorithm gives the optimal solution in terms of ac-
curacy but drop the requirement of positive-definiteness of
K. The errors for the SDP algorithm are very close to that
obtained by the linear algorithm. In theory, our SDP formu-
lation should have the same accuracy as the linear methods.
In practice, because of the SDP solver’s implementation,
there are numerical artifacts. Also since our SDP adopts the
interior-point Newton algorithm which solves the problem
iteratively, to set the stopping threshold smaller improves
the accuracy. But the price is more iterations needed for
convergence. Also evaluated was the success rate-that is,
the percentage that the estimated X is indeed positive def-
inite and a valid K can be attained. Figure 1 (right) shows
that SDP always produces a numerically meaningful esti-
mate, in contrast with the linear method.

Figures 2 and 3 summarize the results. Table 1 shows the
results of SDP (`1) at different levels of noise and Table 2
reports the results obtained by different methods under for
a noise level of 0.4 pixels.

Again it can be seen from Figure 3 that SDP algorithms
give close solutions to the linear method. At the same time
they are more reliable.

4. Globally Solving the Kruppa’s Equations

We have discussed how to self-calibrate rotating cam-
eras using SDPs, which is based on the reduced form of the
Kruppa’s equations. We discuss how to solve the Kruppa’s
equation globally in this section such that we can deal with
general camera motions. Most practical self-calibration ap-
proaches based on Kruppa’s equations depend on the epipo-
lar geometry of pairs of views and identify the IAC. Kru-
ppa’s equations can be viewed as an epipolar matching con-
straint for the projections of quadratics or conics. There are
various ways to obtain the Kruppa’s equations, e.g., by uti-
lizing algebraic relationships between projective geometric

Figure 2: Calibration results of SDP (`1 norm). The first
row shows ground truth, and subsequent rows show the ef-
fects of different level of noise (measured in pixels).

Figure 3: Calibration results of different methods. The
noise level is 0.4 pixels. The first row shows ground truth.
For the linear method, 4 trials out of 150 fail to give a valid
estimate.

quantities or by singular value decomposing (SVD) of the
fundamental matrix.

If we let Y = KK> = [p q r; q s t; r t 1] < 0, withK
is camera’s internal matrix, the explicit Kruppa’s equations
are:

a>1Y a1

a′>1 Y a′1
=

a>1Y a2

a′>1 Y a′2
=

a>2Y a2

a′>2 Y a′2
, (8)

where a1,a2,a′1,a
′
2 ∈ R3×1 are column vectors. They can

be found by an SVD of the fundamental matrix [9]. Obvi-
ously there are two forms for Kruppa’s equations: the poly-
nomial form and the fractional form. We use the polynomial
form of the Kruppas equations. Each motion then provides
three polynomials and two of them are independent. There-
fore the cost function we wish to minimize is:

F (Y ) =
∑
i

(|ui11u′i11 − u′i11ui12|+ |ui12u′i22 − u′i12ui22|

+ |ui11u′i22 − u′i11ui22|). (9)
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Figure 1: Calibrating a rotating camera from three images using SDP (`1 norm) and the standard linear method in the presence
of 16 different degrees of noise. The size of the image is 256×256 pixels. (left) Relative errors of the focal length estimated.
(right) Rate of valid solutions attained. SDP always outputs a valid solution.

Here the superscript i indexes the motion; |u| is the absolute
value of u. We have also defined the following shorthand
symbols: u11 = a>1Y a1, u′11 = a′>1 Y a′1, u12 = a>1Y a2,
u′12 = a′>1 Y a′2, u22 = a>2Y a2, u′22 = a′>2 Y a′2. They are
all linear in Y . Typically the above absolute operation (`1
criterion) can be replaced with the least-squares criterion,
which yields a smooth cost function and iterative gradient
methods (e.g., the Levenberg-Marquardt algorithm) can be
applied.

Using similar techniques as solving the `1-norm cost
function of the rotating camera, the optimization is formally

minimize
Y,δi

0,δ
i
1,δ

i
2

∑
i

(δi0 + δi1 + δi2)

subject to − δi0 ≤ ui11u′i11 − u′i11ui12 ≤ δi0,
− δi1 ≤ ui12u′i22 − u′i12ui22 ≤ δi1,
− δi2 ≤ ui11u′i22 − u′i11ui22 ≤ δi2 ∀i,
Y < 0. (10)

Same as previous, here δi0, δ
i
1, δ

i
2 are auxiliary variables.

Equation (10) is not convex and hence difficult to solve.
We now show how to convert this problem into an SDP.

First we define a column vector z = [p q r s t 1]>,
which is the vectorized upper triangle of Y , and we have
Z = zzT < 0. Clearly we also have rank(Z) = 1. In
terms of Z, the constraint Y < 0 in (10) can be expressed
as Z16 Z26 Z36

Z26 Z46 Z56

Z36 Z56 1

 < 0.

It is critically important to observe that ui11u
′i
11−u′i11ui12

(and the other two) can be written as a linear expression

of Z. For ease of presentation, we introduce matrices
Ai, Bi, Ci ∈ R6×6. The non-convex constraints in (10)
are equivalent to

−δi0 ≤
〈
Ai, Z

〉
≤ δi0, (11)

−δi1 ≤
〈
Bi, Z

〉
≤ δi1, (12)

−δi2 ≤
〈
Ci, Z

〉
≤ δi2 (∀i). (13)

Since it is difficult to directly solve for Y , we instead
solve for Z and it is trivial to obtain Y from Z. By putting
the above analysis together, the problem (10) is equivalent
to:

minimize
Z,δi

0,δ
i
1,δ

i
2

∑
i

(δi0 + δi1 + δi2)

subject to (11), (12), (13)
Z < 0, rank(Z) = 1. (14)

The equivalence can be easily established. The above
optimization problem is still non-convex due to the rank
constraint. The seemingly simple rank constraint leads to
an NP-hard optimization problem. Rank-constrained LMIs
frequently arise in mathematical programming. As yet there
is no effective solution method. If we drop the rank con-
straint rank(Z) = 1, we can form a relaxation the original
problem, which is an SDP in the variables Z and δi0, δ

i
1, δ

i
2.

The optimal value of the relaxed program will be a lower
bound on the optimal value of the original problem.

Because of the relaxation, the matrix rank constraint is
removed and therefore the SDP solution might be lifted to
a higher rank (higher dimensional space). In this higher di-
mensional space, the cost function is lower than it would be
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when the solution is constrained to rank one. An important
SDP research topic is how to round the higher-dimension
(higher rank) SDP solution into a lower-dimension (desired
low rank) solution. In our case, a naive treatment is to
project the solution Z to the rank-one semidefinite cone.
A nearest suboptimal Z∗ is then obtained. This can be eas-
ily performed using the eigenvalue decomposition. Similar
ideas are used to compute a low-rank embedding from the
top eigenvectors in maximum variance folding [19]. This
suboptimal Z∗ can then be used as an initial starting po-
sition for Levenberg-Marquardt bundle adjustment refine-
ment. With a reasonable initial guess, a local search can be
efficient for finding a low-rank solution in many cases.

5. Conclusion

We have shown how to transform the rotating camera
self-calibration problem into a semidefinite programming
problem. In doing so, the positive-definiteness constraint
is seamlessly integrated. Because the reformulated prob-
lem involves convex optimization, meaningful solutions are
guaranteed, in contrast with the operation of the linear algo-
rithm. This work points the way to a more general approach
to self calibration for which accurate and meaningful solu-
tions are assured.

Acknowledgments

NICTA is funded through the Australian Government’s
Backing Australia’s Ability initiative, in part through the
Australian Research Council.

References

[1] S. Agarwal, M. Chandraker, F. Kahl, S. Belongie, and D. J.
Kriegman. Practical global optimization for multiview ge-
ometry. In Proc. Eur. Conf. Comp. Vis., volume 1, pages
592–605, Graz, Austria, 2006.

[2] M. Agrawal. On automatic determination of varying focal
lengths using semidefinite programming. In Proc. IEEE Int.
Conf. Image Process., pages 3379–3382, Singapore, 2004.

[3] M. Agrawal and L. S. Davis. Camera calibration using
spheres: A semi-definite programming approach. In Proc.
IEEE Int. Conf. Comp. Vis., pages 782–789, Nice, France,
2003.

[4] A. Benedetti, M. Farenzena, and A. Busti. Globally con-
vergent autocalibration using interval analysis. IEEE Trans.
Pattern Anal. Mach. Intell., 26(12):1633–1638, 2004.

[5] S. Boyd and L. Vandenberghe. Convex Optimization. Cam-
bridge University Press, 2004.

[6] S. Boyd and L. Xiao. Least-squares covariance matrix ad-
justment. SIAM J. Matrix Anal. Appl., 27(2):532–546, 2005.

[7] L. de Agapito, E. Hayman, and I. Reid. Self-calibration
of rotating and zooming cameras. Int. J. Comp. Vis.,
45(2):107–127, 2001.

[8] R. I. Hartley. Self-calibration from multiple views with
a rotating camera. In Proc. Eur. Conf. Comp. Vis.,
volume 1, pages 471–478, Stocklholm, Sweden, 1994.
Springer-Verlag.

[9] R. I. Hartley. Kruppa’s equations derived from the funda-
mental matrix. IEEE Trans. Pattern Anal. Mach. Intell.,
19(2):133–135, 1997.

[10] R. I. Hartley and R. Kaucic. Sensitivity of calibration to
principal point position. In Proc. Eur. Conf. Comp. Vis., vol-
ume 2, pages 433–446, Copenhagen, Denmark, 2002.

[11] R. I. Hartley and F. Schaffalitzky. `∞ minimization in geo-
metric reconstruction problems. In Proc. IEEE Conf. Comp.
Vis. Patt. Recogn., volume 1, pages 504–509, Washington,
DC, 2004.

[12] R. I. Hartley and A. Zisserman. Multiple View Geometry in
Computer Vision. Cambridge University Press, 2nd edition,
2004.

[13] F. Kahl and D. Henrion. Globally optimal estimates for ge-
ometric reconstruction problems. In Proc. IEEE Int. Conf.
Comp. Vis., volume 2, pages 978–985, Beijing, China, 2005.

[14] H. Li and C. Shen. An LMI approach for reliable PTZ cam-
era self-calibration. In Proc. IEEE Int. Conf. Adavanced
Video & Signal Based Surveillance, pages 79–84, Sydney,
Australia, 2006.

[15] Q.-T. Luong and O. D. Faugeras. Self-calibration of a mov-
ing camera from point correspondences and fundamental
matrices. Int. J. Comp. Vis., 22(3):261–289, 1997.

[16] Y. Ma, R. Vidal, J. Kosecka, and S. Sastry. Kruppa equa-
tion revisited: Its renormalization and degeneracy. In Proc.
Eur. Conf. Comp. Vis., volume 2, pages 561–577. Springer-
Verlag, 2000.

[17] S. J. Maybank and O. D. Faugeras. A theory of self calibra-
tion of a moving camera. Int. J. Comp. Vis., 8(2):123–151,
1992.

[18] B. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon.
Bundle adjustment — a modern synthesis. In B. Triggs,
A. Zisserman, and R. Szeliski, editors, Vision Algorithms:
Theory and Practice, volume 1883 of Lecture Notes in Com-
puter Science, pages 298–372. Springer-Verlag, 2000.

[19] K. Q. Weinberger and L. K. Saul. Unsupervised learning
of image manifolds by semidefinite programming. Int. J.
Comp. Vis., 70(1):77–90, 2006.

441

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 28, 2009 at 23:46 from IEEE Xplore.  Restrictions apply.


