
Towards Effort Estimation for Web Service Compositions

using Classification Matrix

Zheng Li
NICTA and UNSW

School of CSE
Sydney, Australia

Zheng.Li@nicta.com.au

Liam O’Brien
CSIRO and ANU

School of CS
Canberra, Australia

Liam.OBrien@csiro.au

Abstract — Within the service-oriented computing domain,
Web service composition is an effective realization to satisfy
the rapidly changing requirements of business. Although the
research into Web service composition has unfolded broadly,
little work has been published towards composition effort
estimation. Since examining all of the related work in this area
becomes a mission next to impossible, the classification of
composition approaches can be used to facilitate multiple
research tasks. However, the current attempts to classify Web
service composition are not suitable for the research into effort
estimation. For example, the contexts and technologies of
composition approaches are confused in the existing
classifications. This paper firstly proposes an effort-oriented
classification matrix for Web service composition, which
distinguishes between the context and technology dimension.
The context dimension is aimed at analyzing the environmental
influence on the effort of Web service composition, while the
technology dimension focuses on the technical influence on the
effort. Therefore, different context types and technology
categories can be treated as different effort factors. Based on
the classification matrix, this paper also builds an effort-
estimation-checklist table by applying a set of qualitative effort
estimation hypotheses to those effort factors. The table can
then be used to facilitate comparing the qualitatively estimated
effort between different composition approaches.

Keywords - service-oriented architecture (SOA);
classification matrix; Web service composition; effort hypotheses;
effort estimation

I. INTRODUCTION

Web services have been widely accepted as the preferred
standards-based way to implement Service-Oriented
Architecture (SOA) in practice. Since “only when we reach
the level of service composition can we realize all the
benefits of SOA” [16], the research into composing Web
services has grown significantly along with the increasing
necessity of reusing existing resources. Over the past decade,
numerous works for composing Web services have been
developed and reported in the literature. However, little work
can be found towards the cost and effort estimation for Web
service compositions. Meanwhile, it is difficult to investigate
different composition effort by exhausting all the published
composition approaches. However, we can inductively
classify the existing Web service composition works, and

thereby to facilitate the comprehension of related knowledge
and the effort estimation work.

Existing classification work of Web service composition
can be found in several survey papers [17, 19]. These
classifications are either incomplete or ambiguous, which
brings many issues when using them to categorize and
analyze new composition approaches. Firstly, none of the
existing classifications distinguishes between the
composition technologies and the composition contexts. For
example, Dustdar and Schreiner [17] list model-driven
approaches as a separate composition category, while
combining AI planning approaches with the automatic
design process and ontology environment. Secondly, the
terminology is vague in some composition classifications.
For example, Rao and Su [19] use “static composition” to
cover those approaches having manual workflow generation,
even though the component Web service selection and
binding are accomplished automatically. Finally, the lack of
clear classification targets is the most significant weakness of
existing classification work of Web service composition.
Current classification work generally surveys composition
types through subjective identification without objective
constraints. The resulting classification is then hardly
associated with other specific research topics such as
software cost and effort estimation. For example, the
declarative service composition class [17] focuses on its
irregular composition architecture that is almost irrelevant to
the composition effort and cost.

In this paper, we first present a novel classification
matrix aimed at the influence on the effort of Web service
composition. This matrix uses clarified terminology, and
differentiates the classifications between the Context and
Technology dimensions. The Context dimension includes
major effort related contexts that are Pattern, Semiotics,
Mechanism, Design Time and Runtime. When considering
different composition Patterns for the same target,
orchestration deals with a central mediator while
choreography is a collaboration of all the participant Web
services. Within the Semiotics context, semantic Web
services have more descriptions than syntactic Web services,
which can facilitate service discovery and matchmaking.
Mechanism context comprises SOAP-based and RESTful
composition. RESTful Web service compositions are
relatively lightweight compared with SOAP-based

compositions. According to the manipulation procedure
before generating a real composite Web service, there can be
manual, semi-automatic, or automatic compositions at
Design Time. During Runtime, the dynamic and static
compositions are differentiated by the adaptability of Web
service composition. On the other hand, the Technology
dimension is divided into well defined Workflow-based,
Model-driven, and AI Planning technology categories. In fact,
one composition approach can be classified into one
technology category and some context categories at the same
time. For example, the approach in [5] uses model-driven
technology and is under the contexts: Orchestration,
Semantics, SOAP, Manual, and Static. Therefore, a matrix is
suitable to represent this kind of cross-classification.

Considering the different influences on the composition
effort, different context types and technology categories can
be viewed as different effort factors of Web service
compositions. After applying a set of effort estimation
hypotheses to these factors, we can get a checklist that
qualitatively defines their effort influences. By using several
assistant symbols and rules, an effort score is further
assigned to each factor to reflect its influence on composition
effort. By associating the effort scores with the applied
hypotheses, we can then build an effort-estimation-checklist
table based on our previously proposed effort-oriented
classification matrix of Web service composition [1].
Supposing the effort scores of different factors across two
dimensions can be multiplied to reflect their combined
influence on composition effort, the multiplied result are also
specified in the corresponding cross area in this table.
Eventually, the effort-estimation-checklist table facilitates
comparing the qualitatively estimated effort of different
composition approaches listed in the classification matrix.

The contributions of this research are manifold. Firstly,
the complete classification matrix can help researchers
explore the knowledge space in service composition domain,
and help developers choose suitable techniques when
composing Web services. Secondly, since different
technology categories and context types can be regarded as
different effort factors when composing Web services, a set
of effort estimation hypotheses are proposed and a checklist
is generated to qualitatively define these factors’ influences
on composition effort. Thirdly, an effort-estimation-checklist
table is built, which can further help researcher and
developers compare the qualitative effort between different
composition approaches. Last but not least, new research
opportunities could be revealed when comparing and
analyzing those different composition approaches.

This paper is organized as follows. Section II justifies the
necessity of the research into effort estimation for Web
service composition. The two following sections try to
identify effort factors of Web service composition by
building up a classification matrix. Section III introduces the
context-based classification through specifying every type of
context. Section IV presents the technology-based
classification, and explicitly defines different technology
categories. In addition, a part of our work is demonstrated in
Appendix I as an example of classification matrix of Web
service composition. Section V introduces a set of effort

estimation hypotheses, and applies these hypotheses to
different composition effort factors. The result then
constitutes an effort-estimation-checklist table, as illustrated
in Appendix II. The conclusion is drawn, and some potential
research opportunities are identified in Section VI.

II. NECESSITY OF EFFORT ESTIMATION FOR WEB

SERVICE COMPOSITION

As previously mentioned, service composition has
increasingly become a significant type of SOA project. In
SOA, composition of services is the concept with which we
provide support for business processes in a flexible and
feasible way. Through this way of business support, business
processes in SOA are essentially a composition of service
invocations in a certain order with rules that influence the
execution and other constructs, such as parallel invocations,
transformations of data, dependencies, and correlations. As
organizations move to having more and more services, and
business application software will increasingly rely on
subscribing services [49], then the major problem in SOA
implementation will be service composition and may be less
on development of new services.

Consequently, we can concentrate on the service
composition as a breakthrough in effort estimation for SOA
implementations that is crucial for properly balancing the
benefit and cost in SOA system investment or project
bidding. In practice, contemporary SOA is intrinsically
reliant on Web services, and meanwhile Web service concept
and technology used to actualize service-orientation have
influenced and contributed to a number of the common SOA
characteristics [50]. Therefore, Web service can be viewed as
the de facto implementation of service concept, and we can
then focus on the effort estimation for Web service
compositions.

To the best of our knowledge, unfortunately, there is little
work published about estimating effort of composing Web
services. Through literature review, we believe the
challenges of effort estimation for Web service composition
are mainly twofold:

 The complexity of Web service composition.
Following general principles of SOA, composing
Web services may comprise distributed processes
because component Web services are loosely
coupled and could scatter in different locations.
Josuttis [46] has pointed out that distributed
processing would be inevitably more complicated
than non-distributed processing, and any form of
loose coupling would increase complexity.

 The diversity of Web service composition. Existing
works [1, 17, 19] have revealed that numerous
solutions to Web service composition have been
proposed during the past decade. Different
techniques and contexts may result in different
influence on the final effort of an instance of Web
service composition.

Limited to these two challenges, it is nearly impossible to
collect enough development data to estimate effort of various
complex compositions quantitatively. For a particular Web

service composition project, nevertheless, qualitative effort
comparison between different composition approaches can
still facilitate developer’s decision making. Therefore, this
paper is to investigate such a method to realize the
qualitative comparison between composition effort estimates.

III. CONTEX-BASED CLASSIFICATION OF WEB SERVICE

COMPOSITION

The context discussed here refers to the environment and
different stages involved in composing Web services.
Through analyzing the lifecycle of Web service composition,
we have identified several contexts: Pattern, Semiotics,
Mechanism, Design Time, and Runtime that have the most
influence on composition effort.

A. Pattern: Orchestration and Choreography

According to the methods of cooperation among
component Web services, the Web service composition
patterns can be distinguished between orchestration and
choreography.

(a) Orchestration (b) Choreography

Figure 1. Web Service Orchestration and Choreography.

Orchestration, as shown in Figure 1(a), describes and
executes a centralized process flow that normally acts as a
coordinator to the involved Web services. The central
coordinator explicitly specifies the business logic and
controls the order of invocation of Web services. As a result,
the coordination defines a long-term, cross-organization,
transactional process. The involved Web services, on the
other hand, need not be aware of their involvement in an
orchestrated process. Orchestration represents coordination
from the perspective of a single participant that can be
another Web service.

Choreography, as shown in Figure 1(b), describes
collaboration between web services that focuses on the peer-
to-peer message exchange. The collaboration is decentralized
where all participating Web services work equally and do not
rely on a central controller. Each Web service involved in
choreography understands its contribution to a business
process: operation, timing of operation, and the interaction
with other participants. Choreography represents
collaboration from a global perspective.

In brief, orchestration and choreography describe two
aspects of Web service composition for creating business
processes [38]. Orchestration concentrates on the interactions
of a single Web service with its environment, while
choreography concentrates on the exchange of messages

among all the involved Web services. Consequently, an
orchestration can be broken down into a series of primitive
workflow logic activities, which invokes Web services
following the determined execution sequence based on the
central controller’s enactment; whereas a choreography can
be broken down into a series of message exchanges, which is
not to control but to make autonomous participants cooperate
based on their agreement.

In most cases, the pattern to which Web service
composition belongs can be identified easily through the
adopted standards or flow languages. For example, the
current de facto standard for Web service orchestration is the
Business Process Execution Language also known as BPEL.
BPEL is an executable business process modeling language
that can be used to describe the execution logic by defining
the control flow and prescribing the rules for managing the
non-observable data. The BPEL engine can then execute the
description and orchestrate the pre-specified activities.
Whereas one of the most widespread W3C recommended
protocols for choreography is Web Services Choreography
Description Language (WS-CDL). WS-CDL is designed to
describe the common and collaborative observable behavior
of multiple Web services that interact with each other to
achieve their common goal. In other words, WS-CDL
description offers the specification of collaborations between
the participants involved in choreography.

Therefore, we can conveniently identify that the BPEL
description related Web service compositions normally have
orchestration context, e.g. [22], while WS-CDL description
involved Web service compositions generally have
choreography context, e.g. [23]. Nevertheless, the Web
service composition pattern should not be judged merely
through these keywords, because the technique can be
adapted to satisfy different scenarios. For example, some
people advocate the use of abstract BPEL as a choreography
language. Consequently, the most reliable judgment should
be still based on the understanding of the Web service
composition process.

B. Semiotics: Syntactic and Semantic Compositions

The semiotic environment is becoming a more significant
context for Web service composition as the Web evolves.
Semiotics is the general science of signs, which studies both
human language and formal languages. Syntax and
Semantics are two of fundamental components of semiotics.
Syntax relates to the formal or structural relations between
signs and the production of new ones, while semantics deals
with the relations between the sign combinations and their
inherent meaning.

Currently, the World Wide Web can be mainly
considered as syntactic Web that uses Hyper Text Markup
Language (HTML) to compose documents and publish
information. When it comes to Web services, the syntactic
level XML standards, for example Simple Object Access
Protocol (SOAP), Web Service Description Language
(WSDL) and Universal Description, Discovery and
Integration (UDDI) have been used extensively to address
corresponding e-business activities and research issues in
industry and academia. By using human-oriented metadata,

Central Coordination

Web
Service

Web
Service

Web
Service

Web
Service

Web
Service

Collaboration

Web
Service

SOAP is designed to provide descriptions of message
transport mechanisms; WSDL is for describing the interfaces
of Web services; while UDDI registers Web services by their
physical attributes such as name, address and functional
categorization. However, the syntactic Web was designed
primarily for human interpretation and conveying
information, a syntactic web page does not contain special
tagging and the meaning of information is not readable by a
computer program. The lack of machine-readable semantics
then requires human intervention for Web service discovery
and composition, and therefore hampers the usage of Web
services in complex business environment.

To overcome the obstacles of interpretability and
interoperability between traditional systems and applications,
the semantic Web was proposed through incremental and
information-added adjustments. These adjustments make the
Web ontological. Ontology was originally developed to
facilitate knowledge sharing and reuse [37]. Benefiting from
ontology, greater ability of expression is provided for
knowledge modeling and communicating knowledge
between heterogeneous and distributed application systems.
Therefore, the semantic Web can be viewed as a version of a
Web of ontological contents and services, which includes
machine-readable and human-transparent descriptions to the
existing data and documents on the syntactic Web. In
addition, the semantic Web supplies the necessary
infrastructure and techniques for publishing, resolving and
reasoning ontological descriptions of the contents and
services.

Figure 2. Syntactic Web Service and Semantic Web Service.

As for semantic Web services, besides the syntactic
description, the information needed to select, compose, and
respond to services are also encoded with semantic markup
at the service Web sites. These efforts of service
augmentation can then facilitate automated service discovery,
composition, dynamic invocation and binding without
human assistance or highly constrained agreements on
protocols. Figure 2 illustrates the differences between
syntactic and semantic Web services. Informally, a Web
service can be characterized by its required inputs, the
produced outputs, and the operations it will take [36]. The
inputs and outputs may be further subject to pre-conditions
and post-conditions respectively. With only descriptions in
the syntactic level, as shown in the unfilled nodes of
syntactic Web service in Figure 2, it is difficult for service
providers and consumers to represent or interpret the

meaning of inputs, outputs and other applicable constraints.
A semantic Web service relaxes such limitation by
augmenting the service description with a rich set of
formally semantic annotations of the service’s capabilities, as
shown in the grey nodes of semantic Web service in Figure 2.
Accordingly, new standards and languages of semantic
markup, like Web Ontology Language for Web Services
(OWL-S) and Web Service Modeling Ontology (WSMO),
should be investigated and used to give meaning to Web
services.

Overall, the XML-based standards are for syntax, whilst
the ontology-based standards are for semantics. Both share
unified Web infrastructure and together provide capability
for developing Web applications that deal with data and
semantics. Nevertheless, one of the most important
characteristics of ontology-based techniques is that they
allow a richer integrability and interoperability of data in
communications between domains. As previously mentioned,
driven by the semantic markup and agent technologies,
semantic Web service discovery, selection, composition, and
execution are all supposed to be automatic tasks. Although
fully automating these processes is still a challenge,
accomplishing parts of this goal can still be achieved. For
example, the semantic description is useful for the translation
between Web service composition problems and AI-planning
systems [13], while the semantic matchmaking can be used
to facilitate the automatic Web service discovery [2].
Considering these outstanding characteristics, Web service
compositions can be categorized according to syntactic and
semantic context, while the context can be also identified
through employed standards and techniques.

C. Mechanism: RESTful and SOAP-based Compositions

Concentrating on the technologies and architectures,
nowadays there are two main mechanism paradigms of
building composite Web services, namely RESTful
composition and SOAP-based composition.

Basically, REpresentational State Transfer (REST) and
Simple Object Access Protocol (SOAP) are not directly
comparable with each other and not necessarily opposite.
REST is an architectural style originally designed for
building large-scale distributed hypermedia systems,
whereas SOAP is a general protocol used as one foundation
of numerous WS-* technologies. Within the REST
environment, the Web is considered as a universal storage
medium for publishing globally accessible information. In
contrast, SOAP treats the Web as the universal transport
mechanism for message exchange. When building Web
services, traditional SOAP/WS-* environment requires
relatively heavyweight open standards than that are being
used in RESTful context. Although the SOAP vs. REST
debate has been an ongoing discussion for some time, there
is an implicit consensus that REST is more suitable for basic,
ad-hoc, client-driven scenarios, while SOAP/WS-* are more
suitable to address the quality of services requirements in
highly interactive Web applications.
However, RESTful and SOAP-based Web services are
indeed comparable. We can identify the differences between
RESTful and SOAP-based Web services mainly through

Syntactic
Web

Service

Operations

Name

Inputs

Outputs

Semantic Web Service

Discovery

Composition

Response

Other
Description

their interfaces, the operations and Message Exchange
Patterns (MEPs) behind interfaces, and their QoS support
techniques.

1) Interface differences. The interface of a RESTful
Web service comprises a variable set of Uniform Resource
Identifiers (URIs). Each URI uses a globally unique address
to identify a specific resource. Unfortunately, to the best of
our knowledge, there is no standard and machine-
processable way of describing RESTful interfaces. Using
WSDL 2.0 description to wrap the RESTful Web services
has been revealed as a burden for service consumers [32].
The Web Application Description Language (WADL) and
other dedicated interface definition languages for RESTful
services like RESTful Interface Definition and Declaration
Language (RIDDL) [33] are not yet widely employed.
Consequently, most of the time the interfaces of RESTful
Web services are described through natural, informal, and
more human-oriented documentations. When it comes to
SOAP-based Web services, as mentioned previously,
WSDL has gained widespread adoption to syntactically
define the service interfaces. In a WSDL document, SOAP-
based Web services are described as collections of network
endpoints, or ports. A port associates a network address
with a reusable binding. The reusable WSDL binding
contains the concrete transport protocol and data format
specifications for a particular port type. A port type is a set
of abstract operations that are related to some abstract
messages representing the data for exchange. Benefiting
from the abstract interfaces described by WSDL, technical
details of SOAP-based Web services can be concealed, for
example, the implementation language, deployment
platform and underlying communication protocol.

2) Operation differences. Since “REST is in many ways
a retrospective abstracting of the principles that make the
World Wide Web scaleable” [34], RESTful Web services
requires little technology support apart from well accepted
HTTP and XML infrastructures. As a result, the
manipulations of resources are completely constrained in the
RESTful environment through a fixed set of four operations
associated with HTTP: GET, PUT, DELETE, and POST.
GET is used to retrieve a representation of the current state
of a resource. PUT can either update the state of existing
resource or create a new resource with the request URI if it
does not previously exist. DELETE is used to delete a URI-
identified resource and also invalidate the URI itself. POST
creates subordinate resources to which new URIs are
assigned by service provider. In contrast to the standard
operations among RESTful Web services, the operations
provided by SOAP-based Web services are ad hoc. Various
APIs defined in different WSDL documentations represent
different sets of operations for communication and
interaction between service providers and consumers. The
operations of SOAP-based Web services essentially are

functional components that are located on remote machines
and can be invoked through APIs over the network.

3) MEPs differences. MEPs are patterns or templates
that abstract the sequences of message transmission in the
Web service context. Since REST is associated closely with
HTTP, and HTTP is stateless request-response application
protocol, RESTful Web services only have the synchronous
request-response pattern under the HTTP mechanism.
SOAP-based Web services allow rich patterns ranging from
traditional request-response to broadcasting and
sophisticated message exchanges. The latest WSDL 2.0 has
been published with supporting eight MEPs [35]. Each MEP
describes a bilateral message exchange between two
involved services from a service point’s perspective.

 In-Only – The service receives a message.
 Robust In-Only – The service receives a message

and will return a fault message only when meeting a
fault.

 In-Out – The service receives a message and returns
a response message.

 In-Optional-Out – The service receives a message
and optionally returns a response message.

 Out-Only – The service sends a message.
 Robust-Out-Only – The service sends a message and

will receive a fault message only when its partner
service meets a fault.

 Out-In – The service sends a message and receives a
response message.

 Out-Optional-In – The service sends a message and
optionally receives a response message.

4) QoS support technique differences. Quality of
Service (QoS) indicates a certain performance level of
services that will be delivered to consumers, and can be
evaluated through corresponding parameters like response
time, throughput, cost, etc. As REST is usually used in
conjunction with HTTP, the QoS of RESTful services are
supported generally through basic protocols and techniques.
For example, services’ interactions can be secured at the
transport layer using the Secure Sockets Layer (SSL)
protocol, while the security of messages can be guaranteed
by encryption and digital signatures. On the contrary,
SOAP-based Web services adopt more complicated
mechanisms to cover QoS features. On the one hand, the
header of an SOAP document contains message-layer
infrastructure information that can be used for QoS
configurations. On the other hand, the WS-* technology
stack is employed to satisfy the large scope of QoS
requirements such as transactions, security, and reliability.
Benefiting from SOAP and WS-* technologies, QoS aspects
of SOAP-based Web services are protocol transparent and
independent. In other words, the QoS of Web service can be
provided end to end without taking into account the variety
of middleware systems transported.

All these differences between RESTful and SOAP-based
Web services make the problem of RESTful Web service

composition fundamentally different from the composition
problem of SOAP-based Web service. SOAP-based Web
service composition is a collection of related, structured
activities or tasks that produce a specific service or product
for a particular customer. Within the relatively complex
SOAP-based environment, a large number of standards and
tools have been developed to facilitate the service
composition activities. Dissimilarly, RESTful Web service
composition integrates normally disparate Web resources to
create a new application. These resources can be the
exposure of pure data or traditional application functionality.
With the constraint of lightweight technologies adopted in
RESTful environment, service compositions mainly focus on
the Web 2.0 Mashups that usually imply simple and fast
integration of data/content from different sources on the
Internet.

D. Design Time: Manual, Semi-Automatic and Automatic
Compositions

Generally, there are four fundamental activities when
composing a Web service, namely Planning, Discovery,
Selection, and Execution [18]. Planning is to determine a
composition plan including the execution sequence of tasks.
Each task corresponds to either the functionality or activity
of a service. Discovery is to find all the candidate services
that can satisfy the tasks in the plan. The aim of Selection is
to choose optimal subset from all the discovered services by
using non-functional attributes. Execution builds a real
composite Web service. In practice, the sequence of
Planning, Discovery, and Selection can be diverse. For
example, the theorem proving approach in [13] is based on
the pre-determined Web services to generate the composition
plan. Moreover, during the service composition procedure,
the network configurations and non-functional factors may
change, and existing Web services may be updated or
terminated. As a result, some pre-identified services may not
be available, and the new ones need to be re-selected or re-
discovered. In other words, Discovery and Selection can also
take place during or even after Execution. Therefore, we can
define a potential Adaptation activity at the end of the
procedure of Web service composition.

Figure 3. Stages of a Web Service Composition Scenario.

Based on the previous analysis, the process of Web
service composition can be separated into design time and

runtime stages. Figure 3 shows one of the possible
composition scenarios. Depending on the real practices, the
design time stage comprises various activities from only
Planning to the combination of Planning, Discovery, and
Selection. According to the extent to which human
intervention is involved, the design time procedure can be
manual, semi-automatic, and automatic. Considering that
there is still a long way to realize the complete automation of
Web service composition even at design time, we mainly
concentrate on the Planning activity when unfolding
classification. Therefore, we can draw the outline of these
three types of composition approaches during design time as:

1) Manual approach. In general, the manual Planning
activity implies manual Web service composition. Two
different scenarios of manual approaches can be further
identified respectively as primitive level and abstract level
respectively. In primitive manual composition approaches,
developers have to specify every detailed activity in the
composition processes. The resulting specifications are
executable composition programs. For example, we can use
BPEL to describe the procedure of Web service composition
following the logic of corresponding business process, and
the finalized description is executable with the support of
BPEL engine. As for the manual composition approaches at
an abstract level, the Web service composition plans are
usually drawn into abstract workflows or models instead of
specific programs. In such approaches the manual planning
results cannot be executed directly, but can be transformed
into executable specifications and finally executed by some
tools or engines. Examples can be found in most of the
UML related model-driven approaches.

2) Automatic approach. In general, the automatic
Planning activity implies automatic Web service
composition. In manual approaches discussed above,
although we can decrease the effort of Web service
composition through abstraction rather than programming,
the planning phase still has to be realized manually. How to
automatically generate the composition model or workflow
then becomes a subsequent research topic. The current trend
is to use Artificial Intelligence (AI) planning to satisfy the
automation of the generation of a Web service composition
plan. Benefiting from existing AI planning systems, the
prerequisite effort of Web service composition is only to
encode the requirements into dedicated, formal, and
mathematical expressions.

3) Semi-automatic approach. We treat an instance of
Web service composition as semi-automatic approach, if
one of the following cases is met: (1) there are specifically
automatic Discovery/Selection activities to facilitate manual
Planning; or (2) there are specifically manual
Discovery/Selection activities that constrain automatic
Planning. Taking [2] as an example of the former case,
semantic matchmaking technique is used to realize the semi-
automatic approach by automatically filtering and
presenting matching services to the user at each step of a

Planning

Discovery

Selection

Execution

Adaptation

Runtime

Design time

composition. An example of the latter case can be found in
[13], the theorem proving technique requires manually pre-
determining Web services before automatically generating
the composition plan.

E. Runtime: Static and Dynamic Compositions

The Execution and potential Adaptation activities remain
at the runtime stage of Web service composition. By
focusing on the Adaptation activity, we can define that the
Web service composition is dynamic at runtime if it is
adaptive with minimal user intervention, otherwise it is static.
In detail, static Web service composition re-discovers and re-
selects new services manually when adapting the
environment. In the worst case, static composition does not
have adaptability at all. On the contrary, dynamic
composition can re-discover and re-select new services at
runtime without requiring any human assistance. Moreover,
we also define a dynamic Web service composition if
services can be discovered and selected during Execution
activity, for instance eFlow [3].

Benefiting from the division between the design time and
runtime of Web service compositions, we can clearly
distinguish the two concepts: automatic and dynamic
compositions that are confusing in the existing literature.
Furthermore, it can be found that there is no relationship
between automatic composition at design time and dynamic
composition at runtime. On the one hand, automatic
composition does not imply dynamic composition, for
example, most of the AI planning approaches only
concentrate on the automatic Planning process while leaving
the planning result executed statically. On the other hand,
static composition does not require automatic composition,
for example, the visual language UML Profile for Web
Service Composition (UML-WSC) [7] supports dynamically
composing Web services although the composition model is
still built manually.

IV. TECHNOLOGY-BASED CLASSIFICATION OF WEB

SERVICE COMPOSITION

Technology refers to the techniques used in the
approaches to implement Web service composition. It is
difficult to enumerate all kinds of composition techniques,
although different technique can contribute different
composition effort. However, we can identify three groups of
techniques: Workflow-based, Model-driven, and AI planning
techniques.

A. Workflow-based Techniques

Workflow is a virtual representation of actual work
including a sequence of operations. Workflow-based Web
service composition uses the workflow perspective to
describe the normally complex collaboration among Web
services and implement the composition procedure. There
are two ways to describe the Web service composition
workflow:

 To program the executable workflow directly:
Obviously, the composition process can be
programmed from scratch by using traditional

languages and standards. However, the current
universal technique is to use the dedicated, process-
oriented language, for example the current de facto
executable business process modeling language
BPEL, to specify the transition interactions among
Web services at a macro-level state.

 To draw the abstract workflow without
programming: Supported by some tools and engines,
the workload of Web service composition can be
relieved by drawing the abstract workflow without
programming. For example, the semantic
matchmaking based approach [2] uses the GUI panel
of composer to construct an abstract flow, while
eFlow [3] adopts a graph-oriented method to define
the interaction and order of execution among the
nodes in an abstract composition process.

Figure 4. One-Stop Process of Web Service Composition.

If we only focus on the two main activities (Planning and
Execution) in the Web service composition approaches,
workflow-based techniques generally follow the One-Stop
process, as shown in Figure 4. In the One-Stop process, the
Planning activity happens just after receiving the
composition requirement, and delivers the executable
composition specification directly. In most cases of One-
Stop based approaches, during the planning stage the user
must provide inputs at choice points, decide the
interoperation among component Web services, and specify
the composition procedure.

B. Model-driven Techniques

In model-driven approaches of Web service composition,
models are used to describe user requirements, information
structures, abstract business processes, component services
and component service interactions. The models are
independent of, but can be tranformed into, executable
composition specifications. Generally, there is also modeling
work in several workflow-based techniques. Whereas the
model-driven techniques discussed here merely follow the
standards provided by the Object Management Group
(OMG). The standards mainly refer to the Unified Modeling
Language (UML) and Model-Driven Architecture (MDA).

Numerous discussions related to UML-based modeling
of Web service composition can be found in the literature.
Through analysis and abstraction, we can further identify
two basic scenarios of model-driven approaches for
composing Web services.

 To build executable composition model. A typical
example of this particular scenario is the UML-WSC
profile [7]. The UML-WSC profile is a well-defined
UML extension, which uses a static model and

Planning Execution

Composite Web
Service

Request

extended variant of activity diagrams to define the
process-oriented Web service composition. The
static model describes the available Web services
and components, while the extended variant of
activity diagrams describes the composition
processes. The composition model specified through
UML-WSC profile can be executed automatically by
a process engine. Therefore, the UML-WSC profile
is also considered as an alternative to non-visualized
languages like BPEL.

 To build transformable composition model. This
generic scenario is to use UML class diagrams to
represent the state parts of compositions, while the
behaviour parts are represented through UML
activity diagrams. The state parts can be Web service
interface [4], the structure of composite Web service
[5] and QoS characteristics [6]. On the other hand,
the behaviour parts describe the composition
operations, interactions of component Web services,
and control and data flow. Furthermore, since BPEL
is widely accepted for composing Web services,
UML has been designedly to extend BPEL to
include common aspects of Web service
composition. Therefore, the modeling results can be
conveniently transformed into executable BPEL
specifications to eventually realize Web service
compositions.

Figure 5. Bridge Process of Web Service Composition.

Although the former, particular scenario of model-driven
approach still employs the One-Stop process for Web service
composition, most of the existing modeling techniques adopt
the Bridge process when composing Web services, as
illustrated in Figure 5. The Bridge process can be viewed as
an evolution from the One-Stop process, which describes
such approaches that plan Web service compositions at an
abstract level, while the planning results cannot be directly
executed and have to be transformed into executable
specifications. Therefore, unlike the first scenario of model-
driven approahes employing the One-Stop process, any Web
service composition approach adopting the Bridge process
uses a transformation procedure for the mapping between the
planning result and executable specification. The notion of
the Bridge process is that the planning phase of Web service
composition does not need to be tied to any particular
composition language and execution engine, thereby the
same planning result can be transformed into more than one
executable description.

C. AI Planning Techniques

AI planning seeks to use intelligent systems to generate a
plan that can be one possible solution to a specified problem,
while a plan is an organized collection of operators within
the given application domain. AI planning is essentially a
search problem. The underlying basis of planning relies on
state transition system with states, actions and observations.
Benefiting from the state transition system, the planner
explores a potentially large search space and produces a plan
that is applicable to bridge the gap between the initial state
and goal when run. AI planning in Web service composition
normally comprises of five attributes, they are (1) all the
available services, (2) the initial state, (3) the state change
functions, (4) all the possible states, and (5) the final goal.
The initial state and final goal are specified in the
requirements for composing Web service. The state change
functions define the preconditions and effects when invoking
Web services.

A large amount of research has been reported about the
AI planning related Web service composition. These works
apply techniques ranging from Situation Calculus [8],
Automata Theory [9], Rule-based Planning [10], Query
Planning [12], Theorem Proving [13], Petri Nets [14], to
Model Checking [15]. Generally, these techniques convert
the problems of composition into generating execution
workflows using the dedicated expression. The workflows
can then be transformed into executable specifications like
BPEL documents or other XML-based descriptions, and
executed through the corresponding engines.

Figure 6. Double-Bridge Process of Web Service Composition.

Therefore, we can find that the Web service composition
approaches using AI planning techniques normally contain
the Double-Bridge process, as shown in Figure 6. The
Double-Bridge process can be treated as further evolution
from the Bridge process. The Planning activity is settled
between two transformation procedures in a Double-Bridge
process. In detail, since AI planning systems generally adopt
dedicated, formal, and mathematical techniques, the initial
information and composition requirement must be
transformed for input into a planning system, and the
planning result should be transformed again into an
executable specification to build a composite Web service.

V. QUALITATIVE DISCUSSION ABOUT EFFORT

ESTIMATION FOR WEB SERVICE COMPOSITION

Through categorizing Web service composition
approaches along Context and Technology dimensions, a
classification matrix can be established, as demonstrated in

Planning Execution

Composite Web
Service

Request

Transformation

Planning Execution

Composite Web
Service Request

Transformation 2

Transformation 1

Appendix I. Considering the different influences of different
contexts and techniques on the composition effort, those
technology categories and context types in the classification
matrix can be viewed as effort factors when composing Web
services. Therefore, we can use the classification matrix to
facilitate the cost and effort estimation for different Web
service composition approaches. Since the data we collected
here are all based on qualitative descriptions, it is not
suitable to do quantitative work for composition effort
estimation. Through analyzing these qualitative descriptions,
however, we can further build a checklist for experts to judge
qualitatively the effort when implementing Web service
compositions. Before building the qualitative effort
estimation checklist, some effort related hypotheses should
be investigated.

A. Qualitative Effort Estimation Hypotheses

In the context of software engineering, effort of a task is
generally accounted by calculating how long and how many
workers are needed to finish the task, and the unit can be
person-day, person-month, or person-year. In brief, the
amount of human activities in a project is proportional to the
amount of effort required to finish the project. Therefore, for
a certain software project, we can hypothesize:

H1. The increase of human activities in a project will
have a proportional impact on the final effort.

Human activities include both physical and mental
activities. Since software engineering is a knowledge-
intensive domain, the effort of a software project is mainly
composed of mental activities. Unfortunately, within a given
time span people have limited mental capability to deal with
information [39]. For every single person, the increased
amount of information beyond a certain point may even
defeat his/her mental ability, and hence result in errors [41].
As a result, the more information that exists in a project, the
more people and human activities will be required to perform
accurate manipulations. Together with H1, therefore, we can
hypothesize:

H2. The increase of information in a project will have a
proportional impact on the required human
activities.

H2’. The increase of information in a project will have a
proportional impact on the final effort.

Moreover, complexity has been proved to be a significant
and non-negligible factor that influences software
development and maintenance [42]. Meanwhile, the more
complexity involved in a system, the more difficulty the
designers or engineers have to understand the
implementation process and thus the system itself [40], and
hence the greater mental effort people have to exert to solve
the complexity [39]. To summarize, we can further
hypothesize:

H3. The increase of complexity in a project will have a
proportional impact on the final effort.

When it comes to project complexity, one of the main
contributors is the complexity of the methods that regard
achieving the project goals [43]. The methods mentioned
herein generally consist of processes, tools, and techniques
that are used to complete the corresponding project [44]. In
particular, processes and techniques have been viewed as
internal environment of a system (organization), while the
system’s complexity is considered a response to the
environmental complexity [45]. Consequently, the
complexity of processes and techniques involved in a
software project will positively influence the complexity of
the project. As for the tools, although the adoption of
sophisticated tools usually implies a complex project, tools
are essentially developed and used to save human activities.
For a certain project, the more work the tools can fulfill, the
less human activities the project will require. Overall, we can
also hypothesize:

H4. The increase of process complexity in a project will
have a proportional impact on the project
complexity.

H4’. The increase of process complexity in a project will
have a proportional impact on the final effort.

H5. The increase of difficulty of techniques in a project
will have a proportional impact on the project
complexity.

H5’. The increase of difficulty of techniques in a project
will have a proportional impact on the final effort.

H6. The increase of work that tools can fulfill in a
project will have an inversely proportional impact
on the human activities.

H6’. The increase of work that tools can fulfill in a
project will have an inversely proportional impact
on the final effort.

B. Qualitative Effort Estimation Checklist for Web service
composition approaches

As mentioned earlier, we treat technology categories and
context types in the classification matrix as effort factors of
Web service composition approaches. After applying
different effort estimation hypotheses to different but
comparable factors, a set of qualitative effort estimation
statements will be generated. These statements can then
constitute a checklist for developers and engineers to
qualitatively judge and compare the effort and cost of
different composition strategies. In fact, using a checklist has
been considered a simple way of utilizing experience and
advocated as an efficient method of improving expert
judgment processes when doing estimation [48]. To facilitate

building this qualitative effort estimation checklist, some
symbols and rules are also proposed:

For one certain task of Web service composition, we use
EF-H to represent the effort E determined by factor F when
applying hypothesis H. Moreover, a score S will be set for
EF-H to flag different effort determined by different but
comparable factors when applying some hypothesis. For
convenience of calculation, the rules of score setting can be:

H-F2H-F1H-F2H-F1

H-F2H-F1H-F2H-F1

H-F2H-F1H-F2H-F1

EE if 2) S(E1,)S(E

EE if 1) S(E1,)S(E

EE if 1) S(E2,)S(E

Note that if we use EF to represent the effort E
determined by factor F under all the different but applicable
hypotheses, then all the scores for EF under corresponding
hypotheses can be summed up and represented as S(EF).

We can hereby build the effort estimation checklist
following the sequence of building the classification matrix.

1) For Orchestraton and Choreography: As analyzed
previously, orchestration stands for a central coordination,
while choreography represents multiparty collaborations.
Since distributed processing would be inevitably more
complicated than non-distributed processing [46], for a
same Web service composition project choreography
requires more effort than orchestration if applying H3.
Meanwhile, as the current de facto standard of orchestrating
Web services, BPEL stemmed from existing languages and
tools and has been widely accepted, whereas the
choreography language WS-CDL was developed without
any prior implementation and is still far from maturity [47].
Considering this technical influence, the implementation of
choreography will be more difficult than that of
orchestration. By using For for representing the effort factor
Orchestration and Fch for Choreography, the effort compare
and scores can be listed in Table I.

TABLE I. EFFORT COMPARE BETWEEN ORCHESTRATION AND
CHOREOGRAPHY

Applied
Hypotheses

Compare Scores

H3 EFor-H3 < EFch-H3 S(EFor-H3)=1, S(EFch-H3)=2

H5’ EFor-H5’ < EFch-H5’ S(EFor-H5’)=1, S(EFch-H5’)=2

Total EFor < EFch S(EFor)=2, S(EFch)=4

2) For Syntactic and Semantic Compositions: Since

semantic Web and semantic Web services are proposed to
automate service discovery, selection, composition and
execution by adding the inherent meanings, human activities
within semantic compositions will be decreased while the
involved information will be increased. Considering the
increased information is for machine interpretation rather
than human intervention, however, hypothesis H2 is not
applicable here. Meanwhile, syntactic and semantic Web

services share the unified Web infrastructure and both use
markup language based techniques to describe information.
It can then be stated that the difficulty levels of techniques
adopted in both syntactic and semantic service compositions
are similar. Therefore, by using Fsy for representing the
effort factor Syntax and Fse for Semantics, the effort
compare and scores can be listed in Table II.

TABLE II. EFFORT COMPARE BETWEEN SYNTACTIC AND SEMANTIC
COMPOSITION APPROACHES

Applied
Hypotheses

Compare Scores

H1 EFsy-H1 < EFse-H1 S(EFsy-H1)=1, S(EFse-H1)=2

H5’ EFsy-H5’ ≈ EFse-H5’ S(EFsy-H5’)=1, S(EFse-H5’)=1

Total EFsy < EFse S(EFsy)=2, S(EFse)=3

3) For SOAP-based and RESTful Compositions:

Compared with RESTful Web service compositons, SOAP-
based compositions employ more sophisticated techniques
including heavyweight protocols, a set of WS-* stack, and
more MEPs, which can satisfy more QoS requirements
while also deal with more information. Therefore, the
hypotheses H2’ and H5’ are both applicable. Incidentally,
although the SOAP/WS-* related techniques indeed are
complex, they should still be adopted when addressing
advanced requirements especially in the enterprise
computing scenarios. However, here we only focus on the
implementation effort without considering other tradeoffs.
By using Fso for representing the effort factor SOAP and
Fre for REST, the effort compare and scores can be listed in
Table III.

TABLE III. EFFORT COMPARE BETWEEN SOAP-BASED AND RESTFUL
COMPOSITION APPROACHES

Applied
Hypotheses

Compare Scores

H2’ EFso-H2’ > EFre-H2’ S(EFso-H2’)=2, S(EFre-H2’)=1

H5’ EFso-H5’ > EFre-H5’ S(EFso-H5’)=2, S(EFre-H5’)=1

Total EFso > EFre S(EFso)=4, S(EFre)=2

4) For Manual, Semi-Automatic, and Automatic

Compositions: During the design time of Web service
compositions, the more automated the design processes are,
the less human activities the compositions will require, and
the less detailed information developers need be concerned
with. Considering the realization of automation usually
requires assistant tools and more techniques, for example
the Semantic Matching approach [2], the hypothese H5’ and
H6’ are both applicable together with H1 and H2’. By using
Fma for representing the effort factor Manual, Fsa for
Semi-Auto and Fau for Auto, the effort compare and scores
can be listed in Table IV.

TABLE IV. EFFORT COMPARE BETWEEN MANUAL, SEMI-AUTOMATIC
AND AUTOMATIC COMPOSITION APPROACHES

Applied
Hypotheses

Compare Scores

H1
EFma-H1 > EFsa-H1

EFma-H1 > EFau-H1

EFsa-H1 > EFau-H1

S(EFma-H1)=2+2=4
S(EFsa-H1)=1+2=3
S(EFau-H1)=1+1=2

H2’
EFma-H2’ > EFsa-H2’

EFma-H2’ > EFau-H2’

EFsa-H2’ > EFau-H2’

S(EFma-H2’)=2+2=4
S(EFsa-H2’)=1+2=3
S(EFau-H2’)=1+1=2

H5’
EFma-H5’ < EFsa-H5’

EFma-H5’ < EFau-H5’

EFsa-H5’ < EFau-H5’

S(EFma-H5’)=1+1=2
S(EFsa-H5’)=2+1=3
S(EFau-H5’)=2+2=4

H6’
EFma-H6’ > EFsa-H6’

EFma-H6’ > EFau-H6’

EFsa-H6’ > EFau-H6’

S(EFma-H6’)=2+2=4
S(EFsa-H6’)=1+2=3
S(EFau-H6’)=1+1=2

Total EFma > EFsa > EFau
S(EFma)=14, S(EFsa)=12,

S(EFau)=10

5) For Static and Dynamic Compositions: If we

emphasize the adaptation in both static and dynamic
compositions during runtime, we can draw the same
conclusions through the similar analysis as above. Therefore,
by using Fst for representing the effort factor Static and Fdy
for Dynamic, the effort compare and scores can be listed in
Table V.

TABLE V. EFFORT COMPARE BETWEEN STATIC AND DYNAMIC
COMPOSITION APPROACHES

Applied
Hypotheses

Compare Scores

H1 EFst-H1 > EFdy-H1 S(EFst-H1)=2, S(EFdy-H1)=1

H2’ EFst-H2’ > EFdy-H2’ S(EFst-H2’)=2, S(EFdy-H2’)=1

H5’ EFst-H5’ < EFdy-H5’ S(EFst-H5’)=1, S(EFdy-H5’)=2

H6’ EFst-H6’ > EFdy-H6’ S(EFst-H6’)=2, S(EFdy-H6’)=1

Total EFst > EFdy S(EFst)=7, S(EFdy)=5

6) For Workflow-based, Model-driven and AI Planning

Compositions: To simplify the effort analysis in the
Technology dimension, we constrain that workflow-based
approaches strictly follow the One-Stop process, model-
driven approaches strictly follow the Bridge process, and AI
planning approaches strictly follow the Double-Bridge
process. Considering that the One-Stop process delivers
executable specificaitons, the Bridge process focuses on the
abstract modeling, and the Double-Bridge process focuses
on the composition requirement, workflow-based
approaches have to deal with the most information while AI
planning approaches deal with the least information for one
certain task of Web service composition. Meanwhile, AI
planning approaches have the longest processes while
workflow-based approaches have the shortest. However, we
can imagine that both One-Stop and Bridge processes also
contain two transformation procedures as well as the
Double-Bridge process does. The intangible transformation

procedures essentially take place as mental activities, while
the tangible ones can be supported by tools. Therefore, it
can be found that AI planning approaches require less
human activities and use more tools, workflow-based
approaches require more human activities and use less tools,
while model-driven approaches are in the middle. When it
comes to techniques, it is nearly impossible to compare the
difficulty levels of workflow, modeling and AI planning
with each other. Consequently, here we simply treat their
dificulties similarly. After applying all the suitable
hypotheses and using Fwf for representing the effort factor
Workflow-based, Fmd for Model-Driven and Fai for AI
Planning, the effort compare and scores can be listed in
Table VI.

TABLE VI. EFFORT COMPARE BETWEEN WORKFLOW-BASED, MODEL-
DRIVEN AND AI PLANNING COMPOSITION APPROACHES

Applied
Hypotheses

Compare Scores

H1
EFwf-H1 > EFmd-H1

EFwf-H1 > EFai-H1

EFmd-H1 > EFai-H1

S(EFwf-H1)=2+2=4
S(EFmd-H1)=1+2=3
S(EFai-H1)=1+1=2

H2’
EFwf-H2’ > EFmd-H2’

EFwf-H2’ > EFai-H2’

EFmd-H2’ > EFai-H2’

S(EFwf-H2’)=2+2=4
S(EFmd-H2’)=1+2=3
S(EFai-H2’)=1+1=2

H4’
EFwf-H4’ < EFmd-H4’

EFwf-H4’ < EFai-H4’

EFmd-H4’ < EFai-H4’

S(EFwf-H2’)=1+1=2
S(EFmd-H2’)=2+1=3
S(EFai-H2’)=2+2=4

H5’
EFwf-H5’ ≈ EFmd-H5’

EFwf-H5’ ≈ EFai-H5’

EFmd-H5’ ≈ EFai-H5’

S(EFwf-H5’)=1+1=2
S(EFmd-H5’)=1+1=2
S(EFai-H5’)=1+1=2

H6’
EFwf-H6’ > EFmd-H6’

EFwf-H6’ > EFai-H6’

EFmd-H6’ > EFai-H6’

S(EFwf-H6’)=2+2=4
S(EFmd-H6’)=1+2=3
S(EFai-H6’)=1+1=2

Total EFwf > EFmd > EFai
S(EFwf)=16, S(EFmd)=14,

S(EFai)=12

To reflect the combined influences of different factors on

the composition effort, we further define that the scores for
different effort factors are accumulable in the same
dimension, while they are multipliable across different
dimensions. After filling the applicable hypotheses and
scores to the classification matrix, we can achieve an effort-
estimation-checklist table, as shown in Appendix II. Note
that the numbers do NOT indicate any count of the amount
of effort. These quantitative scores are only used to facilitate
qualitatively contrasting the effort of different composition
approaches, as demonstrated in Table VII.

Through Table VII, we can conveniently compare the
estimated effort between different Web service composition
approaches: one composition approach requires more effort
than another does if the former’s effort score is bigger than
the latter’s. Moreover, by investigating the result and
procedure of calculation of the effort scores, we can find that
the amount of applicable hypotheses implies the times of
comparisons, while the times of consistent comparisons is
proportional to the resulting effort score. Here we regard
different comparisons are consistent when the same
conclusion can be drawn in these comparisons by applying

different hypotheses. For example, there are two consistent
comparisons when applying hypotheses H3 and H5’ to the
compare between Orchestration and Choreography in Table I.
Since the consistent comparisons can help to confirm and
reinforce the comparison result, the effort scores also reflect
the extent of our confidence in the effort estimation result.
Therefore, the larger difference between two approach effort
scores, the more confidence we will have in the comparison
result.

TABLE VII. EFFORT COMPARE BETWEEN DIFFERENT COMPOSITION
APPROACHES

Composition
Approaches

Approach Effort Scores

BPEL
Programming

S(EFwf)×(S(EFor)+S(EFsy)+S(EFso)+ S(EFma)+ S(EFst))
=16×29=464

Semantic
Matching [2]

S(EFwf)×(S(EFch)+S(EFse)+S(EFso)+ S(EFsa)+ S(EFst))
=16×30=480

SA-REST +
Smashup [21]

S(EFwf)×(S(EFor)+S(EFse)+S(EFre)+ S(EFsa)+ S(EFst))
=16×26=416

RESTfulBP
[28]

S(EFwf)×(S(EFch)+S(EFsy)+S(EFre)+ S(EFma)+ S(EFst))
=16×29=464

UML + MDA
[4]

S(EFmd)×(S(EFor)+S(EFsy)+S(EFso)+ S(EFma)+ S(EFst))
=14×29=406

UML + OCL
[5]

S(EFmd)×(S(EFor)+S(EFse)+S(EFso)+ S(EFma)+ S(EFdy))
=14×28=392

UML + QoS
Support [6]

S(EFmd)×(S(EFor)+S(EFse)+S(EFso)+ S(EFsa)+ S(EFst))
=14×28=392

UML + IHE
framework [22]

S(EFmd)×(S(EFor)+S(EFsy)+S(EFso)+ S(EFma)+ S(EFdy))
=14×27=378

Petri Net [23]
S(EFai)×(S(EFch)+S(EFse)+S(EFso)+ S(EFau)+ S(EFst))

=12×28=336

Interface
Automata [11]

S(EFai)×(S(EFor)+S(EFse)+S(EFso)+ S(EFau)+ S(EFst))
=12×26=312

AIMO [24]
S(EFai)×(S(EFch)+S(EFse)+S(EFso)+ S(EFau)+ S(EFdy))

=12×26=312

… …

In fact, the calculation rule here for counting the effort

scores of different Web service composition approaches are
mainly inspired by the Addition and Multiplication
principles in Combinatorics: (1) We apply an Addition-
principle-like method to the effort factors in the Context
dimension of the classification matrix, considering that
different partial efforts of one Web service composition
within different contexts are mutually exclusive, while
different contexts are accumulable. (2) We apply a
Multiplication-principle-like method to the effort factors
across those two dimensions of the classification matrix,
considering that the Technology dimension is independent of
the Context dimension, and one technique can be used to
compose Web services within any combination of contexts.
However, this calculation rule still suffers from intuition, and
will be further validated and revised through empirical study
in our future work.

VI. CONCLUSION

The territory of Web service composition has been
researched so broadly that it becomes difficult to analyze and

estimate the composition effort by exploring every existing
composition approach. However, we are able to deliver a
general classification of Web service composition to
facilitate the effort estimation work through investigating
limited approaches inductively. Unlike existing classification
work, this paper proposes an effort-oriented classification
matrix of Web service composition through a systematic
review. Some of the reviewed composition approaches are
then classified according to their published descriptions, as
demonstrated in Appendix I. The matrix uses two
dimensions, Context and Technology, to classify different
compositions. Several pairs of effort-related contexts are
selected in the Context dimension, while three technology
categories are paralleled in the Technology dimension.
Moreover, this paper also builds an effort-estimation-
checklist table by applying a set of effort estimation
hypotheses to different context types and technology
categories that are viewed as different composition effort
factors. The combined influences of factor pairs across
Context dimension and Technology dimension on the
composition effort are also represented in this table. The
effort-oriented classification matrix can be used to facilitate
exploration and comprehension in the research area of Web
service composition, while the effort-estimation-checklist
table can be used to facilitate the qualitative effort compare
between different composition approaches. Furthermore,
based on our current work, some new research opportunities
in the Web service composition area can also be identified.
For example, the gap between automatic composition at
design time and dynamic composition at runtime should be
bridged.

Overall, the work described in this paper not only brings
a new perspective of classification of Web service
composition, but also introduces a new method to compare
the qualitatively estimated effort between different
composition approaches. The prominent characteristic of the
proposed classification matrix is of our primary objective -
aiming at the influence on software development effort
required for different Web service compositions. As such,
the classification matrix is eventually developed into an
effort-estimation-checklist table, while the effort-estimation-
checklist table should be applied closely with the
classification matrix. Our future work is to continue filling
this classification matrix and to use the effort-estimation-
checklist table to establish the basis of the research into cost
and effort estimation for Web service composition.

ACKNOWLEDGMENT

This paper is based on our previous work in collaboration
with Jacky Keung and Xiwei Xu. NICTA is funded by the
Australian Government as represented by the Department of
Broadband, Communications and the Digital Economy and
the Australian Research Council through the ICT Centre of
Excellence program.

REFERENCES
[1] Z. Li, L. O'Brien, J. Keung, and X. Xu, “Effort-Oriented

Classification Matrix of Web Service Composition,” Proc. the Fifth
International Conference on Internet and Web Applications and

Services (ICIW 2010), IEEE Computer Society, June 2010, pp. 357-
362, doi: 10.1109/ICIW.2010.59.

[2] E. Sirin, J. Hendler, and B. Parsia, “Semi-automatic Composition of
Web Services using Semantic Descriptions,” Web Services: Modeling,
Architecture and Infrastructure workshop in ICEIS 2003, Apr. 2003.

[3] F. Casati, S. Ilnicki, L. Jin, V. Krishnamoorthy, and M. Shan,
“Adaptive and Dynamic Service Composition in EFlow,” Proc. 12th
International Conference on Advanced Information Systems
Engineering (CaiSE*00), Springer, Jun. 2000, pp. 13-31, doi:
10.1007/3-540-45140-4_3.

[4] D. Skogan, R. Groenmo, and I. Solheim, “Web Service Composition
in UML,” Proc. Eighth IEEE International Enterprise Distributed
Object Computing Conference (EDOC 2004), IEEE Computer
Society, Sept. 2004, pp. 47-57, doi: 10.1109/EDOC.2004.1342504.

[5] J. T. E. Timm and G. C. Gannod, “Specifying Semantic Web Service
Compositions using UML and OCL,” Proc. 2007 IEEE International
Conference on Web Services (ICWS 2007), IEEE Computer Society,
Jul. 2007, pp. 521-528, doi: 10.1109/ICWS.2007.168.

[6] R. Grønmo and M. C. Jaeger, “Model-driven Semantic Web Service
Composition,” Proc. 12th Asia-Pacific Software Engineering
Conference (APSEC '05), IEEE Computer Society, Dec. 2005, pp.
15-17, doi: 10.1109/APSEC.2005.81.

[7] S. Thone, R. Depke, and G. Engels, “Process-Oriented, Flexible
Composition of Web Services with UML”, Proc. Third International
Joint Workshop on Conceptual Modeling Approaches for E-business:
A Web Service Perspective (eCOMO 2002), Springer, Oct. 2002, pp.
390-401, doi: 10.1007/b12013.

[8] V. R. Chifu, I. Salomie, and E. St. Chifu, “Fluent Calculus-based
Web Service Composition — From OWL-S to Fluent Calculus,” Proc.
4th International Conference on Intelligent Computer Communication
and Processing (ICCP 2008), IEEE Computer Society, Aug. 2008, pp.
161-168, doi: 10.1109/ICCP.2008.4648368.

[9] S. Mitra, R. Kumar, and S. Basu, “Automated Choreographer
Synthesis for Web Services Composition Using I/O Automata,” Proc.
IEEE International Conference on Web Services (ICWS 2007), IEEE
Computer Society, Jul. 2007, pp. 364-371, doi:
10.1109/ICWS.2007.47.

[10] B. Medjahed, A. Bouguettaya, and A. K. Elmagarmid, “Composing
Web services on the Semantic Web”, The VLDB Journal, vol. 12,
Sept. 2003, pp. 333-351, doi: 10.1007/s00778-003-0101-5.

[11] S. V. Hashemian and F. Mavaddat, “A Graph-based Approach to
Web Services Composition,” Proc. The 2005 Symposium on
Applications and the Internet, IEEE Computer Society, Jan.-Feb.
2005, pp. 183-189, doi: 10.1109/SAINT.2005.4.

[12] S. Thakkar, C. Knoblock, and J. Ambite. “A View Integration
Approach to Dynamic Composition of Web Services,” Proc. 2003
ICAPS Workshop on Planning for Web Services, AAAI Press, 2003.

[13] J. Rao, P. Küngas, and M. Matskin, “Composition of Semantic Web
Services using Linear Logic Theorem Proving,” Information Systems,
vol. 31, Jun.-Jul. 2006, pp. 340-360, doi: 10.1016/j.is.2005.02.005.

[14] V. Gehlot and K. Edupuganti, “Use of Colored Petri Nets to Model,
Analyze, and Evaluate Service Composition and Orchestration,” Proc.
42nd Hawaii International Conference on System Sciences
(HICSS’09), IEEE Computer Society, Jan. 2009, pp. 1-8, doi:
10.1109/HICSS.2009.487.

[15] P. Traverso and M. Pistore, “Automated Composition of Semantic
Web Services into Executable Processes,” Proc. Third International
Semantic Web Conference (ISWC’04), Nov. 2004, pp. 380-394.

[16] P. Sarang, F. Jennings, M. Juric, and R. Loganathan, SOA Approach
to Integration: XML, Web services, ESB, and BPEL in real-world
SOA projects. Birmingham: Packt Publishing, 2007.

[17] S. Dustdar and W. Schreiner, “A Survey on Web Services
Composition,” International Journal of Web and Grid Services, vol. 1,
Aug. 2005, pp. 1-30, doi: 10.1504/IJWGS.2005.007545.

[18] J. Cardoso and A. P. Sheth, Semantic Web Services, Processes and
Applications. New York: Springer, 2006.

[19] J. Rao and X. Su, “A Survey of Automated Web Service Composition
Methods,” Lecture Notes in Computer Science, vol. 3387/2005, Jan.
2005, pp. 43-54, doi: 10.1007/b105145.

[20] F. Rosenberg, F. Curbera, M. J. Duftler, and R. Khalaf, “Composing
RESTful Services and Collaborative Workflows: A Lightweight
Approach,” IEEE Internet Computing, vol. 12, Sept.-Oct. 2008, pp.
24-31, doi: 10.1109/MIC.2008.98.

[21] J. Lathem, K. Gomadam, and A. P. Sheth, “SA-REST and
(S)mashups : Adding Semantics to RESTful Services,” Proc. First
IEEE International Conference on Semantic Computing (ICSC 2007),
IEEE Computer Society, Sept. 2007, pp. 469-476, doi:
10.1109/ICSC.2007.94.

[22] R. Anzboeck and S. Dustdar, “Semi-Automatic Generation of Web
Services and BPEL Processes - A Model-Driven Approach,” Lecture
Notes in Computer Science, vol. 3649/2005, Sept. 2005, pp. 64-79,
doi: 10.1007/11538394_5.

[23] V. Valero, M. E. Cambronero, G. Díaz, and H. Macià, “A Petri Net
Approach for the Design and Analysis of Web Services
Choreographies,” Journal of Logic and Algebraic Programming, vol.
78, May-Jun. 2009, pp. 359-380, doi: 10.1016/j.jlap.2008.09.002.

[24] S. G. H. Tabatabaei, W. M. N. Kadir, and S. Ibrahim, “Semantic Web
Service Discovery and Composition Based on AI Planning and Web
Service Modeling Ontology,” Proc. IEEE Asia-Pacific Services
Computing Conference (APSCC '08), IEEE Computer Society, Dec.
2008, pp. 397-403, doi: 10.1109/APSCC.2008.126.

[25] E. Sirin, B. Parsia, D. Wu, J. Hendler, and D. Nau, “HTN Planning
for Web Service Composition using SHOP2,” Web Semantics:
Science, Services and Agents on the World Wide Web, vol. 1, Oct.
2004, pp. 377-396, doi: 10.1016/j.websem.2004.06.005.

[26] H. Zhao and P. Doshi, “Towards Automated RESTful Web Service
Composition,” Proc. IEEE International Conference on Web Services
(ICWS 2009), IEEE Computer Society, Jul. 2009, pp. 189-196, doi:
10.1109/ICWS.2009.111.

[27] F. Casati, M. Sayal, and M. Shan, “Developing E-Services for
Composing E-Services,” Lecture Notes in Computer Science, vol.
2068/2001, Jan. 2001, pp. 171-186, doi: 10.1007/3-540-45341-5_12.

[28] X. Xu, L. Zhu, Y. Liu, and M. Staples, “Resource-Oriented
Architecture for Business Processes,” Proc. 15th Asia Pacific Software
Engineering Conference (APSEC 2008), IEEE Computer Society,
Dec. 2008, pp. 395-402, doi: 10.1109/APSEC.2008.52.

[29] S. Mosser, “Web Services Composition: Mashups Driven
Orchestration Definition,” Proc. 2008 International Conference
Computational Intelligence for Modeling Control & Automation,
IEEE Computer Society, Dec. 2008, pp. 284-289, doi:
10.1109/CIMCA.2008.96.

[30] Y. Xu, S. Tang, Y. Xu, and Z. Tang, “Towards Aspect Oriented Web
Service Composition with UML,” Proc. 6th Int’l. Conf. Computer and
Information Science (ICIS 2007), IEEE Computer Society, Jun. 2007,
pp. 279-284, doi: 10.1109/ICIS.2007.185.

[31] J. Pathak, S. Basu, R. Lutz, and V. Honavar, “MoSCoE: A
Framework for Modeling Web Service Composition and Execution,”
Proc. 22nd International Conference on Data Engineering Workshops,
IEEE Computer Society, Apr. 2006, pp. x143, doi:
10.1109/ICDEW.2006.96.

[32] C. Pautasso, “RESTful Web Service Composition with BPEL for
REST,” Data and Knowledge Engineering, vol. 68, no. 9, Mar. 2009,
pp. 851-866, doi: 10.1016/J.DATAK.2009.02.016.

[33] J. Mangler, E. Schikuta, and C. Witzany, “Quo Vadis Interface
Definition Languages? Towards a Interface Definition Language for
RESTful Services,” Proc. 2009 IEEE International Conference on
Service-Oriented Computing and Applications (SOCA ‘09), IEEE
Computer Society, Dec. 2009, pp. 1-4, doi:
10.1109/SOCA.2009.5410459.

[34] M. zur Muehlen, J. V. Nickerson, and K. D. Swenson, “Developing
Web Services Choreography Standards – the Case of REST vs.
SOAP,” Decision Support Systems, vol. 40, no. 1, July 2005, pp. 9-29,
doi: 10.1016/j.dss.2004.04.008.

[35] A. A. Lewis, “Web Services Description Language (WSDL) Version
2.0: Additional MEPs,” W3C Working Group Note, June 2007,
http://www.w3.org/TR/wsdl20-additional-meps/.

[36] S. Kona, A. Bansal, M. B. Blake, and G. Gupta, “Generalized
Semantic-based Service Composition,” Proc. IEEE 2008 International
Conference on Web Services (ICWS’08), IEEE Computer Society,
Sept. 2008, pp. 219-227, doi: 10.1109/ICWS.2008.118.

[37] T. R. Gruber, “A Translation Approach to Portable Ontology
Specifications,” Knowledge Acquisition, vol. 5, no. 2, June 1993, pp.
199-220, doi: 10.1006/knac.1993.1008.

[38] L. Liu and M. T. Özsu, Encyclopedia of Database Systems. New
York: Springer, 2010.

[39] T. Globerson, “Mental Capacity, Mental Effort, and Cognitive Style,”
Developmental Review, vol. 3, no. 3, Sept. 1983, pp. 292-302, doi:
10.1016/0273-2297(83)90017-5.

[40] J. Cardoso, “How to Measure the Control-Flow Complexity of Web
Processes and Workflows,” Workflow Handbook 2005, Lighthouse
Point: Layna Fischer, Apr. 2005, pp. 199-212.

[41] G. A. Miller, “The Magical Number Seven, Plus or Minus Two:
Some Limits on Our Capacity for Processing Information,”
Psychological Review, vol. 63, no. 2, Mar. 1956, pp. 81-97, doi:
10.1037/h0043158.

[42] C. Francalanci and F. Merlo, “The Impact of Complexity on Software
Design Quality and Costs: An Exploratory Empirical Analysis of
Open Source Applications,” Proc. 16th European Conference on
Information Systems (ECIS 2008), June 2008, pp. 1442-1453,
Galway, Ireland.

[43] J. R. Turner and R. A. Cochrane, “Goals-and-Methods Matrix:
Coping with Projects with Ill-defined Goals and/or Methods of
Achieving them,” International Journal of Project Management, vol.
11, no. 2, May 1993, pp. 93-102, doi: 10.1016/0263-7863(93)90017-
H.

[44] A. Camci and T. Kotnour, “Technology Complexity in Projects: Does
Classical Project Management Work?,” Proc. Technology
Management for the Global Future (PICMET 2006), IEEE Computer
Society, vol. 5, July 2006, pp. 2181-2186, doi:
10.1109/PICMET.2006.296806.

[45] K. Dooley, “Organizational Complexity,” International Encyclopedia
of Business and Management, M. Warner (ed.), London: Thompson
Learning, Oct. 2001, pp. 5013-5022.

[46] N. M. Josuttis, SOA in Practice: The Art of Distributed System
Design. Sebastopol: O'Reilly Media, Inc., 2007.

[47] A. Barros, M. Dumas, and P. Oaks, “Standards for Web Service
Choreography and Orchestration: Status and Perspectives,” Proc.
Business Process Management Workshops, Sept. 2005, pp. 61-74, doi:
10.1007/11678564_7.

[48] K. M. Furulund and K. Moløkken-Østvold, “Increasing Software
Effort Estimation Accuracy Using Experience Data, Estimation
Models and Checklists,” Proc. Seventh International Conference on
Quality Software (QSIC '07), IEEE Computer Society, Oct. 2007, pp.
342-347, doi: 10.1109/QSIC.2007.4385518.

[49] H. Demirkan, R. J. Kauffman, J. A. Vayghan, H. G. Fill, D.
Karagiannis, and P. P. Maglio, “Service-Oriented Technology and
Management: Perspectives on Research and Practice for the Coming
Decade,” Electronic Commerce Research and Applications, vol. 7, no.
4, Dec. 2008, pp. 356-376, doi: 10.1016/j.elerap.2008.07.002.

[50] T. Erl, Service-Oriented Architecture: Concepts, Technology, and
Design, Crawfordsville: Prentice Hall PTR, 2005.

APPENDIX I: A SAMPLE OF CLASSIFICATION MATRIX OF WEB SERVICE COMPOSITION

Technology Context

Pattern Semiotics Mechanism Design Time Runtime
Category Detailed Technique

Orchestration Choreography Syntax Semantics SOAP REST Manual Semi-Auto Auto Static Dynamic

BPEL Programming √ √ √ √ √

Semantic Matching [2] √ √ √ √ √

eFlow [3] √ √ √ √ √

Bite [20] √ √ √ √ √

SA-REST + Smashup [21] √ √ √ √ √

CSDL [27] √ √ √ √ √

Workflow-based

RESTfulBP [28] √ √ √ √ √

UML + MDA [4] √ √ √ √ √

UML + OCL [5] √ √ √ √ √

UML + QoS Support [6] √ √ √ √ √

UML-WSC [7] √ √ √ √ √

UML + IHE framework [22] √ √ √ √ √

MD Mashup [29] √ √ √ √ √

UML-AOWSC [30] √ √ √ √ √

Model-driven

MoSCoE [31] √ √ √ √ √

SHOP2 [25] √ √ √ √ √

Petri Net [23] √ √ √ √ √

Situation Calculus [8] √ √ √ √ √

I/O Automata [9] * √ √ √ √ √ √

Rule-based Planning [10] √ √ √ √ √

Interface Automata [11] √ √ √ √ √

Query Planning [12] * √ √ √ √ √ √

Linear Logic Theorem Proving [13] √ √ √ √ √

Colored Petri Net [14] √ √ √ √ √

Model Checking [15] √ √ √ √ √

AIMO [24] √ √ √ √ √

AI planning

Situation Calculus for REST [26] √ √ √ √ √
* The approaches in [9] and [12] are independent of the Semiotics context.

APPENDIX II: EFFORT-ESTIMATION-CHECKLIST TABLE FOR WEB SERVICE COMPOSITION

Technology Context

Pattern Semiotics Mechanism Design Time Runtime
Category

Orchestration Choreography Syntax Semantics SOAP REST Manual Semi-Auto Auto Static Dynamic

Applied
Hypotheses

Score

H3, H5’

S(EFor)=2

H3, H5’

S(EFch)=4

H1, H5’

S(EFsy)=2

H1, H5’

S(EFse)=3

H2’, H5’

S(EFso)=4

H2’, H5’

S(EFre)=2

H1, H2’, H5’,
H6’

S(EFma)=14

H1, H2’, H5’,
H6’

S(EFsa)=12

H1, H2’, H5’,
H6’

S(EFau)=10

H1, H2’, H5’,
H6’

S(EFst)=7

H1, H2’, H5’,
H6’

S(EFdy)=5

Workflow-based

H1, H2’, H4’,
H5’, H6’

S(EFwf)=16

H1, H2’, H3,
H4’, H5’, H6’

S(EFwf)
×S(EFor)

=32

H1, H2’, H3,
H4’, H5’, H6’

S(EFwf)
×S(EFch)

=64

H1, H2’,
H4’, H5’,

H6’

S(EFwf)
×S(EFsy)

=32

H1, H2’,
H4’, H5’,

H6’

S(EFwf)
×S(EFse)

=48

H1, H2’, H4’,
H5’, H6’

S(EFwf)
×S(EFso)

=64

H1, H2’, H4’,
H5’, H6’

S(EFwf)
×S(EFre)

=32

H1, H2’, H4’,
H5’, H6’

S(EFwf)
×S(EFma)

=224

H1, H2’, H4’,
H5’, H6’

S(EFwf)
×S(EFsa)

=192

H1, H2’, H4’,
H5’, H6’

S(EFwf)
×S(EFau)

=160

H1, H2’, H4’,
H5’, H6’

S(EFwf)
×S(EFst)

=112

H1, H2’, H4’,
H5’, H6’

S(EFwf)

×S(EFdy)
=80

Model-driven

H1, H2’, H4’,
H5’, H6’

S(EFmd)=14

H1, H2’, H3,
H4’, H5’, H6’

S(EFmd)
×S(EFor)

=28

H1, H2’, H3,
H4’, H5’, H6’

S(EFmd)
×S(EFch)

=56

H1, H2’,
H4’, H5’,

H6’

S(EFmd)
×S(EFsy)

=28

H1, H2’,
H4’, H5’,

H6’

S(EFmd)
×S(EFse)

=42

H1, H2’, H4’,
H5’, H6’

S(EFmd)
×S(EFso)

=56

H1, H2’, H4’,
H5’, H6’

S(EFmd)
×S(EFre)

=28

H1, H2’, H4’,
H5’, H6’

S(EFmd)

×S(EFma)
=196

H1, H2’, H4’,
H5’, H6’

S(EFmd)
×S(EFsa)

=168

H1, H2’, H4’,
H5’, H6’

S(EFmd)
×S(EFau)

=140

H1, H2’, H4’,
H5’, H6’

S(EFmd)
×S(EFst)

=98

H1, H2’, H4’,
H5’, H6’

S(EFmd)
×S(EFdy)

=70

AI planning

H1, H2’, H4’,
H5’, H6’

S(EFai)=12

H1, H2’, H3,
H4’, H5’, H6’

S(EFai)

×S(EFor)
=24

H1, H2’, H3,
H4’, H5’, H6’

S(EFai)
×S(EFor)

=48

H1, H2’,
H4’, H5’,

H6’

S(EFai)
×S(EFsy)

=24

H1, H2’,
H4’, H5’,

H6’

S(EFai)
×S(EFse)

=36

H1, H2’, H4’,
H5’, H6’

S(EFai)

×S(EFso)
=48

H1, H2’, H4’,
H5’, H6’

S(EFai)
×S(EFre)

=24

H1, H2’, H4’,
H5’, H6’

S(EFai)

×S(EFma)
=168

H1, H2’, H4’,
H5’, H6’

S(EFai)

×S(EFsa)
=144

H1, H2’, H4’,
H5’, H6’

S(EFai)

×S(EFau)
=120

H1, H2’, H4’,
H5’, H6’

S(EFai)

×S(EFst)
=84

H1, H2’, H4’,
H5’, H6’

S(EFai)

×S(EFdy)
=60

