
Proceedings of Australasian Conference on Robotics and Automation, 2-4 Dec 2014, The University of Melbourne, Melbourne, Australia

Recursive Bayesian Updates for Occupancy Mapping and Surface Reconstruction

Soohwan Kim and Jonghyuk Kim
The Australian National University, Australia
{soohwan.kim, jonghyuk.kim}@anu.edu.au

Abstract

This paper proposes a new method to build two
kinds of map representations, occupancy maps and
surface meshes, in a single framework of Gaussian
processes and update recursively using Bayesian
Committee Machines. Previously, Gaussian pro-
cesses were applied to robotic mapping as a batch
process considering all the observations at once.
However, that approach not only increases the num-
ber of training data, which is critical to the time
complexity of Gaussian processes, but also is not
able to update the final map with new observations.
Therefore, we propose to recursively update Gaus-
sian process maps using Bayesian Committee Ma-
chines based on the static world assumption. We
demonstrate our method with a real dataset and
compare the accuracy and run time with OctoMaps.
Experimental results confirm that our method suc-
cessfully works with a sequence of observations.
Our method is slower than OctoMaps but generates
more accurate occupancy maps as well as surface
meshes without additional cost of computation.

1 Introduction
Understanding environments is one of the fundamental prob-
lems for intelligent robots to perform dependable tasks. For
example, if an environmental map is erroneous, a mobile
robot can be hit by obstacles or lose track of its poses dur-
ing navigation. Also, with inaccurate object shape estima-
tion, a robotic arm can fail to grasp unknown objects during
manipulation. Therefore, accurate and reliable robotic maps
are essential for robots to interact with the environments.

For localization and obstacle avoidance, occupancy maps
such as occupancy grid maps [Moravec and Elfes, 1985] and
OctoMaps [Wurm et al., 2010] have been widely used with
range sensors such as laser scanners and depth cameras. They
are highly accurate with dense point clouds and even fast be-
cause each grid cell is updated for each single observation
based on the independent cell assumption. However, given

relatively sparse point clouds they produce poor results con-
taining holes and discontinuities due to the strict assumption.
On the other hand, surface reconstruction such as triangula-
tion [Marton et al., 2009] and implicit surfaces [Kazhdan et
al., 2006] has been applied to construct 3D models of un-
known objects or to visualize the environments.

Recently, Gaussian processes, one of the state-of-the-art
machine learning techniques for regression and classifica-
tion, have been applied to build accurate and reliable robotic
maps. Gaussian process occupancy maps [O’Callaghan and
Ramos, 2012] generate continuous occupancy maps with un-
certainties which can be further used for path planning and
exploration. In addition, Gaussian process implicit surfaces
[Williams and Fitzgibbon, 2006] have been applied to un-
known object grasping [Dragiev et al., 2011], underwater
ship hull inspection [Hollinger et al., 2013] and environ-
mental mapping [Smith et al., 2010]. However, since Gaus-
sian processes suffer from high computational complexity,
for large-scale environmental mapping we proposed some ap-
proximation methods [Kim and Kim, 2012; Kim and Kim,
2013a; Kim and Kim, 2013c] and further suggested a uni-
fied framework for constructing both occupancy maps and
surface meshes with single Gaussian process prediction [Kim
and Kim, 2013b].

However, the previous methods of robotic mapping with
Gaussian processes are all batch processes which accumulate
sequential observations and predict the final maps at once.
That approach not only increases the number of training data,
but also cannot deal with new observations to update the final
maps. Therefore, in this paper we propose to recursively up-
date Gaussian process maps using Bayesian Committee Ma-
chines [Tresp, 2000]. The authors found a similar method us-
ing Bayesian Committee Machines [Jadidi et al., 2014] from
the reviewer’s comments. However, using Bayesian Com-
mittee Machines with Gaussian process mapping is originally
proposed in our previous work for reducing the computational
complexity [Kim and Kim, 2011]. More importantly, in this
paper we focus on what assumption should be made to incor-
porate Bayesian Committee Machines with Gaussian process
mapping and compare the results of different assumptions.

Proceedings of Australasian Conference on Robotics and Automation, 2-4 Dec 2014, The University of Melbourne, Melbourne, Australia

Obs #1
...

Obs #T

Octree

Block #1
...

Block #K

LGP #1
...

LGP #K

BCM #1
...

BCM #K

PLSC

Marching Cubes

Occupancy Map

Surface Mesh

Data Partitioning Prediction Update Post Processing Results

Figure 1: Flow chart of our unified framework for building and recursively updating occupancy maps and surface meshes. Obs,
LGP, BCM and PLSC stand for observations, local Gaussian process, Bayesian Committee Machine and Probabilistic Least
Square Classification, while T and K denote the total time steps and the number of grid blocks in the octree, respectively.

(a) Extended Block (b) Covariance, k(r)

Figure 2: Data partitioning with an octree. (a) All observa-
tions in the extended block are considered to predict the map
of the red block in the center. (b) Comparison of covariance
functions. Note that the sparse covariance function vanishes
after some distance threshold.

2 Overview of Our Method

Fig. 1 shows the flow chart of our unified framework for oc-
cupancy mapping and surface reconstruction in four steps.
First, we partition the world with grid blocks of an octree
and divide training data (observations) and test data (query
positions) into manageable subsets. Second, with the inde-
pendent block assumption, we predict each block map indi-
vidually using Gaussian process regression. Third, based on
the static world assumption we update each block map re-
cursively given a sequence of observations using Bayesian
Committee Machines. Finally, we collect the results from
all blocks and build both occupancy maps using Probabilistic
Least Square Classification and surface meshes using March-
ing Cubes. Each step will be explained in more detail in the
following sections.

3 Data Partitioning with Octrees

We first begin with data partitioning. As we will discuss later,
we apply Gaussian processes to robotic mapping. However,
due to the cubic computational complexity of Gaussian pro-
cesses it is not directly applicable to large-scale environmen-
tal mapping. Therefore, we partition both training and test
data to reduce the time complexity and enhance the scalabil-
ity of Gaussian processes.

3.1 Spatial Partitioning with Octrees
An octree is an efficient data structure for partitioning a three
dimensional space with a recursive tree structure of eight
child nodes. As shown in Fig. 1, given a set of observations
(training data) at time t we divide them into grid blocks using
an octree. Note that the octree partitions the query positions
(test data) as well.

Given partitioned training and test data, the simplest map-
ping approach would be to build each block map with its
own observations. However, this may cause the discontinu-
ity problem on the boundaries because different training data
will be used for neighboring blocks. Instead, we make the
training data change smoothly block by block.

3.2 Independent Block Assumption
To avoid the discontinuity problem on the boundaries, we pre-
dict each block map with the observations in the extended
block (itself and neighboring blocks) as shown in Fig. 2(a).

Mathematically, this can be done by assuming that the map
of a grid block is independent of others given the observations
in the extended block, which we call the independent block
assumption. Thus, the whole mapping problem is factorized
by sub-problems of mapping individual blocks as

p(f∗ | D) =
K

∏
i=1

p(f i
∗ | ȳ i) , (1)

where f∗ and f i
∗ denote the whole map and the i-th block map,

respectively. Similarly, D denote the whole observations of
K blocks, while ȳ i represents only those in the i-th extended
block. Note that the observations in each block, y i are both
mutually exclusive and collectively exhaustive so that y i ∩
y j = ø, i 6= j and D = ∪K

i=1 yi, but the extended observations,
ȳ i are overlapping each other.

This assumption is valid in that in Gaussian processes the
covariance between the output values of two test positions
drops exponentially as the distance grows and even vanishes
at some distance when we use the sparse covariance function
as shown in Fig. 2(b). More details about covariance func-
tions will be followed in the next section.

Therefore, our method is a local approximation of Gaus-
sian process mapping in that we individually estimate each

Proceedings of Australasian Conference on Robotics and Automation, 2-4 Dec 2014, The University of Melbourne, Melbourne, Australia

x

f (x)

1

−1

(a) Indicator Function

x

f (x)

(b) Signed Distance Function

Figure 3: Target functions in one dimensional space. Here we
assume that it is occupied at x ∈ [0,∞).

block map with its own extended observations and move on
the next block. This procedure looks quite similar to the over-
lapping sliding window approach in computer vision.

4 Gaussian Process Mapping
Now, let us focus on predicting each block map with its ex-
tended observations using a local Gaussian process. Thus for
clarity, we omit the superscript i of the block index here and
consider the extended observations as the whole training data.

4.1 Target Function
Before applying Gaussian processes, we need to define the
target function or the output values of observations. Fig. 3
describes two target functions. The indicator function maps
occupied/empty points to +1/−1, while the signed distance
function maps every point on the surface to zero and other
points inside/outside of the surface to positive/negative dis-
tances to the surface.

The indicator function was adopted in Gaussian process
occupancy maps [O’Callaghan and Ramos, 2012; Kim and
Kim, 2012; Kim and Kim, 2013a] by following the concept
of occupancy. However, in that case it is difficult to interpret
the latent function values because it can be bigger than 1 or
less than −1. Instead, we adopt the signed distance function
as a target function as we did in [Kim and Kim, 2013b] By
doing this, we can build two kinds of map representations, oc-
cupancy maps and surface meshes with single Gaussian pro-
cess prediction. The post processing procedures for surface
reconstruction and occupancy mapping will be explained in
Section 6.

Consequently, given a robot pose and hit points we asso-
ciate the hit points with zero values. But with only zero val-
ues, we cannot predict the signed distance field in a three di-
mensional space. Thus, we create empty points just before
the hit points along the directions from the robot position to
the hit points and associate them with negative distances.

4.2 Gaussian Process Regression
A Gaussian process regression is a Bayesian non-parametric
approach to regression. It is also known as an extension of

a multivariate Gaussian distribution to infinite dimensions, in
other words a distribution over functions,

f (x)∼ GP
(
m(x), k(x,x′)

)
, (2)

where m(x) and k(x,x′) denote the mean and covariance func-
tions, respectively.

Since observations in reality are not perfect, we assume
that each observation is corrupted with additive Gaussian
noise,

y = f (x)+ ε, ε ∼N (0, σ
2
n) , (3)

where σ2
n denotes the noise variance.

Given N noisy observations, D= {(xi,yi)}N
i=1 = {X,y} and

M test positions, X∗ = {x∗ j}M
j=1, Gaussian processes assume

a joint Gaussian distribution over the training outputs, y and
the test outputs, f∗ = { f∗ j}M

j=1,[
y
f∗

]
∼N

(
0,
[

K+σ2
n I K∗

KT
∗ K∗∗

])
, (4)

where K ∈ RN×N , [K]i j = k(xi,x j), K∗ ∈ RN×M, [K∗]i j =
k(xi,x∗ j), and K∗∗ ∈ RM×M, [K∗∗]i j = k(x∗ i,x∗ j). Note that
the zero mean function is chosen here. (see [Rasmussen and
Williams, 2006] for details).

Therefore, we can infer the predictive distribution of the
test outputs which is also Gaussian,

f∗ | y∼N (µ∗, Σ∗) , (5)

where

µ∗ = KT
∗ [K+σ

2
n I]−1y , (6)

Σ∗ = K∗∗−KT
∗ [K+σ

2
n I]−1K∗ , (7)

where µ∗ and Σ∗ denote the mean vector and the covariance
matrix of the predictive Gaussian distribution.

By considering each test position independent, we can infer
the mean, µ∗ and variance σ2

∗ of a test output, f∗ at a test
position x∗,

µ∗ = kT
∗ [K+σ

2
n I]−1y , (8)

σ
2
∗ = k∗∗−kT

∗ [K+σ
2
n I]−1k∗ , (9)

where k∗ ∈ RN , [k∗]i = k(xi,x∗), and k∗∗ = k(x∗,x∗).
In this paper, we call the first prediction dependent predic-

tion and the second one independent prediction. Table 1 sum-
maries the computational complexities of a Gaussian process
and local Gaussian processes. Recognize that dependent pre-
diction has higher computational complexity than indepen-
dent one, and both of them are dramatically reduced by parti-
tioning both training and test data. This theoretic complexity
will be confirmed in the experimental results in Section 7.

4.3 Covariance Functions
A common choice for covariance functions is the squared
exponential covariance function. However, it produces too
smooth prediction results as it is infinitely differentiable.

Proceedings of Australasian Conference on Robotics and Automation, 2-4 Dec 2014, The University of Melbourne, Melbourne, Australia

Table 1: Computational complexities of Gaussian processes,
where N and M denote the numbers of training and test data,
respectively. For local Gaussian processes we assume that the
training and test data are equally divided into K blocks.

Pred. Gaussian Process Local Gaussian Processes

Dep. O(N3 +N2M+NM2) O
(
(N3 +N2M+NM2)/K2)

Ind. O(N3 +N2M) O
(
(N3 +N2M)/K2)

Mátern Covariance Function
For dealing with sharp changes in object shapes, we use the
Mátern covariance function with ν = 3/2,

k(r) = σ
2
f

(
1+

√
3r

lm

)
exp

(
−
√

3r
lm

)
, (10)

where r = |x−x′|, and the hyperparameters σ2
f and lm > 0 are

called the signal variance and the characteristic length-scale,
respectively.

Sparse Covariance Function
Note that even for a large distance, the Mátern covariance
function still has some positive value. Thus, for assuming
independent blocks and applying local Gaussian processes to
each block, we also use the sparse covariance function,

k(s) =

{(
2+cos(2πs)

3 (1− s)+ 1
2π

sin(2πs)
)

, if s < 1 ,

0 , if s≥ 1 ,
(11)

where the scaled distance s = r/ls, and the characteristic
length-scale ls > 0 . Recognize that the correlation between
two points is now zero when their distance is greater than the
threshold ls. In order to to take advantages of both covariance
functions, we use their product as a covariance function, be-
cause the positive semidefinite kernels are closed under addi-
tions and multiplications. Fig. 2(b) compares their behaviors
with hyperparameters set to σ f = 1, lm = 0.2, ls = 0.5.

4.4 Training Hyperparameters
In Gaussian processes, we train hyperparameters by maxi-
mizing the log marginal likelihood (or evidence),

log p(y |X,Θ) =−1
2

yTK−1
n y− 1

2
log |Kn|−

N
2

log2π, (12)

where Kn =K+σ2
n I and the hyperparameters Θ= (σ f , lm, ls)

in this paper.
However, in our case we partitioned the world into blocks

with an octree and applied local Gaussian processes individ-
ually. Thus, we train the hyperparameters by maximizing the
sum of the log marginal likelihoods of each block,

Θ̂ = argmax
Θ

K

∑
i=1

log p(y i | X i,Θ) . (13)

xt−1 xt xt+1

ȳ i
t−1 ȳ i

t ȳ i
t+1

f i
∗

i

Figure 4: Graphical model for the static block assumption. xt
denotes the robot pose at time t, ȳ i

t represents the extended
observations for the i-th block map f i

∗. Note that gray and
white circles indicate known and unknown variables, respec-
tively.

Note that we do not adopt hyperparameters locally to each
block because it may cause the discontinuity problem on the
boundaries.

5 Recursive Updates with BCM
In this section, we extend our Gaussian process mapping
method to deal with sequential observations. First, we assume
the static block assumption which combines the independent
block assumption in the previous section and the static world
assumption. Then, we propose recursive updates for Gaus-
sian process mapping using Bayesian Committee Machines.

5.1 Static Block Assumption
Static World Assumption
Usually when we build maps for static environments, we
adopt the so-called static world assumption, where the cur-
rent observation, yt and the observations up to now, y1:t−1 are
assume to be independent given the whole map, f∗,

p(yt , | f∗, y1:t−1) = p(yt , | f∗) . (14)

Static Block Assumption
By combining the independent block assumption in Eq. 1
and the static world assumption in Eq. 14, we assume that for
each block the current extended observations, ȳ i

t and the ex-
tended observations up to now, ȳ i

1:t−1 are independent given
the block map, f i

∗, which we call the static block assumption,

p(ȳ i
t | f i
∗, ȳ i

1:t−1) = p(ȳ i
t | f i
∗) . (15)

Technically, this assumption is not correct because the ex-
tended observations cover a larger space than the block map.
However, it is inevitable to make the observations in each ex-
tended block independent for recursive updates because pre-
dictions are made based on the extended observations. We
find that this assumption works well with real data in Sec-
tion 7. Fig. 4 depicts the graphical model for the static block
assumption.

Proceedings of Australasian Conference on Robotics and Automation, 2-4 Dec 2014, The University of Melbourne, Melbourne, Australia

5.2 Recursive Block Updates
From the independent block assumption, we predict each
block map individually. Moreover, from Bayes’ Theorem and
the static block assumption in Eq. 15, each block map can be
recursively updated as,

p(f i
∗ | ȳ i

1:t) ∝ p(ȳ i
t | f i
∗, ȳ i

1:t−1) p(f i
∗ | ȳ i

1:t−1) (Bayes’ Rule)

= p(ȳ i
t | f i
∗) p(f i

∗ | ȳ i
1:t−1) (Static Block)

∝
p(f i
∗ | ȳ i

t) p(f i
∗ | ȳ i

1:t−1)

p(f i
∗)

. (Bayes’ Rule) (16)

Note that the prior distribution of the i-th block map, p(f i
∗)

and the predictive distribution, p(f i
∗ | ȳ i

t) at time t are multi-
variate Gaussian distributions from Eq. 4 and 5. Therefore,
the recursive update of each block map in Eq. 16 can be repre-
sented in terms of the mean vector and the covariance matrix
of each block map,

ξ
i
1:t = ξ

i
1:t−1 +ξ

i
t , (17)

Λ
i
1:t = Λ

i
1:t−1 +Λ

i
t −Λ

i
0 , (18)

where ξ = Σ
−1

µ and Λ = Σ
−1 denote the information vector

and the information matrix, respectively. This recursive up-
date form with independent subsets of training data is called
a Bayesian Committee Machine [Tresp, 2000] in the machine
learning community.

5.3 Static Cell Assumption
In the case of building large-scale environmental maps with a
high resolution, the space complexity can be an issue as well
as the time complexity in Table 1. Suppose that we have K
blocks and each block consists of m grid test positions per
each axis. Then, the space complexity of maintaining the
mean vectors and the covariance matrices in a three dimen-
sional space is O(Km3), while it is reduced to O(Km) for
maintaining the means and variances. Note that the number
of test positions per each block is the same as M = m3 for
both cases.

In order to maintain the variances instead of the covariance
matrix, we propose a simplified version of the static block
assumption called the static cell assumption,

p(ȳ i
t | f i, j

∗ , ȳ i
1:t−1) = p(ȳ i

t | f i, j
∗) , (19)

where f i, j
∗ is now the j-th cell of the i-th block map.

This seems to be a very strict assumption compared with
the static block assumption. However, it is still less strict
than the independent cell assumption adopted in occupancy
grid maps and OctoMaps,

p(y i, j
t | f i, j

∗ , y i, j
1:t−1) = p(y i, j

t | f i, j
∗) , (20)

where y i, j
t represents a single ray observation which passes

through or hits back at the j-th cell of the i-the block map.
This little difference in the independence assumption makes
huge difference in the final map accuracy as you will see in
Section 7.

Figure 5: Concept of Marching Cubes. Here, the green ver-
tices have positive distances, while the red vertex has a nega-
tive distance. The zero-valued points of the intersecting iso-
surface in red are determined by interpolating the signed dis-
tances on vertices.

5.4 Recursive Cell Updates
Now, with the static cell assumption in Eq. 19, each cell is
updated recursively as,

ξ
i, j

1:t = ξ
i
1:t−1 +ξ

i, j
t , (21)

λ
i, j

1:t = λ
i, j

1:t−1 +λ
i, j

t −λ
i, j

0 , (22)

where ξ = σ−2µ and λ = σ2. We will demonstrate the re-
cursive block updates and recursive cell updates in Section 7
and show that the latter dramatically reduces run times with
neglectable accuracy loss.

6 Post Processing
Now, we are given the means and variances at grid test po-
sitions which is predicted with local Gaussian processes and
updated with Bayesian Committee Machines. In order to con-
vert this result to two kinds of map representations, an occu-
pancy map and a surface mesh, we apply Probabilistic Least
Square Classification and Marching Cubes, respectively.

6.1 Probabilistic Least Square Classification
Occupancy mapping is a binary classification problem to pre-
dict the binary class probability of each test position being
occupied or not. Thus, we apply Probabilistic Least Square
Classification [Platt, 2000],

p(m i, j
∗ = 1|D) = Φ

 αµ
i, j

1:t +β√
1+α2σ

2 i, j
1:t

 , (23)

where m i, j
∗ denotes the binary random variable (1: occupied,

−1: empty) for the j-th cell in the i-th block and Φ represents
the cumulative Gaussian density function. The parameters α

and β are optimized by maximizing the accuracy of the final
occupancy maps.

6.2 Marching Cubes
The predicted mean values at grid test positions can be
viewed as a scalar field in a three dimensional space. Thus,
we can reconstruct a surface by extracting the zero-valued

Proceedings of Australasian Conference on Robotics and Automation, 2-4 Dec 2014, The University of Melbourne, Melbourne, Australia

(a) Hit Points: Four sequential observations. New observations are color coded by height, while old ones are gray.

(b) OctoMaps: Occupied cells are color coded by height. Recognize the holes and discontinuities.

(c) GPMaps: Occupied cells are color coded by uncertainty. (red/blue color for high/low uncertainty)

Figure 6: Incremental updates of OctoMaps and our GPMaps given a sequence of observations. Recognize that GPMaps are
more accurate than OctoMaps, and in GPMaps the uncertainties on the boundaries of observations and inside of the object are
relatively higher.

iso-surface because by definition of the signed distance func-
tion, the outputs of the points on the surface are zero.

For iso-surface extraction, we apply Marching Cubes
[Lorensen and Cline, 1987]. As shown in Fig. 5, given the
predicted signed distances at eight cell center positions, we
construct a cube and search for the intersecting surface patch
by interpolating the signed distances of vertices, and move
on to the next cube. Note that the iso-surfaces of occupancy
grid maps or OctoMaps would be severely cracked because
of their sparseness. On the other hand, our method predicts
continuous signed distance fields and thus generates smooth
surfaces, which is one of the benefits of using Gaussian pro-
cesses.

7 Experimental Results
In this section, we demonstrate our method with a real dataset
and compare the accuracy and run time with OctoMaps

[Wurm et al., 2010]. Our method was implemented in C++
and the source code is open to the public [Kim, 2014]. The
experiments was performed on a laptop computer with an In-
tel Core i7-2630QM 2.0 GHz CPU and 8 GB RAM.

7.1 Sequential Dataset
For a real dataset, we use the Stanford Bunny dataset [Turk
and Levoy, 1994]. It consists of four sequential observations
(rotating around the z-axis) and their corresponding sensor
poses in the global coordinates as shown in Fig. 6(a). Recog-
nize that no hit points are acquired from the top of the bunny’s
head and back. Originally, the Stanford Bunny dataset was
made for surface reconstruction so that a high resolution scan-
ner (Cyberware 3030, FOV: 11.82◦, 512×512 pixels) was
used, and very dense point clouds were obtained about 74.0
cm away from the model (16×12×15 cm3). To simulate con-
ventional situations of robotic mapping with a laser scanner
of a 0.1◦ angular resolution, we use randomly sampled 10%

Proceedings of Australasian Conference on Robotics and Automation, 2-4 Dec 2014, The University of Melbourne, Melbourne, Australia

(a) All Hit Points (b) Recursive Block Updates (c) Recursive Cell Updates (d) Surface Mesh

Figure 7: Comparison between recursive block updates and recursive cell updates. (a) All hit points, (B) Occupancy maps built
with recursive block updates, (C) Occupancy maps built with recursive cell updates, and (D) Surface mesh reconstructed with
recursive cell updates.

of the hit points in this paper. The numbers of sampled hit
points are (1) 4,026 (2) 3,038 (3) 4,026 and (4) 3,171.

7.2 Accuracy Comparison
Given the same sequence of observations, we incrementally
built OctoMaps and GPMaps (our method) with recursive cell
updates. The map resolution was set to 0.2cm for both cases.
For GPMaps, we trained hyperparameters to maximize the
sum of the marginal likelihoods of all the blocks. (σ f =
1.078e-1 , ls = 6.704e-2, lm = 5.894e-2, and σn = 2.616e-4)
Based on them, we set the block size to 2 cm. Note that the
bigger the block size is, the more training and test data is
given to each block. Therefore, the block size should be care-
fully selected for time and space complexity.

The OctoMaps and GPMaps for sequential observations
are shown in Fig. 6(b) and 6(c). Recognize the sparseness
of OctoMaps compared with the dense and smooth GPMaps.
In addition to the enhanced accuracy, GPMaps also provide
map uncertainties (variances) with which the occupied cells
are color coded. Here, uncertain cells (σ i, j 2

1:t > 4e-4) were
removed.

In the first view of Fig. 6(c), the boundary has relatively
high uncertainty due to the lack of observations. In the second
view, we can see that the inside of the object is very uncertain.
This is because our training data are hit and empty points, and
there exist no observations behind the surface. Thus, the in-
side test positions were predicted as occupied with high un-
certainties. In the third view, since there exist almost no over-
lapping areas between the front and rear views, the occupied
cells on the border line, which goes from the nose to the front
feet, have high uncertainties. Finally, with the four observa-
tions, the occupancy maps were predicted with very low un-
certainty except the top of the head and back. This is because
originally no hit points were obtained from those areas.

We also compares the accuracy of two recursive update
schemes in Fig. 7. Recognize that the occupancy maps pre-
dicted with the recursive block updates have lower uncertain-

Table 2: Comparison of run times. Recognize that OctoMaps
are much faster than GPMaps (our method), and the indepen-
dent prediction and update of GPMaps is much faster than the
dependent ones.

Seq
Octo
Maps
(sec)

GPMaps (dep.) GPMaps (indep.)
Pred.
(min)

Update
(min)

Pred.
(min)

Update
(sec)

#1 1.186 11.50 10.10 1.648 0.078
#2 0.764 9.55 9.14 1.249 0.062
#3 1.061 11.31 11.96 1.688 0.062
#4 1.014 9.38 9.64 1.282 0.047

Total 4.025 41.74 40.84 5.867 0.250

ties on the top of the head and back, but lost some details
on the tips of both ears. Since our GPMaps predict continu-
ous signed distance fields, we can reconstruct the iso-surface
meshes with zero distances as shown in Fig. 7(d).

7.3 Speed Comparison
Table 2 compares the run times between different mapping
methods. As expected, OctoMaps are much faster than
GPMaps. It is because each cell is updated for each single
observation based on the independent cell assumption. The
independent prediction and update for GPMaps dramatically
reduces the run times, which confirms the theoretical time
complex in Table 1.

8 Conclusions
In this paper, we proposed a new method to build and re-
cursively update occupancy maps and surface meshes given
a sequence of observations using Gaussian processes and
Bayesian Committee Machines. With the independent block
assumption, we partitioned both training and test data into
grid blocks using an octree and applied local Gaussian pro-
cesses to each block. Moreover, with the static block/cell

Proceedings of Australasian Conference on Robotics and Automation, 2-4 Dec 2014, The University of Melbourne, Melbourne, Australia

assumption, we recursively updated the maps for each
block/cell. With those assumption, the time and space com-
plexity of our method was dramatically reduced. Experimen-
tal results showed that our method successfully dealt with
sequential observations. Our method was slower than Oc-
toMap but generated more accurate occupancy maps with
map uncertainties. Moreover, our method also produced sur-
face meshes without additional cost of computation.

However, our recursive update scheme, Bayesian Commit-
tee Machines, is based on the static world assumption. There-
fore, our method is not suitable for dynamic environments.
To address this problem, we need to consider the transitional
probability of the map as time passes, which is included in
our future work.

References
[Dragiev et al., 2011] S. Dragiev, M. Toussaint, and

M. Gienger. Gaussian process implicit surfaces for shape
estimation and grasping. In Proceedings of the IEEE
International Conference on Robotics and Automation,
pages 2845–2850, 2011.

[Hollinger et al., 2013] G.A. Hollinger, B. Englot, F. Hover,
U. Mitra, and G.S. Sukhatme. Active planning for under-
water inspection and the benefit of adaptivity. Int’l Journal
of Robotics Research, 32(1):3–18, 2013.

[Jadidi et al., 2014] Maani Ghaffari Jadidi, Jaime Valls
Miró, Rafael Valencia, and Juan Andrade-Cetto. Explo-
ration on continuous Gaussian process frontier maps. In
Proceedings of the the IEEE International Conference on
Robotics and Automation, pages 6077–6082. IEEE, 2014.

[Kazhdan et al., 2006] M. Kazhdan, M. Bolitho, and
H. Hoppe. Poisson surface reconstruction. In Proceedings
of Eurographics Symposium on Geometry processing,
pages 61–70, 2006.

[Kim and Kim, 2011] Soohwan Kim and Jonghyuk Kim. To-
wards large-scale occupancy map building using Dirich-
let and Gaussian processes. In Proceedings of the Aus-
tralasian Conference on Robotics and Automation, 2011.

[Kim and Kim, 2012] Soohwan Kim and Jonghyuk Kim.
Building occupancy maps with a mixture of Gaussian pro-
cesses. In Proceedings of IEEE International Conference
on Robotics and Automation, pages 4756–4761, 2012.

[Kim and Kim, 2013a] Soohwan Kim and Jonghyuk Kim.
Continuous occupancy maps using overlapping local
Gaussian processes. In Proceedings of IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems,
pages 4709–4714. IEEE, 2013.

[Kim and Kim, 2013b] Soohwan Kim and Jonghyuk Kim.
GPmap: A unified framework for robotic mapping based
on sparse Gaussian processes. In Proceedings of Interna-
tional Conference on Field and Service Robot, 2013.

[Kim and Kim, 2013c] Soohwan Kim and Jonghyuk Kim.
Occupancy mapping and surface reconstruction using lo-
cal gaussian processes with kinect sensors. Cybernetics,
IEEE Transactions on, 43(5):1335–1346, 2013.

[Kim, 2014] Soohwan Kim. Gpmap++: Gaussian processes
for robotic mapping in C++. https://github.com/
kimsoohwan/GPMap, 2014.

[Lorensen and Cline, 1987] W.E. Lorensen and H.E. Cline.
Marching cubes: A high resolution 3D surface construc-
tion algorithm. In ACM SIGGRAPH Computer Graphics,
volume 21, pages 163–169, 1987.

[Marton et al., 2009] Zoltan Csaba Marton, Radu Bogdan
Rusu, and Michael Beetz. On fast surface reconstruction
methods for large and noisy point clouds. In Proceedings
of the IEEE International Conference on Robotics and Au-
tomation, pages 3218–3223. IEEE, 2009.

[Moravec and Elfes, 1985] H. Moravec and A. Elfes. High
resolution maps from wide angle sonar. In Proceedings of
the IEEE International Conference on Robotics and Au-
tomation, volume 2, pages 116–121, 1985.

[O’Callaghan and Ramos, 2012] S. O’Callaghan and F.T.
Ramos. Gaussian process occupancy maps. The Interna-
tional Journal of Robotics Research, 31(1):42–62, 2012.

[Platt, 2000] John C. Platt. Probabilities for SV Machines. In
Advances in Large Margin Classifiers, pages 61–74. MIT
Press, 2000.

[Rasmussen and Williams, 2006] C.E. Rasmussen and
C.K.I. Williams. Gaussian Processes for Machine
Learning. MIT Press, 2006.

[Smith et al., 2010] Mike Smith, Ingmar Posner, and Paul
Newman. Efficient non-parametric surface representations
using active sampling for push broom laser data. In Pro-
ceedings of Robotics: Science and Systems, 2010.

[Tresp, 2000] V. Tresp. A Bayesian committee machine.
Neural Computation, 12(11):2719–2741, 2000.

[Turk and Levoy, 1994] Greg Turk and Marc Levoy. Zip-
pered polygon meshes from range images. In Proceedings
of the ACM Conference on Computer Graphics and Inter-
active Techniques, pages 311–318. ACM, 1994.

[Williams and Fitzgibbon, 2006] O. Williams and
A. Fitzgibbon. Gaussian process implicit surfaces.
In Proceedings of the Workshop on Gaussian Processes in
Practice, 2006.

[Wurm et al., 2010] Kai M. Wurm, Armin Hornung, Maren
Bennewitz, Cyrill Stachniss, and Wolfram Burgard. Oc-
tomap: A probabilistic, flexible, and compact 3D map rep-
resentation for robotic systems. In Proceedings of the
ICRA workshop on best practice in 3D perception and
modeling for mobile manipulation, 2010.

https://github.com/kimsoohwan/GPMap
https://github.com/kimsoohwan/GPMap

	Introduction
	Overview of Our Method
	Data Partitioning with Octrees
	Spatial Partitioning with Octrees
	Independent Block Assumption

	Gaussian Process Mapping
	Target Function
	Gaussian Process Regression
	Covariance Functions
	Training Hyperparameters

	Recursive Updates with BCM
	Static Block Assumption
	Recursive Block Updates
	Static Cell Assumption
	Recursive Cell Updates

	Post Processing
	Probabilistic Least Square Classification
	Marching Cubes

	Experimental Results
	Sequential Dataset
	Accuracy Comparison
	Speed Comparison

	Conclusions

