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Abstract. We examine the feasibility of creating and measuring large relative
number squeezing in multicomponent trapped Bose–Einstein condensates. In
the absence of multimode effects, this squeezing can be arbitrarily large for
arbitrarily large condensates, but a range of processes limit the measurable
squeezing in realistic trap configurations. We examine these processes, and
suggest methods to mitigate them. We conclude that high levels of squeezing
with large numbers of atoms is feasible, but can realistically only be achieved
in particular trap geometries. We also introduce a method of maximizing the
measurable squeezing by using a π -pulse during the process to improve spatial
mode-matching.
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1. Introduction

Quantum degenerate ultracold atomic sources have been used to study fundamental processes
such as quantum phase transitions [1, 2], quantum non-equilibrium thermodynamics [3, 4] and
entanglement of massive particles [5]. Their ability to be highly isolated from their environment
and controlled precisely by optical, magnetic and rf fields makes them an ideal platform for
engineering and manipulating non-trivial quantum states. In quantum optics, the most common
way to produce entangled states has been through squeezing, and it has been recognized
that the intrinsic nonlinearities of atoms naturally lead to quadrature squeezing [5–9].
Number squeezing can be achieved with spin squeezing techniques [10–12], molecular
dissociation of Bose–Einstein condensates (BECs) [13–16], four-wave mixing [17–19], double-
well potentials [20, 21] or mixing quadrature-squeezed states using Ramsey interferometry [8].
The creation of these non-classical atomic states has relevance for fundamental tests of
quantum mechanics such as the Einstein–Podolsky–Rosen (EPR) paradox [16, 22–25], as well
as atom interferometry [9, 11, 26–30]. While these techniques have resulted in significant
experimentally detectable number squeezing, they have been limited to small numbers of atoms,
typically a few hundred [11, 20].

Ultracold atomic interferometers are also reaching state of the art sensitivities in precision
measurements [31, 32]. While all current atom interferometry is limited by technical noise
sources, it appears that BEC-based coherent sources offer the best chance of overcoming some
of these issues, for the same reasons that optical lasers are typically preferred for optical
interferometry. In particular, it appears that Bose-condensed sources allow for higher fidelity
mirrors and beamsplitters [33], are less sensitive to the effects of distortions in the optical
wavefronts of the beamsplitters and mirrors and the Coriolis effect [31, 34], and are robust
to the adverse effects of strong outcoupling when feedback-cooled [35–37].

If these technical noise sources can be reduced and/or controlled, atom interferometers
will be limited by atomic shot noise, which leads to a sensitivity that scales as the square root
of the atomic flux. From that point, sensitivity will only be improved by increasing the atomic
flux and brightness [38–40], and/or using non-classical quantum states such as squeezed states
to go below the shot noise limit [31].

New Journal of Physics 15 (2013) 123024 (http://www.njp.org/)

http://www.njp.org/


3

A precision measurement using interferometry is always performed at the maximum
allowable flux in order to maximize sensitivity. While the application of squeezing can be
performed to some extent independently of the technical considerations that tend to limit flux, it
is clearly most metrologically relevant when it can be achieved in the context of the maximum
flux. There are many practical limits on the usable atomic flux, typically set by the available trap
parameters and loss rates. Squeezing has already been used interferometrically on measurements
using chip-based systems, which are particularly limited in their maximum atomic number [41].
Outside very specific circumstances, however, atom interferometry is a sensitive tool on an
absolute scale when the atomic flux can be large. This paper examines the generation of atomic
squeezing using the inherent Kerr-like nonlinearities of ultracold atoms, and demonstrates a trap
geometry in which metrologically relevant levels of squeezing are present in trap geometries that
are compatible with large atomic number.

The creation, detection and application of squeezing requires precise mode-matching, and
is therefore very sensitive to uncontrolled coupling between spatial modes of the atomic field.
Atomic squeezing experiments have typically attempted to operate in the single-mode regime,
where the trap is tight enough such that all higher modes are frozen out [42]. However, tight
traps limit the total number of atoms, as the three-body recombination rate places an effective
maximum atomic density in the gas, and well before that limit, the interatomic interactions break
the single-mode operation. Both of these effects limit the number of atoms that can be squeezed
effectively, so we will examine a broader range of trap geometries, and calculate the dynamics in
the presence of multiple spatial modes. Many similar previous simulations have been performed
in one or two spatial dimensions, by integrating out some of the remaining dimensions [5, 6,
8, 13]. For simulations of semiclassical fields this can be a reasonable approximation, but it can
ignore spontaneous scattering processes in full quantum field theory calculations, so we take
care to include full three-dimensional (3D) simulations.

In section 2 we examine the ideal behaviour of a nonlinear bosonic two-state system
when that system possesses only a single spatial mode, extracting full analytic solutions for the
number squeezing in each of the two states, as well as the number difference squeezing between
the two states. These solutions of the ideal case provide a check on the multimode cases we
consider later in the paper, as well as providing a bound on the best possible squeezing for the
system. In section 3 we show how multimode behaviour becomes important in physical systems,
and introduce our model for simulating higher dimensional trap geometries. Section 4 analyses
one-dimensional (1D) models, highlighting some of the issues regarding optimizing squeezing
parameters and mode-matching in squeezing experiments. Section 5 shows that the application
of a π -pulse during the process can significantly improve mode-matching issues. Section 6
investigates measurable squeezing in two-dimensional (2D) and 3D, and uses a Bogoliubov
analysis to explain the scaling with system size and dimensionality. Section 7 describes the
conclusion that large volume, flat-bottomed, 3D traps, which are obviously compatible with
large atom number, can produce extremely high degrees of squeezing.

2. Model and single-mode solutions

Our goal is to describe the number squeezing possibilities of a BEC comprising two relevant
internal states denoted by |a〉 and |b〉. The Hamiltonian for a pair of coupled atomic internal

New Journal of Physics 15 (2013) 123024 (http://www.njp.org/)

http://www.njp.org/


4

modes is the spatial integral of the Hamiltonian density:

Ĥ=

∑
j∈{a,b}

ψ̂
†
j

(
−

h̄2

2 m
∇

2 + V j

)
ψ̂ j +

∑
i, j

Ui j

2
ψ̂

†
i ψ̂

†
j ψ̂ j ψ̂i + κψ̂†

a ψ̂b + κ∗ψ̂
†
b ψ̂a, (1)

where ψ̂ j(r) is the annihilation field operator for a particle at position r and in internal state
| j〉, m is the mass of the atoms, V j(r) is the trapping potential for atoms in internal state | j〉,
κ describes the coupling between the two states and the Ui j describe the various inter- and
intra-state nonlinearities and are given by

Ui j =
4π h̄2ai j

m
, (2)

where ai j are the inter- and intra-species s-wave scattering lengths.
We begin by considering a simplified version of the problem, assuming that only one

of these spatial modes is relevant for each of the condensate’s components. This is done by
writing the multimode atomic field operators in terms of a set of basis functions ψ̂a(r, t)=∑

n un(r)ân(t) and ψ̂b(r, t)=
∑

n un(r)b̂n(t), where ân and b̂n annihilate a particle with
normalized spatial mode un(r) and internal state |a〉 or |b〉 respectively. With this expansion,
the nonlinear term in the multimode Hamiltonian for the self-interaction of the |a〉 internal state
becomes

Ĥ =
Uaa

2

∫
dV

∑
nmpq

u∗

nu∗

mu puq â†
n â†

m âpâq . (3)

When the system remains predominantly in spatial mode u0(r), we can approximate this sum
as the single term Ĥ = h̄χaaâ†â†ââ/2 where

χaa =
1

h̄
Uaa

∫
|u0(r)|4 dV . (4)

We proceed similarly for the other terms. In the parameter regimes we are interested in,
the detuning between the two spatial modes will be irrelevant, so setting our zero of energy
appropriately, we are left with only a standard Kerr-type nonlinearity arising from atom–atom
interactions, as well as a linear coupling between the two modes. The Hamiltonian governing
this reduced system is given by

Ĥ = h̄
χaa

2
â†â†ââ + h̄χabâ†âb̂†b̂ + h̄

χbb

2
b̂†b̂†b̂b̂ + h̄�(â†b̂ + b̂†â), (5)

where the χi j describe the various inter- and intra-mode nonlinearities, and � couples the two
modes and allows for population transfer between them.

When considering squeezing, the Hamiltonian (5) has typically been handled within the
framework of spin squeezing, which has a long history [10, 20, 26, 29, 43, 44]. This approach
involves exploiting the equivalence between the algebra of two harmonic oscillators and that of
angular momentum, and writing

Ĵ+ = â†b̂, (6)

Ĵ− = âb̂†, (7)

Ĵx =
1

2
( Ĵ+ + Ĵ−), (8)

New Journal of Physics 15 (2013) 123024 (http://www.njp.org/)

http://www.njp.org/


5

Ĵy =
1

2i
( Ĵ+ − Ĵ−), (9)

Ĵz =
1

2
(â†â − b̂†b̂). (10)

Using these variables equation (5) becomes

Ĥ = h̄1ω(N̂ ) Ĵz +
1

2
h̄χ+ Ĵ 2

z + 2h̄� Ĵx −
1

4
(χaa +χbb) N̂ +

1

8
(χaa +χbb + 2χab) N̂ 2, (11)

where N̂ = â†â + b̂†b̂ is the total number operator, 1ω(N̂ )= (N̂ − 1) (χaa −χbb) /2 and χ+ =

χaa +χbb − 2χab. In this form, the last two terms in equation (11) are proportional to powers of
the number operator, and so will commute with the number variance operators for state |a〉 and
|b〉. This means they cannot cause number squeezing of any type, and can be dropped in the
search for a minimal, squeezing-generating Hamiltonian. Further, in the case where the system
is in a total number Fock state, the first term in equation (11) can be removed by an appropriate
choice of detuning. In this case, dropping the first and last two terms transforms equation (11)
into the Josephson Hamiltonian with zero detuning [44]:

Ĥ J =
1

2
h̄χ+ Ĵ 2

z + 2h̄� Ĵx . (12)

The system described by ĤJ is then solved using angular momentum algebra.
The reduction of equation (5) to equation (12) has led to the common misconception that

no squeezing can be generated in this system if χ+ = 0 as the effects of the1ω term are usually
dismissed as an irrelevant detuning. This is not true in general for initial states other than a total
number Fock state as the1ω(N̂ ) Ĵz term leads to a number-dependent detuning. We demonstrate
in this paper that for the case of an initial coherent state this term leads to squeezing. A spin-echo
pulse applied half-way through the experiment which exchanges the population of modes 〈a〉

and 〈b〉 (which is the protocol used in most spin squeezing experiments) also cancels the effects
of this term, and in this case squeezing is only generated if χ+ 6= 0. In this work we directly
solve equation (5) demonstrating that squeezing is generated (in the absence of a spin-echo
pulse) even if χ+ = 0.

The system is prepared with all the population initially in |a〉, and vacuum in |b〉. We
choose the initial state |a〉 to be a coherent state with average number 〈â†â〉 = N . As the system
is insensitive to the initial phase of the coherent state, this is equivalent to a mixture of coherent
states of uncertain phase, or a mixture of Poisson-distributed number states. Such a state is
consistent with BEC coherence experiments [45].

At time t = 0, the coupling � is applied until time t = t1, resulting in a portion of the
population being transferred into mode |b〉. We assume this transfer process is fast relative to
the nonlinear energy time scale, ensuring that, as the initial states were coherent states, after the
population transfer both |a〉 and |b〉 are still described by coherent states with mean number
〈â†â〉 = na and 〈b̂†b̂〉 = nb respectively. The coupling � is then switched off until time t2,
while the atoms interact solely through the nonlinear terms. After this hold time τhold = t2 − t1,
the coupling � is switched back on until time t3, with a phase shift φ compared to its first
application. During this last stage, the two modes exchange population and the quadrature
variances are converted into number variance, in the same way that homodyne measurements
are used in quantum optics to convert quadrature squeezing into number squeezing, which can
be directly measured. In this interpretation, φ is the relative phase of the strong local oscillator,
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Figure 1. Schematic of the pulse sequence and atomic populations as a function
of time. Typically the coupling sequences at the beginning and end of the
sequence are much shorter than the hold time, τhold = t2 − t1, which is where
the majority of the squeezing occurs.

which allows specific phase angles of the quadrature squeezing to be examined. This experiment
can also be interpreted as a Ramsey interferometer with a final beam splitter phase of φ. The
entire sequence of pulses and the resulting populations are shown schematically in figure 1.

We solve this system analytically, and derive expressions for absolute and relative number
squeezing. We present the solutions here; the full derivation can be found in appendix A. If we
define

τ = t3 − t2, (13)

θ =�τ, (14)

s = sin(θ), (15)

c = cos(θ), (16)

λi j = χi jτhold, (17)

A =
√

na exp[na(e
−i(λaa−λab) − 1)], (18)

A2 = na exp[na(e
−2i(λaa−λab) − 1)], (19)

B = −i eiφ√nb exp[nb(e
−i(λbb−λab) − 1)], (20)

B2 = −nbe2iφ exp[nb(e
−2i(λbb−λab) − 1)], (21)

D = AB∗
− A∗B, (22)
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then the expectation values for number, number variance and number difference variance after
applying the final coupling field are given by

Na(t3)= nac2 + nbs2 + i cs D, (23)

Nb(t3)= nas2 + nbc2
− i cs D, (24)

Var[Na](t3)= nac2 + nbs2 + 2nanbc2 s2 + c2 s2(D2
− ei(λaa−λbb)B2 A∗

2 − e−i(λaa−λbb)B∗

2 A2)

+i cs D(1 − 2nac2
− 2nbs2)+ 2i c3 sna(e

−i(λaa−λab)AB∗
− ei(λaa−λab)A∗B)

+2i cs3nb(e
i(λbb−λab)AB∗

− e−i(λbb−λab)A∗B), (25)

Var[Nb](t3)= nas2 + nbc2 + 2nanbc2 s2 + c2 s2(D2
− ei(λaa−λbb)B2 A∗

2 − e−i(λaa−λbb)B∗

2 A2)

+i cs D(−1 + 2nas2 + 2nbc2)+ 2i c3 snb(e
−i(λbb−λab)A∗B − ei(λbb−λab)AB∗)

+2i cs3na(e
i(λaa−λab)A∗B − e−i(λaa−λab)AB∗), (26)

Var[Na − Nb](t3)= na + nb + 4i cs D(na − nb)(s
2
− c2)+ 4c2 s2(2nanb + D2

− ei(λaa−λbb)A∗

2 B2

−e−i(λaa−λbb)A2 B∗

2 )+ 4i cs(c2
− s2)(nae−i(λaa−λab)AB∗

− naei(λaa−λab)A∗B

+nbe−i(λbb−λab)A∗B − nbei(λbb−λab)AB∗). (27)

In the case where all the nonlinearities are equal, such that χaa = χab = χbb, the number
variances all reduce to those of a coherent state, i.e. Var[Na] = Na, and no number squeezing is
possible. It should also be noted that, although there are three independent nonlinearities χi j in
the Hamiltonian (5), the expressions for the number variances only depend on differences. This
means that number squeezing is parameterized by only two independent quantities, for example
χaa −χab and χaa −χbb.

In figure 2 we plot a solution for the normalized number variance in mode |a〉 as a function
of φ, choosing a typical set of nonlinearities. This example illustrates the basic features of
the system: during the final coupling period, the normalized number variance undergoes cyclic
variation with a period T = π/�, and has a series of minima. It is necessary to choose both
the correct phase φ as well as the correct length of time for the coupling to be applied in order
to obtain optimum squeezing. As mentioned previously, squeezing is possible in this system
even when the nonlinearity in the reduced Josephson Hamiltonian χ+ = χaa +χbb − 2χab = 0.
Figure 3 demonstrates that significant squeezing is possible in this system if a spin-echo pulse
is not used.

This two-mode analytic model allows arbitrarily good number squeezing, provided there
are no limits to the number of particles in the system or to the hold time. The two-mode
approximation can be valid in tight traps with very low particle number, and this result correctly
predicts the squeezing demonstrated by Gross et al [11]. Unfortunately, for larger numbers of
atoms in realistic traps there are more than two modes present, and these multimode effects limit
the level of squeezing that can be achieved.
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Figure 2. Normalized number variance Var[Na]/Na in mode |a〉 as a function of
final recombination time plotted on a logarithmic scale, using four different mix-
ing angles φ. Parameters: na = nb = 5 × 105, χaa = 0.04 s−1, χab = 0, χbb =

0.01 s−1, τhold = 4 × 10−4 s. Solid line, φ = 0.10; dash-dotted line, φ = 1.42;
dashed line, φ = 3.24; dotted line, φ = 4.71. These particular parameters yield
21 dB of number squeezing for the φ = 0.1 and 1.42 cases.
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Figure 3. Number squeezing in state |a〉 (solid line) and number difference
squeezing between states |a〉 and |b〉 (dashed line) as a function of final recombi-
nation time in the case where χ+ = χaa +χbb − 2χab = 0. Parameters: na = nb =

2 × 105, χaa = 0.03 s−1, χab = 0.02, χbb = 0.01 s−1, τhold = 2 × 10−3 s. Solid
line, φ = 1.67; dashed line, φ = 1.55.
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3. Multimode number squeezing analysis

The zero-dimensional, two-mode model described in the previous section shows that arbitrarily
good squeezing can be achieved using the intrinsic nonlinearities in a BEC, but it ignores
the existence of multiple spatial modes. There are three problems caused by the existence of
multiple modes, and these will limit the achievable squeezing.

The first problem is present even if the spatial modes are uncoupled. The two-mode model
shows that the parameters required to obtain best squeezing are dependent on the strength of
the nonlinearity. In the multimode case, the effective nonlinearity of a mode is a function of
the mode shape, as is shown by equation (4). The optimum hold time τhold depends on the
product of the effective mode nonlinearity and the number of particles in that mode, as does the
recombination phase φ. Different modes in a multimode environment will typically have varying
effective nonlinearity-particle number products and therefore squeeze at different rates, with
each mode having a different optimum τhold and optimum recombination phase φ. This means
that the best squeezing will be achieved by choosing values of τhold and φ that, averaged across
all the spatial modes present, result in the overall lowest total number variance. Clearly, however,
this averaged number variance will be still be higher than the specific mode that exhibits the best
squeezing.

The second problem is due to the number-dependent dynamics of the spatial modes, which
is observable even in a semiclassical simulation. Due to the nonlinear term in the Hamiltonian,
the local phase evolution of the atomic field is density dependent. Consequently the mode shape
of the atomic field changes depending on the nonlinearity-density product, which means that
unless Uaa|ψa(r)|2 + Uab|ψb(r)|2 = Ubb|ψb(r)|2 + Uab|ψa(r)|2 for all r, the mode shapes will
not overlap perfectly during the final coupling pulse. This degraded mode-matching will result
in lower efficiency when converting the quadrature squeezing to number squeezing.

We might speculate that the effects of these first two problems would be lessened by trap
geometries that lead to near-constant density profiles for the BEC. This should enable higher
squeezing. We cannot make strong conclusions without also considering the effects of coupling
between spatial modes, however, which leads to the third potential problem: coupling between
modes is inevitable in the presence of a nonlinearity, meaning that the modes cannot be analysed
independently. Coupling between modes will disturb mode-matching, as well as mixing fields
with different phase evolution, which can rapidly destroy squeezing.

An analytic solution to the multimode, higher-dimensional problem is intractable, so
we must turn to numerical solutions. We use stochastic methods based on phase space
representations to simulate the dynamics of the multimode quantum fields. These methods
alleviate the problem of directly simulating elements of the Hilbert space, the size of which
increases exponentially with the number of spatial modes [46, 47]. Stochastic methods achieve
this by finding a sufficiently well-behaved quasi-probability representation for the density
matrix, which can then be simulated as the average behaviour of a number of low-dimensional
samples. These sample objects are the same size as the equivalent classical field. In our case, the
only tractable phase space representation is the functional Wigner representation [47], which
is well behaved when the quantum field is approximately Gaussian, as it is for coherent and
squeezed states. Stochastic methods based on the functional Wigner representation have been
used to model the behaviour of BECs and atom lasers [6, 48, 49], as the Wigner representation
allows the mapping of the system to a Fokker–Planck equation with positive semi-
definite diffusion matrix (unlike the P-representation [46]), and does not suffer exponential
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path-weighting problems that would constrain it to very short simulation intervals (as would the
positive-P representation [46]).

The equation of motion for the density matrix is defined by the Hamiltonian in equation (1).
This defines the evolution of the functional Wigner distribution of the system, which has a
one-to-one correspondence with the density matrix. The equation of motion for the functional
Wigner distribution contains derivatives of third order which we assume to be negligible. This
uncontrolled approximation is called the truncated Wigner approximation (TWA), and while
it has been used widely on ultracold gases [6, 8, 47, 49, 50], care must be taken that the
simulation remains valid. For our simulations we checked the results of our simulations against
the analytic two-mode solution, as well as checking for typical indications of TWA breakdown
such as the appearance of negative densities in lightly populated modes. We were also able to
use the Bogoliubov analysis described in section 6 as an independent estimate of the validity
of the TWA. We found that the TWA remained valid except in some 3D simulations with high
nonlinearities, where there were a large number of modes, and the number of particles per mode
could drop to ten or less in the densest regions where the squeezing was generated. Over very
long time scales, this low mode occupation began to result in TWA breakdown. Fortunately, the
best squeezing was typically found in regions where the TWA was valid.

Under the TWA, the equation of motion for the functional Wigner distribution is a
Fokker–Planck equation, and can therefore be sampled by a set of stochastic equations, as
described in [46]. These stochastic fields φ(x) are related to field operator expectation values
by

〈: ψ̂†(x1) · · · ψ̂
†(xn)ψ̂(y1) · · · ψ̂(ym) :sym〉 = E[φ∗(x1) · · ·φ

∗(xn)φ(y1) · · ·φ(ym)], (28)

where : ? :sym denotes symmetric ordering of the operators, and E denotes a stochastic average
over the variables φ(x). While we see below that the evolution of these fields is deterministic,
the initial state still requires a random element, so multiple realizations are required. When
approximating these equations on a discrete grid, the magnitude of initial noise, the relationship
between stochastic averages and the expectation values, and the equations of motion all become
grid-dependent. This is not a signature of a fundamental problem, as the Hamiltonian in
equation (1) assumes a contact potential between the atoms, which is not correct below a length
scale that can probe the details of the true potentials. Furthermore, it is not a problem in practice,
as the calculation gives grid-independent predictions for physical observables well before that
regime is reached.

These stochastic equations take the form

dφa

dt
= −

i

h̄

(
−

h̄2

2 m
∇

2 + Va(r)+ Uaana + Uabñb

)
φa + κφb,

dφb

dt
= −

i

h̄

(
−

h̄2

2 m
∇

2 + Vb(r)+ Ubbnb + Uabña

)
φb + κ∗φa, (29)

where n j =
∣∣φ j

∣∣2
−

1
dV , ñ j =

∣∣φ j

∣∣2
−

1
2 dV , dV is the volume element of the grid on which the

simulation is carried out and the terms proportional to 1/dV correspond to vacuum corrections.
It is a peculiarity of the Wigner representation that, up to the vacuum correction terms,
equations (29) look identical to those of the coupled semi-classical nonlinear Schrödinger
equation. The quantum statistical nature of the Wigner equations enters due to the fact that
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equations (29) are run many times and stochastically averaged, with each run using different set
of random initial conditions describing (in this case) the noise on a coherent state.

We integrate equations (29) numerically in one, two and three spatial dimensions using the
numerical package XMDS2 [51]. For the 1D and 2D simulations, the dimensional reduction is
achieved by estimating the mode shape in 3D, and using dimensionally reduced values for Ui j

that match the zero-dimensional reduction given by equation (4). To make relevant comparisons
between equivalent situations with different numbers of spatial dimensions, this mode shape is
typically chosen to match the chemical potentials of the initial states.

The total number squeezing in the multimode case is quantified by the normalized number
variances Vi in internal states |i〉 ∈ {|a〉, |b〉}:

Vi = 〈Var[N̂i ]〉/〈N̂i〉. (30)

In the multimode case, this is calculated using the total number operator N̂i =
∑

j N̂i j , where

N̂i j is the number operator for the state with spatial mode j and internal state |i〉, which is
independent of the spatial mode basis.

4. Effects of trap geometries on squeezing in one dimension

A 1D simulation is sufficient to examine the hypothesis that the squeezing will be higher for
a BEC where the spatial mode has a more constant density profile. We compare squeezing for
fields starting in the ground states of a harmonic trap with negligible nonlinearity (a Gaussian),
a harmonic trap with strong nonlinearity (Thomas–Fermi) and a constant potential (constant
density). Using equation (4) we find the following equivalences:

h̄χ = U

√
m3ωxωyωz

8π3h̄3 , (Gaussian), (31)

h̄χ =
4

7

(
15Uωxωyωz

16π
√

2

)2/5 (m

N

)3/5
, (Thomas–Fermi), (32)

h̄χ =
U

V
, (constant density), (33)

where ωx , ωy , ωz are the angular frequencies of the harmonic trap, and N is the number of
particles in the mode of interest.

Choosing parameters such that the squeezing occurs fast enough that the mode shape
is reasonably stable over the simulation gives the best squeezing, and allows us to make a
fair comparison between the squeezing achievable by different mode shapes without being
concerned that different modes will change shapes at different rates, ruining mode-matching.
The results of this simulation are shown in figure 4, which clearly confirms the hypothesis that
maximum squeezing is obtained when the mode shape is closest to constant density.

One way to avoid any requirement to engineer and maintain specific atomic modes is to
post-select a spatial mode. Rather than considering the variance in the total number of atoms in
each internal state, it may be possible to consider only the statistics in a spatially filtered area
of the atomic cloud. For example, suppose the atoms were in a Gaussian atomic distribution,
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Figure 4. Effects of mode shape on squeezing. The plot shows the normalized
number variance defined by equation (30) in mode |a〉 as a function of the
time the final coupling pulse is applied. We compare the analytic two-mode
solution (thick red), the constant density mode (solid blue), the Thomas–Fermi
mode (dashed) and the Gaussian mode (dash-dotted). The nonlinearities of the
various 1D simulations have been adjusted for their mode shape so that they
are equivalent to that of the zero dimension, two-mode nonlinearity. Parameters
used were na = nb = 1 × 105, χaa = 0.03 s−1, χab = χbb = 0, τhold = 3 × 10−4 s,
φ = 4.0. Maximum squeezing is achieved when the atomic density profile is the
most uniform.

but we consider a mode that only includes the atoms within p standard deviations of the centre.
For low p, this mode shape is considerably closer to the constant density case than a standard
Gaussian. The equivalence between the single mode case and this mode is given by

h̄χ = U
Erf(

√
2p)3

Erf(p)6

√
m3ωxωyωz

8π3h̄3 . (34)

Such spatial filtering can easily produce higher squeezing, but there is the obvious disadvantage
that it significantly reduces the effective number of atoms. This is a serious issue for most
applications of squeezed sources, such as interferometry, where the signal to noise scales with
the square root of the flux. We will focus on methods for producing squeezing with large atomic
number.

5. Using a π -pulse to improve mode-matching

Modal mismatch is generated by the different atomic potentials seen by the two internal states.
A straightforward method of minimizing this effect is to apply a π -pulse to swap the populations
of the internal states after half of the evolution. As can be seen by equations (A.8) and (A.9),
such a pulse also leaves the quantum statistics of each state unchanged. The idea of this scheme
is to make the effective potential seen by the atoms in state 〈a〉 during the second half of the
hold time very similar to that seen by the atoms that were in state 〈a〉 during the first half of
the hold time, and will only work if the modes 〈a〉 and 〈b〉 have an equal occupation at the start
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Figure 5. Effect of a π -pulse halfway through the hold time. Common
parameters used were na = nb = 2 × 105, χaa = 0.03 s−1, χab = χbb = 0. Solid
red line: analytic two-mode solution, τhold = 3 × 10−4 s, φ = 3.1 (10.9 dB
squeezing); solid blue line: no π -pulse, τhold = 3 × 10−4 s, φ = 3.1 (4.9 dB
squeezing); dashed blue line: with π -pulse, τhold = 3 × 10−4 s, φ = 3.1 (5.8 dB
squeezing); dash-dotted blue line: with π -pulse and the longer hold time τhold =

5 × 10−4 s allowed by the application of the pulse, φ = 3.87 (7.2 dB squeezing).

of the hold time, or if χ+ = χaa +χbb − 2χab = 0. In the latter case, this reduces to a spin-echo
pulse, and as the squeezing effects of the 1ω term in equation (11) are cancelled in this case,
there will be no squeezing. However, in the limit of short hold times, for equal occupations of
the two modes, and when χ+ 6= 0, this technique reduces the difference in the mode shapes after
the hold time. In practice this will never work perfectly, as ψa(r) and ψb(r) will typically have
evolved by the time the π -pulse is applied, and so the spatial dynamics in the second half of the
hold time will not be quite the same as those during the first half. Nonetheless, in many regimes,
such a π -pulse can produce some improvement. More importantly, as this scheme accepts that
the two modes will change shape, and attempts to make them change in a similar fashion, it
allows the possibility of much longer hold times. That is, if we are no longer constrained to hold
times short enough such that the mode shapes of the atoms in states |a〉 and |b〉 do not change
significantly, much more squeezing can be extracted from the system.

These effects are illustrated in figure 5, which shows the best squeezing obtainable from a
specific system with and without the π -pulse, as well as the extra squeezing that can be obtained
by allowing a longer hold time as well as the π -pulse.

6. Squeezing in two dimension and three dimension

The simulations in the previous two sections were 1D, and show how having spatially
constant atomic density and using a π -pulse will improve the resultant squeezing. While
these conclusions remain valid for simulations in 2D or 3D, adding each additional dimension
increases the number of spatial modes in a given energy range. For BECs of different dimension
at the same energy per particle, this leads to a degradation of squeezing, even when the potential
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Figure 6. Effects of dimension on squeezing in two different nonlinear regimes,
assuming that the chemical potential is constant for all simulations. If two
nonlinearities are non-zero, the deleterious effects of higher dimensions on
squeezing are exacerbated. Thick red line, analytic two-mode solution; solid blue
line, 1D; dashed line, 2D; dash-dotted line, 3D. (a) Parameters: na = nb = 2 ×

105, χaa = χbb = 0.03 s−1, χab = 0, τhold = 3 × 10−4 s, φ = 6.2. (b) na = nb =

2 × 105, χaa = 0.03 s−1, χbb = χab = 0, τhold = 3 × 10−4 s, φ = 3.1.

(and the resulting atomic density) is constant across the bulk of the trap. This is demonstrated
in figure 6, where we show the squeezing generated in 1D, 2D and 3D BECs for two different
parameter regimes. In both cases we take the BEC to be trapped in a box potential, which
in the Thomas–Fermi limit leads to a constant density profile across the BEC. In figure 6(a)
we consider the case where Uaa = Ubb 6= 0, Uab = 0, while in figure 6(b) we consider the
case Uaa 6= 0, Uab = Ubb = 0. In both cases it is clear that number squeezing is best in lower
dimensions, and becomes degraded or non-existent as we move to a 3D system; the effect is
worse if more than one nonlinearity is non-zero.

To find the trap geometries that produce the best squeezing, it is important to understand
the root cause of this loss of squeezing in higher dimensional traps. The dependence on
dimensionality is not explained by the processes described in section 3, which focus on the
effects of inhomogeneity within the trap. Fundamentally, this degradation of the squeezing is
due to nonlinearity-induced coupling between different momentum modes.

We can understand the origin and scaling of this degradation of squeezing by considering
the response of the condensate to small fluctuations about the mean field. We do this using
Bogoliubov theory [52], which considers the first order quantum-mechanical fluctuations about
the mean field. To simplify the analysis we consider the case in which Uaa 6= 0, Ubb = Uab = 0
and the condensate has a spatially constant density in a box of side lengths L x , L y and L z. In
this limit the occupation of the non-zero momentum modes (the non-condensed fraction) in the
〈a〉 internal state at the end of the pulse sequence is (a derivation is given in appendix B)

na(k, t3)= 〈â†(k, t)â(k, t)〉 = [naχaaτhold cos(θ)sinc (ωkτhold)]
2 , (35)

where the Bogoliubov mode frequency is ωk =

√
ω0

k(ω
0
k + 2χaana), and the free particle

frequency is ω0
k = h̄k2/2M . The non-zero momentum modes can be expected to have an impact

on the squeezing of the system when their occupation is a non-negligible fraction of the total
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Figure 7. Plot of the non-condensed fraction Nk6=0/N as a function of the
hold time τhold. The blue dashed line is the Bogoliubov integral approximation
given in equation (39), the purple dot-dashed line is the Bogoliubov summation
expression given in equation (36) and the solid black line is the result of a
truncated Wigner simulation. Parameters: L = 600µm, N = 4 × 105, na = nb =

2 × 105, χaa = 2.67 × 10−2 s−1, χab = χbb = 0, θ = 0.

number of atoms. The fractional occupation of these modes is

Nk6=0(t)

N
=

1

N

∑
k6=0

na(k, t), (36)

where the sum over k 6= 0 is taken over the available non-zero momentum modes k =

(2π/L x)nx x̂ + (2π/L y)ny ŷ + (2π/L z)nz ẑ with nx , ny and nz arbitrary integers that are not all
zero.

Figure 7 demonstrates the agreement between truncated Wigner simulations and the
Bogoliubov theory for the non-condensed fraction for parameters where the occupation of these
modes approach 15% of the total occupation of the system. The disagreement for larger non-
condensed fractions occurs because the Bogoliubov theory used in deriving (36) is not number-
conserving as it neglects the effect of the non-zero momentum modes on the condensate.

To minimize the damaging effects of the non-condensed fraction it is better to operate in
a regime where the total occupation of the non-zero momentum modes Nk6=0 is small, which is
also fortuitously the regime in which the Bogoliubov theory is a good approximation, so we can
investigate in more detail. In 1D equation (36) is

Nk6=0(t)

N
=
(naχaaτhold cos θ)2

N

∑
k 6=0

sinc2

(√
ω0

k(ω
0
k + 2χaana)τhold

)
. (37)

We approximate this sum by the integral

Nk6=0(t)

N
≈
(naχaaτhold cos θ)2

N

∫ +∞

−∞

sinc2

(√
ω0

k(ω
0
k + 2χaana)τhold

)
dk

1k
, (38)
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where 1k = 2π/L and L is the length of the 1D box condensate. This approximation will
be valid in the limit that ωkminτhold � 1, where kmin = 2π/L as for small k the allowed values

k = nx2π/L will closely sample the region ξ =

√
ω0

k(ω
0
k + 2χaana)τhold < π where sinc2(ξ) is

significant.
Changing integration variables to 8= ω0

kτhold and defining 3a = naχaaτhold, the non-
condensed fraction (38) can be written as

N 1D
k6=0(t)

N
≈

1

N

32
a L cos2 θ

√
2π

√
h̄
M τhold

f 1D(3a), (39)

where

f 1D(3)=

∫
∞

0

1
√
8

sinc2
√
8(8+ 23) d8. (40)

In 2D and 3D the equivalent expressions are

N 2D
k6=0(t)

N
≈

1

N

32
a A cos2 θ

4 h̄
M τhold

f 2D(3a), (41)

N 3D
k6=0(t)

N
≈

1

N

32
a V cos2 θ

√
2π2

(
h̄
M τhold

)3/2 f 3D(3a), (42)

where

f 2D(3)=

∫
∞

0
sinc2

√
8(8+ 23) d8, (43)

f 3D(3)=

∫
∞

0

√
8sinc2

√
8(8+ 23) d8, (44)

and A is the area of the 2D system and V is the volume of the 3D system. Figure 7 demonstrates
the agreement in 1D between the integral approximation to Nk6=0/N in (39), the summation
expression in (36) and a truncated Wigner simulation.

We wish to examine the scaling of the non-condensed fraction Nk6=0/N with the physical
size of the condensate, where the total number N is kept constant. This is importantly different
to the case above where the density is kept constant, as here the density and energy per particle
will go down with volume. Other system parameters such as the occupation of the 〈a〉 and 〈b〉

states at t1 (na and nb, respectively) are also kept constant and chosen to maximize the squeezing
of the equivalent two-mode model presented in section 2. In particular, this fixes the values of θ ,
φ, and λi j = χi jτhold. As the size of the condensate is scaled, h̄χi j = U 1D

i j /L = U 2D
i j /A = U 3D

i j /V
will change, but we will vary τhold to keep λi j constant. Therefore 3a = naχaaτhold will also be
constant. With this in mind, we can write τhold in terms of the system size and the nonlinearity
Uaa. The non-condensed fraction can then be shown to scale with the physical size of the
condensate as:

N 1D
k6=0(t3)

N
≈

√
L

1

N

√
MU 1D

aa na

2h̄2π2
33/2

a cos2 θ f 1D(3a) ∝
√

L, (45)
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Figure 8. Non-condensed fraction and squeezing as function of trap size L
in a 1D trap. (left) The proportion of the non-condensed fraction in state |a〉

relative to total particle number, with the Bogoliubov theory model in red and
the full numerical solution in blue. (right) Relative number squeezing in mode
|a〉 as a function of trap size. Parameters: N = 1 × 105, Uaa = 8.9 × 10−40 J m,
Uab = Ubb = 0, τhold = 10 Ls.

N 2D
k6=0(t3)

N
≈ 1 ·

1

N

MU 2D
aa na

4h̄2 3a cos2 θ f 2D(3a) ∝ constant, (46)

N 3D
k6=0(t3)

N
≈

1
√

V

1

N

(
MU 3D

aa na

h̄2

)3/2
31/2

a cos2 θ f 3D(3a)
√

2π2
∝

1
√

V
. (47)
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Figure 9. Non-condensed fraction and squeezing as function of trap size L
in a 2D trap. (left) The proportion of the non-condensed fraction in state |a〉

relative to total particle number, with the Bogoliubov theory model in red and
the full numerical solution in blue. (right) Relative number squeezing in mode
|a〉 as a function of trap size. Parameters: N = 1 × 105, Uaa = 8.9 × 10−44 J m2,
Uab = Ubb = 0, τhold = 105L2 s.

The non-condensed fraction Nk6=0/N thus scales differently with trap size in each of 1D, 2D and
3D. For 1D traps, the non-condensed fraction increases with system size, whereas for 2D traps
it is constant. For 3D traps, the non-condensed fraction decreases with volume. This suggests
that the best system to use will be a 3D box potential, and the system size can be increased
until the condensate depletion becomes negligibly small. We have therefore determined that
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Figure 10. Non-condensed fraction as function of trap size L in a 3D trap. The
figure shows the proportion of the non-condensed fraction in state |a〉 relative
to total particle number, with the Bogoliubov theory model in red and the full
numerical solution in blue. Unlike figures 9 and 8, the squeezing scaling curve
is not shown here because in 3D the TWA method breaks down for small trap
sizes. For the larger trap sizes with small non-condensate fractions, however,
the TWA simulation remained valid, and we obtained relative number squeezing
of 12.7 dB. Parameters: N = 1 × 104, Uaa = 4.7 × 10−49 J m3, Uab = Ubb = 0,
τhold = 1.25 × 1011L3 s.

dimensionality of the system switches from a curse to a blessing, provided we allow the density
to go down as we increase the volume. This does not limit the total number accessible, but it
means that the volume must go up faster than the number to maintain high squeezing.

Figures 8–10 show the non-condensed fraction predicted by the Bogoliubov analysis
compared to that predicted by a full numerical simulation in 1D, 2D and 3D, as a function of
the trap size. Also shown in the 1D and 2D cases is the maximum amount of number squeezing
obtainable, as predicted by the numerical simulation. The full squeezing scaling curve is not
shown in 3D, as for the smaller trap sizes the TWA method breaks down, and results are
unreliable. For the larger trap sizes with small non-condensate fractions, however, the TWA
simulation remained valid, and we obtained relative number squeezing of 12.7 dB. The traps
are assumed to have a constant potential, which minimizes the effects of the multimode issues
described in section 3. We see that the squeezing does indeed degrade at large trap sizes in 1D,
but remains constant in 2D. For small trap sizes, the squeezing in 1D asymptotically approaches
that of the ideal zero-dimensional system.

We note that the non-smooth nature of the squeezing prediction in 2D is due to the
stochastic nature of the simulations, and the necessity of averaging over fewer quantum
trajectories due to the very high number grid points in this regime. The non-smooth nature
of the non-condensate mode fraction in 3D, on the other hand, is due to the number of modes
being both discrete and low in this regime, and counting only the non-condensed fraction in
modes with an energy less than µ, the chemical potential.

The simulation shown in figure 10 demonstrates that provided particle number is kept fixed,
the number of accessible states for 3D traps decreases with volume in 3D. This is because the
energy of the ground state of the BEC (the chemical potential, µ) is reducing faster than the
density of states at low energies is increasing, which in turn results in fewer states that can
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become dynamically occupied. This scaling of the estimated Bogoliubov fraction in 3D suggests
that strong squeezing will be found in very large, weakly trapped condensates, provided the
trapping potentials are box-like. Such box-like traps have already been demonstrated and shown
to be capable of producing BECs [53].

Although systematic analysis of squeezing across a wide range of large 3D traps and
interaction strengths is impossible due to the breakdown of the TWA method, fortunately the
method is accurate when the highest squeezing is produced. While inter-state scattering lengths
of most atomic species and states are not well characterized, extremely high squeezing can be
found in systems with large, 3D box potentials, and asymmetry in the three scattering lengths.

As a demonstration of the plausibility of such a scheme, we carried out a full 3D simulation
using the geometry of the optical box potential described in [53], using the same potentials (a
cylindrical ‘box’ with length 63µm and diameter 30µm) and condensate number (N = 105

87Rb atoms). We set one s-wave scattering length to 5 nm and the others to zero: a00 = 5 nm,
a10 = a11 = 0. The associated nonlinearities are given by equation (2). This system produced
number squeezing of 15 dB, and an extremely low non-condensed fraction of 4 × 10−4. Both of
these numbers are in agreement with the Bogoliubov calculations.

7. Conclusion

The large Kerr-type nonlinearities present between neutral atoms in BECs present the possibility
of significant squeezing, but they also cause potentially complicated multimode behaviour when
large BECs are used. Furthermore, the nonlinearities between multiple internal atomic states
are not yet known for many atomic species, and often have sensitive dependence on external
magnetic fields due to Feshbach resonances [54, 55]. This paper analyses the requirements for
producing useful squeezing via these nonlinearities for systems with large numbers of atoms.

We have presented an analytic solution to the two-mode model of atomic fields with
a strong Kerr nonlinearity, allowing for a rapid estimate of the atomic number difference
squeezing that can be obtained from these systems as scattering length data is obtained. In
general, it predicts arbitrarily good squeezing in the two-mode limit. We then examined trap
geometries in which this limit can be approached.

Using a constant potential in the trap (a ‘box’ trap) allows the BEC density to be spatially
uniform throughout the process. This is shown to alleviate the difficulties with choosing correct
hold times and phases for the coupling pulses, and also alleviates the majority of the mode-
matching issues for the final recombination of the two modes. If such a box potential is not
available, the application of a π -pulse part way through the hold period can also improve mode
matching by imparting the same modal dynamics to both states.

Even in the best case, where a box potential is used, the existence of multiple possible
momentum modes allows the possibility of cross-mode scattering via nonlinear processes,
which can degrade or totally remove any number squeezing. This degradation is visible only
in full 3D simulations, and not lower dimensional approximations, due to its dependence on the
number of available modes. It is worth noting that despite their difficulty, in multimode systems
with large atom number, full 3D simulations need to be carried out to accurately determine the
presence of number or spin squeezing.

Excluding these modes by making them energetically unfavourable can reduce the system
to a single mode problem, making our analytic solution valid, but requires extremely tight
trapping potentials. Such a regime also strongly limits the number of atoms that can be trapped,
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partly due to the rate at which the required trapping frequencies grow with atom number, and
partly due to inelastic scattering rates.

Using a Bogoliubov analysis, however, it was shown that the coupling between different
modes could be minimized in a second regime, namely the weak trapping limit for 3D traps. This
latter regime is in fact ideally compatible with large atomic numbers, and shows the prospect
of extremely high squeezing. A 3D TWA simulation using an experimentally demonstrated
trapping potential yielded 15 dB of squeezing with 105 particles. In practice, the only limit
to the number of atoms in such traps would be the stability of the trap, as the BEC would
become increasingly sensitive to fluctuations as the energy per particle is reduced as the
volume increases. These trap geometries would most obviously be suited for precision inertial
measurements rather than in-trap measurements with goals of spatial resolution.
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Appendix A. Derivation of two mode squeezing formula

In this appendix we derive the equations for the number variances. We use the model described
in section 2, where we consider a two mode system with N particles, initially prepared as a
coherent state with all the population in mode |a〉 at time t = 0. A coupling pulse is then applied,
assumed to be on resonance, so that the system evolves under the Hamiltonian

Ĥ1 = h̄�(â†b̂ + b̂†â) (A.1)

until time t = t1. From time t1 until time t = t2 the coupling is turned off, and the system evolves
under the Hamiltonian

Ĥ2 = h̄
χaa

2
â†â†ââ + h̄χabâ†âb̂†b̂ + h̄

χbb

2
b̂†b̂†b̂b̂. (A.2)

Finally, from time t2 until time t = t3, the coupling is once again applied with a phase offset of
φ relative to the first time, and the system evolves via

Ĥ3 = h̄�(eiφâ†b̂ + e−iφb̂†â). (A.3)

We will work in the Heisenberg picture, and derive expressions for â(t3) and b̂(t3) in terms
of â(t2) and b̂(t2), which in turn can be expressed in terms of â(t1) and b̂(t1). We will show
that the state of the system at time t1 consists of separate coherent states in modes |a〉 and |b〉,
enabling us to calculate expectation values at time t3 in terms of the known state at t1.

In order to have more compact expressions we will use the notation

â(t j)= â j (A.4)

b̂(t j)= b̂ j . (A.5)

Beginning with the Hamiltonian Ĥ1, during the period (0, t1) mode â will evolve as

â1 = eiĤ1t/h̄ â0 e−iĤ1t/h̄. (A.6)
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Utilizing the Hadamard lemma

eX̂ Ŷ e−X̂
= Ŷ + [X̂ , Ŷ ] +

1

2!
[X̂ , [X̂ , Ŷ ]] +

1

3!
[X̂ , [X̂ , [X̂ , Ŷ ]]] + · · · (A.7)

we obtain

â1 = cos(�t1)â0 − i sin(�t1)b̂0. (A.8)

Similarly, we find

b̂1 = cos(�t1)b̂0 − i sin(�t1)â0. (A.9)

From the form of (A.8) and (A.9) it is clear that as both modes â and b̂ began in coherent
states, they will remain in coherent states, with only their amplitudes changing. Specifically, at
time t1 the system is in a product of coherent states, which we denote |α, β〉 with α =

√
na and

β = −i
√

nb with na + nb = N .
Next we consider evolution under Ĥ2. Taking mode â first, we note that as it commutes

with the b̂†b̂†b̂b̂ term, and since â†â†ââ commutes with â†âb̂†b̂ we have

â2 = eiλabâ†
1 â1b̂†

1 b̂1ei λaa
2 â†

1 â†
1 â1â1 â1 e−i λaa

2 â†
1 â†

1 â1â1e−iλabâ†
1 â1b̂†

1 b̂1, (A.10)

where we have defined λi j = χi j(t2 − t1). Using (A.7) to move â1 through the exponential, with
some algebra one can show that

ei λaa
2 â†

1 â†
1 â1â1 â1e−i λaa

2 â†
1 â†

1 â1â1 =

[∑
n=0

(−i λaa)
n(â†

1 â1)
n

]
â1 = exp[−i λaaâ†

1 â1]â1. (A.11)

To handle the cross-nonlinearity term in (A.10) we use the identity [56]

exâ†â f (â, â†) e−xâ†â
= f (âe−x , â†ex) (A.12)

to obtain

â2 = eiλabâ†
1 â1b̂†

1 b̂1e−iλaa â†
1 â1 â1 e−iλabâ†

1 â1b̂†
1 b̂1

= e−iλaa â†
1 â1eiλabâ†

1 â1b̂†
1 b̂1 â1 e−iλabâ†

1 â1b̂†
1 b̂1

= e−iλaa â†
1 â1e−iλab b̂†

1 b̂1 â1. (A.13)

Similarly, from permutation symmetry, we have

b̂2 = e−iλbb b̂†
1 b̂1e−iλabâ†

1 â1 b̂1. (A.14)

Finally, to obtain â3 and b̂3 we use (A.8) and (A.9) with the phase factor attached to the b̂
operator to obtain

â3 = cos(�(t3 − t2))â2 − i eiφ sin(�(t3 − t2))b̂2, (A.15)

b̂3 = cos(�(t3 − t2))b̂2 − i e−iφ sin(�(t3 − t2))â2. (A.16)

We are now in a position to evaluate the number variance of the system throughout the period
of the final coupling. The number variances of the fields are defined as

Var[Na] = 〈â†
3 â3â†

3 â3〉 − 〈â†
3 â3〉

2, (A.17)

Var[Nb] = 〈b̂†
3b̂3b̂†

3b̂3〉 − 〈b̂†
3b̂3〉

2. (A.18)
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Making use of (A.15) and using the shorthand notation

s = sin[�(t3 − t2)], (A.19)

c = cos[�(t3 − t2)], (A.20)

we have

â†
3 â3 = â†

2 â2c2 + b̂†
2b̂2 s2 + i cs(e−iφ b̂†

2â2 − eiφâ†
2 b̂2), (A.21)

â†
3 â3â†

3 â3 = â†
2 â2â†

2 â2c4 + b̂†
2b̂2b̂†

2b̂2 s4 + c2 s2[â†
2 â2 + b̂†

2b̂2

+4â†
2 â2b̂†

2b̂2 − e2iφâ†
2 â†

2 b̂2b̂2 − e−2iφ b̂†
2b̂†

2â2â2] + i c3 s[2e−iφ b̂†
2â†

2 â2â2

−2eiφâ†
2 â†

2 â2b̂2 + e−iφ b̂†
2â2 − eiφâ†

2 b̂2] + i cs3[2e−iφ b̂†
2b̂†

2â2b̂2

−2eiφâ†
2 b̂†

2b̂2b̂2 + e−iφ b̂†
2â2 − eiφâ†

2 b̂2], (A.22)

b̂†
3b̂3 = b̂†

2b̂2c2 + â†
2 â2 s2 + i cs(eiφâ†

2 b̂2 − e−iφb̂†
2â2), (A.23)

b̂†
3b̂3b̂†

3b̂3 = b̂†
2b̂2b̂†

2b̂2c4 + â†
2 â2â†

2 â2 s4 + c2 s2[b̂†
2b̂2 + â†

2 â2

+4b̂†
2b̂2â†

2 â2 − e−2iφb̂†
2b̂†

2â2â2 − e2iφâ†
2 â†

2 b̂2b̂2] + i c3 s[2eiφâ†
2 b̂†

2b̂2b̂2

−2e−iφ b̂†
2b̂†

2b̂2â2 + eiφâ†
2 b̂2 − e−iφb̂†

2â2] + i cs3[2eiφâ†
2 â†

2 b̂2â2

−2e−iφ b̂†
2â†

2 â2â2 + eiφâ†
2 b̂2 − e−iφ b̂†

2â2]. (A.24)

Clearly, to calculate (A.17) and (A.18) we will need the expectation values of terms quartic and
quadratic in â2 and b̂2. Specifically, we require 〈â†

2 â2〉, 〈b̂†
2b̂2〉, 〈â†

2 b̂2〉, 〈â†
2 â2â†

2 â2〉, 〈b̂†
2b̂2b̂†

2b̂2〉,
〈â†

2 â2b̂†
2b̂2〉, 〈â†

2 â†
2 b̂2b̂2〉, 〈â†

2 b̂†
2â2â2〉 and 〈â†

2 b̂†
2b̂2b̂2〉, as well as their Hermitian conjugates.

As â†
1 â1 and b̂†

1b̂1 commute with the Hamiltonian Ĥ2, they are constants of motion so we
have

〈â†
2 â2〉 = 〈â†

1 â1〉 = 〈α, β|â†
1 â1|α, β〉 = |α|

2
= na, (A.25)

〈b̂†
2b̂2〉 = 〈b̂†

1b̂1〉 = 〈α, β|b̂†
1b̂1|α, β〉 = |β|

2
= nb, (A.26)

〈â†
2 â2b̂†

2b̂2〉 = 〈â†
1 â1b̂†

1b̂1〉 = 〈α, β|â†
1 â1b̂†

1b̂1|α, β〉 = |α|
2
|β|

2
= nanb. (A.27)

Furthermore, â†
2 â2â†

2 â2 and b̂†
2b̂2b̂†

2b̂2 also commute with H2, giving

〈â†
2 â2â†

2 â2〉 = 〈â†
1 â1â†

1 â1〉 = 〈α, β|â†
1 â†

1 â1â1 + â†
1 â1|α, β〉 = n2

a + na, (A.28)

〈b̂†
2b̂2b̂†

2b̂2〉 = 〈b̂†
1b̂1b̂†

1b̂1〉 = 〈α, β|b̂†
1b̂†

1b̂1b̂1 + b̂†
1b̂1|α, β〉 = n2

b + nb. (A.29)

The remaining terms are not constants of motion, so we proceed by making use of (A.13)
and (A.14). For 〈â†

2 b̂2〉 we have

â†
2 b̂2 = â†

1e−i(λbb−λab)b̂
†
1 b̂1ei(λaa−λab)â

†
1 â1 b̂1. (A.30)
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To calculate the expectation value of this expression, the creation and annihilation operators
must be normally ordered. Making use of the identity [56]

exâ†â
=

∞∑
n=0

(ex
− 1)n

n!
(â†)n(â)n (A.31)

allows us to compute expectation values of coherent states of the form

〈α|exâ†â
|α〉 =

∞∑
n=0

(ex
− 1)n

n!
|α|

2n

= exp[|α|
2(ex

− 1)]. (A.32)

This gives

〈â†
2 b̂2〉 = 〈α, β|â†

1e−i(λbb−λab)b̂
†
1 b̂1ei(λaa−λab)â

†
1 â1 b̂1|α, β〉

= α∗β exp[|α|
2(ei(λaa−λab) − 1)] exp[|β|

2(e−i(λbb−λab) − 1)]. (A.33)

We now consider 〈â†
2 â†

2 b̂2b̂2〉. Using (A.13) and (A.14) and the fact that â and b̂ commute,
we have

â†
2 â†

2 b̂2b̂2 = â†
1ei(λaa−λab)â

†
1 â1 b̂1â†

1ei(λab−λbb)b̂
†
1 b̂1ei(λaa−λab)â

†
1 â1 b̂1 (A.34)

= â†
1 â†

1e2i(λaa−λab)â
†
1 â1e2i(λab−λbb)b̂

†
1 b̂1 b̂1b̂1ei(λaa−λbb), (A.35)

where we have made multiple uses of the identity

âeixâ†â
= eixâ†ââeix (A.36)

which follows from (A.12). Finally, applying (A.32) we obtain

〈â†
2 â†

2 b̂2b̂2〉 = α∗2β2ei(λaa−λbb) exp[|α|
2(e2i(λaa−λbb) − 1)] exp[|β|

2(e−2i(λbb−λbb) − 1)]. (A.37)

Using the same techniques one can show that

〈â†
2 b̂†

2â2â2〉 = |α|
2αβ∗e−i(λaa−λab) exp[|α|

2(e−i(λaa−λab) − 1)] exp[|β|
2(ei(λbb−λab) − 1)], (A.38)

〈â†
2 b̂†

2b̂2b̂2〉 = |β|
2α∗βe−i(λbb−λab) exp[|α|

2(ei(λaa−λab) − 1)] exp[|β|
2(e−i(λbb−λab) − 1)]. (A.39)

Employing the definitions (15)–(22) we obtain

〈â†(t3)â(t3)〉 = nac2 + nbs2 + i cs(AB∗
− A∗B), (A.40)

〈b̂†(t3)b̂(t3)〉 = nas2 + nbc2
− i cs(AB∗

− A∗B), (A.41)

〈â†(t3)â(t3)â
†(t3)â(t3)〉 = (n2

a + na)c
4 + (n2

b + nb)s
4 + c2 s2[na + nb + 4nanb

−ei(λaa−λbb)B2 A∗

2 − e−i(λaa−λbb)B∗

2 A2] + i c3 s[2nae−i(λaa−λab)]AB∗

−2naei(λaa−λab)A∗B + AB∗
− A∗B] + i cs3[2nbei(λbb−λab)]AB∗

−2nbe−i(λbb−λab)A∗B + AB∗
− A∗B], (A.42)
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〈b̂†(t3)b̂(t3)b̂
†(t3)b̂(t3)〉 = (n2

b + nb)c
4 + (n2

a + na)s
4 + c2 s2[na + nb + 4nanb

−e−i(λaa−λbb)B∗

2 A2 − ei(λaa−λbb)B2 A∗

2] + i c3 s[2nbe−i(λbb−λab)]A∗B

−2nbei(λbb−λab)AB∗
− A∗B + AB∗] + i cs3[2naei(λaa−λab)]A∗B

−2nae−i(λaa−λab)AB∗
− A∗B + AB∗]. (A.43)

When substituted into (A.17) and (A.18) these expectation values give the absolute number
variances stated in section 2. To calculate the number difference variance, we note

Var[Na − Nb] = Var[Na] + Var[Nb] − 2〈â†
3 â3b̂†

3b̂3〉 + 2〈â†
3 â3〉〈b̂

†
3b̂3〉. (A.44)

We write (A.44) in terms of â2 and b̂2 by using (A.15) and (A.16), and then use the expectation
values calculated earlier in this appendix. This procedure gives the expression (27) given in
section 2.

Appendix B. Derivation of Bogoliubov squeezing formula

We consider the Bogoliubov model presented in section 6 taken in the limit of a homogeneous
condensate with χaa 6= 0, χab = χbb = 0. In this limit, the Hamiltonian for the internal state 〈a〉

during the hold time is

Ĥ a =

∫ [
ψ̂†

a

(
−

h̄2

2 m
∇

2

)
ψ̂a +

Uaa

2
ψ̂†

a ψ̂
†
a ψ̂aψ̂a

]
dV . (B.1)

To find the response of the condensate to small fluctuations we define fluctuation operators for
the non-zero momentum modes δâk = âk −αk where αk = 〈âk〉 is the condensate mean field
(αk = 0 for k 6= 0 as the condensate is homogeneous). The Hamiltonian (B.1) is then expanded
in terms of δâk retaining only the lowest order contributions. The lowest order contribution is
second order

Ĥ (2)
a =

∑
k6=0

[
h̄2k2

2M
δâ†

kδâk +
1

2
h̄χaana(δâ

†
kδâ

†
−k + δâ−kδâk)

]
. (B.2)

This Hamiltonian is diagonalized with the standard Bogoliubov transformation [52]

δâk(t)= ukδb̂k(t)− vkδb̂
†
−k(t), (B.3)

u2
k = v2

k + 1 =
1

2

(
ω0

k +χaana

ωk
+ 1

)
, (B.4)

where ω0
k = h̄k2/2M is the frequency of a free particle, and ωk =

√
ω0

k(ω
0
k + 2χaana) are the

frequencies of the Bogoliubov modes:

δb̂k(t)= exp (−iωkt) δb̂k(0). (B.5)

The expectation value of the number of atoms in momentum mode h̄k after the hold time
is then found to be

〈n̂k(t2)〉 = 〈δâ†
k(t2)δâk(t2)〉 (B.6)
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=
[
1 + 4u2

k(2u2
k − 1) sin2(ωkτhold)

]
〈δâ†

k(t1)δâk(t1)〉

−4ukvk sin(ωkτhold)=
{[

1 − i2u2
k sin(ωkτhold)

]
〈δâ−k(t1)δâk(t1)〉

}
+4u2

kv
2
k sin2(ωkτhold). (B.7)

If the non-zero momentum modes are in a vacuum state at t = t1 then this reduces to

〈n̂k(t2)〉 = 4u2
kv

2
k sin2(ωkτhold) (B.8)

= [naχaaτholdsinc(ωkτhold)]
2 . (B.9)

After the final Rabi coupling pulse the occupation of the non-zero momentum mode h̄k is

na(k, t3)= [naχaaτhold cos(θ)sinc(ωkτhold)]
2 , (B.10)

which is the expression given earlier in equation (35).
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