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One of the main factors that affects the performance of MLP neural networks trained using the
backpropagation algorithm in mineral-potential mapping is the paucity of deposit relative to
barren training patterns. To overcome this problem, random noise is added to the original
training patterns in order to create additional synthetic deposit training data. Experiments on
the effect of the number of deposits available for training in the Kalgoorlie Terrane orogenic
gold province show that both the classification performance of a trained network and the
quality of the resultant prospectivity map increase significantly with increased numbers of
deposit patterns. Experiments are conducted to determine the optimum amount of noise
using both uniform and normally distributed random noise. Through the addition of noise to
the original deposit training data, the number of deposit training patterns is increased from
approximately 50 to 1000. The percentage of correct classifications significantly improves for
the independent test set as well as for deposit patterns in the test set. For example, using±40%
uniform random noise, the test-set classification performance increases from 67.9% and 68.0%
to 72.8% and 77.1% (for test-set overall and test-set deposit patterns, respectively). Indices for
the quality of the resultant prospectivity map, (i.e. D/A, D×(D/A), where D is the percentage
of deposits and A is the percentage of the total area for the highest prospectivity map-class,
and area under an ROC curve) also increase from 8.2, 105, 0.79 to 17.9, 226, 0.87, respectively.
Increasing the size of the training-stop data set results in a further increase in classification
performance to 73.5%, 77.4%, 14.7, 296, 0.87 for test-set overall and test-set deposit patterns,
D/A, D×(D/A), and area under the ROC curve, respectively.

KEY WORDS: Neural networks; multilayer perceptrons (MLP); random noise; mineral prospectivity
maps; geographic information systems (GIS); Archean orogenic gold deposits.

INTRODUCTION

The work described here is part of a study on
the use of neural networks to predict the potential for
orogenic lode-gold deposits in an area near Kalgoor-
lie, Western Australia (Brown and others, 1997, 2000).
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An important problem in applying neural networks to
predict the potential for mineral deposits from explo-
ration data is the rarity of deposit training patterns
compared to the large number of patterns that cor-
respond to barren cells. In addition, small and poorly
documented mineral occurrences typically make up
a large proportion of the deposit data. In order to
ensure that the network correctly learns the patterns
in the data, the training data should sample the en-
tire range of variation in the data population and ad-
equately represent feature vectors that are located
close to decision boundaries in multidimensional fea-
ture space. Both these requirements are difficult to
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fulfil because there are so few deposit examples rel-
ative to barren patterns. An additional problem aris-
ing from the gradient-descent backpropagation algo-
rithm (Rumelhart, Hinton, and Williams, 1986) used
to train multilayer perceptron (MLP) networks is that
minimization of the network error function requires
that there are approximately equal numbers of train-
ing examples from each class (that is deposits and bar-
ren cells) irrespective of the actual a priori probability
of occurrence of the classes (Parikh, Pont, and Jones
1999; Zaknich, 2003). In most instances the solution
to this problem is to collect more data. However, this
is not feasible for ore deposits and, even in areas well
endowed with mineral resources, map grid cells con-
taining deposits are rare compared to barren cells.

PREVIOUS WORK

A number of studies show that adding noise
to the input data, outputs, weight connections, and
weight changes can improve the generalization abil-
ity of trained networks (Sietsma and Dow, 1991;
Holmstrom and Koistinen, 1992; Matsouka, 1992;
Clay and Sequin, 1992; Krogh and Hertz, 1992). An
(1996) demonstrated that input noise is effective in
improving the generalization performance for both
regression (function approximation) and classifica-
tion problems. Bishop (1993) showed that the ad-
dition of noise is equivalent to error regularization,
and Reed, Marks, and Oh (1992, 1995) compared
the effects of adding noise on the generalization per-
formance to error regularization, sigmoid gain scal-
ing (that is, reducing the slope of the sigmoid func-
tion), and target smoothing. More recently, Wang and
Principe (1999) investigated the effect of injecting
noise into the target output on learning speed and the
ability to avoid local minima. Most papers concentrate
on the effect of noise on the generalization ability.

Comparatively little work has been done on the
composition of the training sets and how to deal with
problems where the number of training examples rep-
resenting different classes is significantly different.
Parikh, Pont, and Jones (1999) studied the perfor-
mance of a MLP classifier in a condition monitoring
and fault diagnosis application, where data represent-
ing normal operation are readily available compared
to fault data, which may be difficult or expensive to
obtain. They showed that the highest overall network
performance is obtained where roughly equal num-
bers of samples from the normal and fault classes are
used for training.

GIS DATABASE

The work described here is based on a regional
GIS data set, which is being used to examine the
prospectivity for orogenic lode-gold deposits in an
approximately 100× 100 km area of the Archean Yil-
garn Block, near Kalgoorlie in Western Australia. Sets
of 10 and 17 GIS layers in raster format were used
to create feature vectors for each 100 m cell on the
map grid. The map area represents an 1140× 1100
array consisting of 1,254,000 cells. Because GIS data
are captured at a regional scale, only the 120 deposits
with a total contained gold resource ≥ 1000 kg are
used to train and test the neural networks.

Archean orogenic gold deposits form selectively
where fluids have been focussed into dilatant zones or
zones of high structural permeability, which, in turn,
are produced by heterogeneous stress distributions in
areas with complex geometries and strong contrasts
in rock strength (Groves and others, 2000). A min-
eral systems approach, similar to that described by
Wyborn, Gallagher, and Raymond (1995), is used to
translate these essential ingredients of the minera-
lizing systems responsible for the formation of oro-
genic lode-gold deposits into mappable criteria that
are likely to have been incorporated into a regional-
scale GIS database. Many of the exploration crite-
ria employed in this study were identified by Groves,
Ojala and Holyland (1997) and Groves and others
(2000), who have emphasized the importance of the
late-kinematic timing of orogenic gold deposits to
computer-aided exploration techniques. An impor-
tant consequence of this late timing is that the present
regional-scale structural geometries of the deposits
and enclosing terranes, as depicted in solid geology
maps, are essentially similar to those during gold
mineralization and can be used to identify explo-
ration criteria based on repetitive and predictable
geometries.

GIS layers used as inputs to neural networks
are selected from approximately 60 candidate lay-
ers according to the strength of the association be-
tween known orogenic gold deposits and the variable
forming the thematic layer. Spatial associations are
determined using plots of cumulative and interval-
based calculations of a bivariate J-function, (O−
E)/E (where O is the observed and E is expected
number of deposits in a buffer), cumulative contrast
of weights, χ2, and the Kolmogorov-Smirnov cumu-
lative distribution function (see Brown 2002; Brown
and others, 2002 for details). The following ten GIS
thematic layers are used as inputs for neural networks:
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(1) favorable geology (as a fuzzy membership layer),
(2) distance to porphyritic felsic intrusions, (3) dis-
tance to the nearest crustal-scale fault or shear
zone (defined as those exceeding 100 km in length),
(4) strike of the nearest NNE-trending regional-scale
shear zone, (5) rheological contrast between rock
units at the nearest lithological boundary (fuzzy-
membership), (6) chemical contrast between rock
units at the nearest lithological boundary (sulfi-
dation index based on the ratio, Fetotal wt % ×
Fe/(Fe+Mg+Ca), which determines if iron sulfides
will form and gold complexes will be destabilized),
(7) density of crustal and regional-scale faults and
shear zones (calculated using a 5× 5 km moving win-
dow), (8) density of lithological contacts (used as a
measure of lithological heterogeneity), (9) favorabil-
ity of rock-types at the nearest lithological bound-
ary (fuzzy-membership), and (10) the distance to the
nearest ground trace of a regional-scale anticlinal axis.
A binary deposit layer depicting orogenic lode-gold
deposits with a resource of ≥1000 kg total contained
metal is used to provide the target or desired output
values required to train the networks.

With the exception of the rheological-contrast
layer, fuzzy-membership layers are based on the sta-
tistical association between predictive variables and
known deposits. Although rheological contrast at
rock boundaries also is modeled using Young’s Mod-
ulus, uniaxial compressive strength, uniaxial tensile
strength and fracture toughness, a subjective estimate
of rock competency in the form of fuzzy membership
values based on the field observations by one of the
authors (Groves) shows the strongest positive associ-
ation with known deposits (see Brown, Groves, and
Gedeon, 2002) and therefore is used as a neural net-
work input.

METHOD

Multilayer Perceptron (MLP) neural networks
are trained to perform a pattern recognition task us-
ing training data consisting of examples of deposit and
barren cell patterns (Brown and others, 1997, 2000).
The input patterns consist of the values obtained from
the co-located grid cells from each of the input GIS
layers. During training, the network is presented with
each input pattern in the training data set, together
with the corresponding binary value from the deposit
layer (1 = deposit present, 0 = deposit absent).
Dayhoff (1990) and Masters (1993) provide useful
introductions to MLP networks, data preprocessing,

and training. Provided the network has correctly
learnt the underlying patterns in the training data set,
the trained network then can generalize to predict the
correct output for completely new patterns. The data
processing required to combine a set of GIS layers
into a prospectivity map consists of the following six
steps:

1. create a feature vector for each grid cell
location,

2. create training data sets,
3. train a set of networks,
4. process feature vectors for entire map using

best trained network,
5. produce prospectivity maps, and
6. analyse map quality.

GIS layers are prepared using the ARCVIEW GIS
package. All other data processing is performed using
built-in functions and additional routines written in a
C-like scripting language in MATLAB.

Training Data Sets

All input values are scaled to the range [0, 1]. As
noted, the requirement to have approximately equal
numbers of training patterns from each of the de-
posit and barren classes means that training set size
is limited by the number of known deposits. Because
the GIS data are captured at a regional scale, only
the 120 deposits with a total contained gold resource
≥1000 kg, together with an approximately equal num-
ber of barren patterns, are used to train and test the
neural networks. The original training data (that is
those without added noise) are created by randomly
splitting the deposit patterns into three approximately
equal groups; i.e., training, training-stop, and test sets.
Deposits from each rock-type in the solid geology GIS
layer are divided approximately equally between the
three training sets. A number of barren patterns ap-
proximately equal to the deposit patterns also is se-
lected randomly for each rock type. There are slightly
more barren than deposit patterns because some rock
types do not contain any known deposits. The com-
position of the training sets is shown in Table 1.

The training set is used to train the network
weights, the training-stop set is used to determine
when to stop training in order to avoid over-fitting
the data, and an independent test data set is used to
check the performance of the trained network.

The role of the training-stop data set is to
check the generalization ability of the network dur-
ing training in order to determine an optimal stopping
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Table 1. Number of Patterns in the Training Data Sets for Orogenic Gold Deposits in the Kalgoorlie Terrane

Training set Stop set Test set

Training set type Deposit Barren Total Deposit Barren Total Deposit Barren Total

Original 46 53 99 39 49 88 35 46 81
Noise; train 1058 1053 2111 39 49 88 35 46 81
Noise; train, stop 1058 1053 2111 897 895 1792 35 46 81

point for training. During batch training, the network
weights are adjusted iteratively in response to the net-
work error (i.e., the difference between the actual
network output and the target output) after all the
patterns in the training data set are processed. Tar-
get outputs are presented to the network, together
with the input pattern during training. Initially, the
network learns the underlying patterns in the data.
However, if the number of weights (approximately in-
put variables times hidden neurons) is large in relation
to the size of the training set, the network eventually
may learn the idiosyncrasies in individual training pat-
terns, thus reducing its ability to generalize when pre-
sented with new patterns after training is completed.
To avoid overfitting the data, the classification perfor-
mance of the partially trained network is checked us-
ing the training-stop data set. Training is halted when
the training-stop data set error begins to increase be-
cause the network has begun to memorize the patterns
in the training set.

Figure 1. Schematic diagram of data processing steps used to augment the training data set through addition of random noise to deposit
patterns. For each original deposit pattern, 22 new deposit patterns were created. This increased the number of deposit patterns in the training
set from 46 to 1058.

Network Topology and Training

The network topology used for all noise experi-
ments is determined by comparing the performance
of networks with different numbers of hidden units.
A 10-20-1 topology (that is, 10 inputs, 20 hidden neu-
rons and 1 output) gives the best generalization per-
formance (as measured by percentage of correct clas-
sifications for the independent test set). Although
standard gradient-descent and gradient-descent train-
ing algorithms with adaptive learning rates and mo-
mentum give the best generalization performance
and values of map quality indices (see explanation
next), the Levenberg-Marquardt training algorithm
(Hagen and Menhaj, 1994) was selected for the exper-
iments. The advantage of the Levenberg-Marquardt
algorithm is that it can converge from 10 to 100
times faster than the adaptive and standard gradient-
descent algorithms, respectively.
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Ten networks with different initial weights are
trained for each experiment and the average and best
test-set performances are tabulated. The same ten ini-
tial, random-weight settings are used for each set of
experiments. Consequently, differences in the results
are due to the changed experimental variables (for
example, composition of the training set) rather than
the starting weights.

Augmentation of Training Data Set With Noise

In order to augment the original training data
sets, random noise is added to each component of the
original deposit feature vectors in the training data
set to create 22 new patterns from each original pat-
tern (Fig. 1). This ratio of new to original patterns re-
sults in 1058 deposit patterns compared with 46 in the
original training set. New barren patterns are selected
randomly from the map grid so that the numbers of
deposit and barren patterns are approximately equal
and an equal number of barren patterns are selected
from each host-rock type (Table 1). For experiments
to determine the optimum amount and type of noise,
the training-stop and test data sets are not changed.
In a final experiment, the training-stop data set is also
expanded using additive noise.

Experiments are performed using ±5, ±10,
±20, ±40, and ±80% noise in an attempt to deter-
mine the optimal amount of noise. Two different types
of noise; uniform random and normally distributed
or Gaussian random noise are tested. In the case of
uniform random noise, the percentages represent the
maximum amount added or subtracted. For normally
distributed noise, the standard deviation is set to a
fraction of the value represented by the percentage.
The mean is set to the value of the component in the
original feature vector.

Measures of Generalization Performance and
Prospectivity Map Quality

Results of the experiments were assessed us-
ing the classification performance on the test data
(independent validation) set as a guide to the
generalization ability of the trained network. Acti-
vation values produced as the network output are ap-
proximately in the range [0.05, 0.95]. Patterns asso-
ciated with output activations greater or equal to 0.5
were classified as deposits.

Network performance is also assessed on the ba-
sis of the quality of the prospectivity maps. Patterns
corresponding to the entire map area are processed

using the trained network and the network outputs
are converted to a nine-class prospectivity map. Each
map then is analyzed to obtain a variety of statisti-
cal measures of the quality of the prospectivity map.
Spearman’s correlation coefficient indicates the de-
gree of correlation between increasing prospectivity
map class and the probability that the class region con-
tains a known deposit. The capture efficiency ratios,
D/A and D× (D/A), are calculated using the highest
prospectivity map class, and measure the degree to
which the most prospective map class accounts for the
known deposits. D refers to the percentage of known
deposits in the area corresponding to the highest class,
and A refers to the percentage of the total map area
represented by the region. A problem with the first
ratio, D/A, is that the value can be high if only a few
deposits occur in a small area. In order to account for
this, the first capture efficiency ratio is multiplied by
the percentage of known deposits that occur in the
highest prospectivity class.

The receiver-operating-characteristic (ROC)
method has been used to evaluate performance
of signal detection and diagnostic systems as well
as the performance of neural networks (Uncini
and others, 1990; Zaknich, 2003). A ROC curve is
generated by plotting the true positive, TP/(TP +
FN), and false positive ratios, FP/(FP+TN), together
for a range of threshold values (where TP = true
positive, TN = true negative, FP = false positive
and FN = false negative; see Table 2). In this study,
positive and negative classes represent deposits and
barren cells, respectively. The ROC curve shows how
classification performance varies with the threshold
value used to divide feature vectors into the two
classes according to the activation at the output unit
of the neural network (Figs. 2 and 3). The area under
the ROC curve is used as a measure of classification

Table 2. Confusion Matrix Showing the Possible Outcomes for
a Classification Decision Involving Two Classes (After Zaknich,

2003)

True classification

Positive Negative

System
Positive True+ve (TP)a False+ve (FP)

Negative False−ve (FN) True−ve (TN)

aAbbreviations: True Positive (TP), False Positive (FP), False Neg-
ative (FN), and True Negative (TN). These Variables are Used
to Plot the Receiver-Operating Characteristic Curve Shown in
Figure 3. The Values are Obtained by Counting the Patterns in
Each Category.
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Figure 2. Schematic illustration of probability distribution func-
tions corresponding to barren (left) and deposit classes (right) of
input patterns that are classified by neural networks in this study.
Range of output values (x-axis) is produced by a neural network
in response to input patterns corresponding to both known deposit
and barren cells. Probability p(x) that a deposit cell will produce a
particular output x is indicated on the y-axis. Abbreviations: TP =
true positive, FP = false positive, TN = true negative and FN =
false negative. Patterns corresponding to grid cells are assigned to
categories by applying threshold to output values. For example,
false negative patterns are patterns that are classified as barren but
which actually belong to the deposit class. Variables TP, FP, TN, and
FN are used to plot receiver-operating-characteristic (ROC) curve
shown in Figure 3.

Figure 3. Receiver-operating-characteristic (ROC) curve for a neu-
ral network prospectivity map (solid curve). Curve shows how true-
positive and false-positive ratios vary with threshold value applied
to network output in order to classify cell patterns as either deposits
or barren. Area under curve is an indicator of system performance
and ranges between 0.5 for a random classifier (dashed line) and
1.0 for perfect discrimination.

performance and ranges from a minimum of 0.5 to
a maximum of 1.0 (Fig 3). Harris and Pan (1999)
used a similar function in which different threshold
values are applied to the outputs from various
classifiers to determine which cells to retain for
further exploration. They plot the percentage of
mineralized cells (TP/(TP+FN)) for which the clas-
sifier output is above the threshold (and therefore
retained) versus the percentage of total cells that are
retained ((TP+FP)/(TP+FP+TN+FN)). Their
plot represents a nearly identical function to the
one used in this study because of the small pro-
portion of the total number of cells represented by
deposits.

RESULTS

Experiment 1. Effect of Numbers
of Deposits in Training Set

In order to test the way in which the limited num-
ber of deposit patterns available for training affects
the performance of the trained network, a series of
training data sets are prepared using 5, 10, 20, 40, 80,
and 100 deposit patterns. For each of these numbers
of deposit patterns, ten training data sets are created
by randomly allocating deposits to each of the three
training sets. Only the 120 known deposits with a total
resource of at least 1000 kg gold are used to train the
networks. Where possible, the training and training-
stop data are allocated the same number of deposit
patterns. If this is not possible, the training-stop and
test data sets were allocated equal numbers of de-
posits. In all cases, the ten data sets contain the same
numbers of deposit and barren patterns. The compo-
sition of the training sets is shown in Table 3.

The results are presented in Figures 4–7, which
show the percentage correct classification for the test
set overall, percentage correct classification for de-
posit patterns in the test set, D× (D/A) and area
under the ROC curve. The first two variables are
measures of the generalization ability of the trained
networks and the last two variables are measures of
the quality of the prospectivity map. Each point on the
plots effectively represents the average for 100 net-
works because ten networks with different random
initial weights were each trained using ten different
data sets. All of the plots show a trend of significantly
increasing generalization ability of the networks and
map quality with increasing numbers of deposit pat-
terns and training data set size. The slight drop in
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Table 3. Number of Patterns in Training Sets Used to the Test Effect of the Number of Deposit Examples on
the Generalization Performance of Trained Networks. Patterns Represent Cells Containing Orogenic Gold

Deposits and Barren Cells from Raster GIS Data for the Kalgoorlie Terrane

Training set Stop set Test set
Number of
deposits Deposit Barren Total Deposit Barren Total Deposit Barren Total

5 5 5 10 5 5 10 110 110 220
10 10 10 20 10 10 20 100 100 200
20 20 20 40 20 20 40 80 80 160
40 40 40 80 40 40 80 40 40 80
80 80 80 160 20 20 40 20 20 40

100 100 100 200 10 10 20 10 10 20

performance for 100 training deposits indicated in Fig-
ure 4 may be the result that there are only 10 deposits
in the training-stop and test data sets. A similar ef-
fect appears to occur in Figure 6 for 80 deposit pat-
terns. Because of decreasing size of the test data sets,
the reliability of the results decreases with increas-
ing numbers of deposit patterns. Plots of the overall
test-set performance, test-set performance for deposit
patterns, and the area under the ROC curves suggest
that the effect of increasing deposits decreases as de-
posits are added (Figs. 4, 5 and 7, respectively).

Experiment 2. Amount of Noise

Tables 4 and 5 show the results of experiments
using various amounts of uniform random noise. The
same network topology (10-20-1) and set of initial
weights are used for each of the ten networks trained
for each noise level. Each row in Table 4 shows the av-
erage results for ten networks, whereas Table 5 shows
the network that gives the best overall test-set perfor-
mance. In Tables 4–7, results for the original training
set without added noise are shown in the first row,
and the rows in bold show the results obtained by ex-
panding both the training and training-stop set with
noise.

The average results (Table 4) clearly show that
the increased training-set size, resulting from the
addition of noise, results in a significant improve-
ment in the percentage classification of the test set
and the four measures of prospectivity map qual-
ity (Spearman’s correlation coefficient ρ, capture ef-
ficiency statistics, D/A, D× (D/A) and the area un-
der the ROC). In most cases, the values of D/A and
D× (D/A) are approximately doubled. The results for
±40% noise represent a significant improvement in
the percentage correct classification for deposit pat-

terns (that is, from 68.0% to 77.1%), although for most
other noise levels there is only a slight improvement.
The best test-set results (Table 5) differ considerably
with different amounts of added noise. Usually the
classification performance for barren cells and the
D× (D/A) statistic are poorer than for the network
trained without added noise (top row in Table 5).
However, the results for ρ , D/A and the area under
the ROC are improved significantly and the correct
classification of test-set deposit patterns for the±40%
noise level show a similarly large improvement as
displayed in the average results (i.e., from 77.1% to
85.7%). An interesting feature of the average results
is that there seems to be a weak inverse relationship
between correct classification performance for test-
set deposit and barren patterns (see, for example, the
results for ±20% and ±40% in Table 4).

Examples of mineral prospectivity maps for part
of the Kalgoorlie Terrane, Western Australia, showing
the potential for orogenic lode-gold deposits are given
in Figure 8. The maps were created using a 10-20-1
MLP neural network, which was trained with a data
set expanded from 46 to 1058 deposit patterns through
the addition of ±40% and ±80% uniform random
noise. The effect of training the network with patterns
created with ±80% rather than ±40% noise is to re-
duce the size of areas estimated to have high prospec-
tivity. A similar difference exists between maps pro-
duced with 5% and 10% normally distributed noise.

Experiment 3. Type of Noise

The experiments as described are repeated to
check the effect of using randomly selected normally
distributed rather than uniformly distributed ran-
dom noise to increase the number of deposit pat-
terns in the training set (Tables 6 and 7). Normally
distributed noise does improve the average overall
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Figure 4. Classification performance for test set versus number of
deposit patterns in training set.

Figure 6. D× (D/A) for entire map grid versus number of deposit
patterns in training set (D=% of total deposits in highest prospec-
tivity map class in 9-class prospectivity map and A=% of total map
area corresponding to highest class).

test-set performance as well as measures of map qual-
ity, D/A, D× (D/A), and the area under the ROC,
but the percentage correct classification for test-set
deposit patterns, and the correlation between prob-
ability of a deposit and increasing prospectivity map
class (ρ), are generally poorer than the results ob-
tained without using noise (Table 6). An exception is
for ±5% noise where the correct classification rate
for deposit patterns increases from 68.0% to 71.4%.
Despite the fact that the average results for normally
distributed noise generally are poorer than those for
uniformly distributed noise, the results for the net-
works with the best test-set classification performance

Figure 5. Classification performance for deposit patterns in test
set versus number of deposits.

Figure 7. Area under receiver-operating-characteristic (ROC)
curve versus number of deposit patterns in training set.

using ±5%, ±10%, and ±20% normally distributed
noise are slightly better than those for uniform noise.
The network with ±10% normally distributed noise
represents the best combination of overall test-set and
test-set deposit pattern classification.

Experiment 4. Augmentation of Training and
Training-Stop Data Set

Although the patterns in the training data
set must provide the network with a representa-
tive sample of the variation in the data population
that the trained network will be required to pro-
cess, the training-stop data set also determines the
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Figure 8. Mineral prospectivity maps of part of Kalgoorlie Terrane, Western Australia, showing potential for orogenic lode-gold deposits.
Maps were created using 10-20-1 MLP neural network. Network was trained with training data set which was expanded from 46 to 1058
deposit patterns through addition of A,±40% and B,±80% uniform random noise. Effect using±80% rather than±40% noise is to reduce
size of areas estimated to have high prospectivity. Ten input layers are selected according to evidence-categories criterion. Yellow circles
indicate location of deposits containing resource of ≥1000 kg gold.
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Table 4. Average Test-Set Performance (Percent Correct): Effect of the Amount of Uniformly Distributed Noise
Used to Augment the Training Data Set. Results for Expanded Training and Stop Data Sets are Shown in Bold

Training sets Test set Map quality statistics

Noise max % Train Stop All Deps Barren ρ D/A D × (D/A) ROC

0 84.4 72.7 67.9 68.0 67.8 0.97 8.2 105.3 0.79
±5 83.3 74.1 74.1 70.3 77.0 0.98 17.3 202.2 0.86
±10 83.4 74.1 72.4 71.4 73.0 0.97 15.3 178.8 0.85
±20 85.2 74.6 71.6 66.6 75.4 0.97 18.9 237.5 0.85
±40 82.5 73.2 72.8 77.1 69.6 0.99 17.9 226.4 0.87
±40 85.9 77.8 73.5 77.4 70.4 0.98 14.7 296.2 0.87
±80 86.5 73.9 71.5 68.9 73.5 0.98 14.6 188.2 0.84

Table 5. Best Test-Set Performance (Percent Correct): Effect of the Amount of Uniformaly Distributed Noise
Used to Augment the Training Data Set. Results for Expanded Training and Stop Data Sets are Shown in Bold

Training sets Test set Map quality statistics

Noise max % Train Stop All Deps Barren ρ D/A D × (D/A) ROC

0 88.9 72.7 76.5 77.1 76.1 0.90 9.6 256.7 0.82
±5 81.3 80.7 79.0 74.3 82.6 0.98 13.2 164.8 0.89
±10 84.0 75.0 76.5 80.0 73.9 0.98 9.7 96.6 0.86
±20 82.7 75.0 76.5 80.0 73.9 0.95 16.7 152.7 0.82
±40 82.9 75.0 76.5 85.7 69.6 1.00 14.4 216.0 0.90
±40 82.9 79.8 76.5 85.7 69.6 1.00 14.4 216.0 0.90
±80 92.9 79.6 80.3 74.3 84.8 0.97 11.0 247.3 0.86

Table 6. Average Test-Set Performance (Percent Correct): Effect of the Amount of Normally Distributed Random
Noise Used to Augment the Training Data Set. Results for Expanded Training and Stop Data Sets are Shown in Bold

Training sets Test set Map quality statistics

Noise max % Train Stop All Deps Barren ρ D/A D × (D/A) ROC

0 84.4 72.7 67.9 68.0 67.8 0.97 8.2 105.3 0.79
±5 83.1 72.8 72.8 71.4 73.9 0.94 12.9 143.0 0.84
±10 83.4 73.6 73.8 66.9 79.1 0.92 13.7 131.2 0.86
±10 86.2 76.4 74.1 76.6 72.2 0.98 15.0 245.6 0.87
±20 84.3 75.0 73.1 69.7 75.7 0.93 17.9 321.5 0.87
±40 84.2 77.1 71.2 68.6 73.3 0.93 13.1 149.8 0.84
±80 84.8 67.4 64.7 47.7 77.6 0.86 19.1 109.9 0.76

Table 7. Best Test-Set Performance (Percent Correct): Effect of the Amount of Normally Distributed Random Noise
Used to Augment the Training Data Set. Results for Expanded Training and Stop Data Sets are Shown in Bold

Training sets Test set Map quality statistics

Noise max % Train Stop All Deps Barren ρ D/A D × (D/A) ROC

0 88.9 72.7 76.5 77.1 76.1 0.90 9.6 256.7 0.82
±5 83.9 77.3 79.0 85.7 73.9 0.97 19.0 269.0 0.87
±10 87.5 71.6 80.3 80.0 80.4 0.98 12.0 130.4 0.85
±10 87.5 76.7 80.3 80.0 80.4 0.98 12.0 130.4 0.85
±20 88.4 78.4 77.8 82.9 73.9 1.00 13.2 439.7 0.90
±40 85.7 78.4 77.8 82.9 73.9 0.98 8.9 110.8 0.87
±80 86.8 68.2 69.1 62.9 73.9 0.97 16.3 81.6 0.76
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generalization ability of the trained network. In this
last experiment, the same procedure used to aug-
ment the number of deposit patterns is applied to
the training-stop data set. The composition of the
training-data sets is shown in Table 1. The noise lev-
els giving the best test-set performance using uniform
and normally distributed random noise are repeated
with both noise-augmented training and training-stop
data sets. Ten networks are trained using ±40% uni-
formly distributed random noise and±10% normally
distributed noise. The results are shown in Tables 4–7
in the rows marked in bold. For±40% uniform noise,
there is a small improvement in the percentage of cor-
rect classifications for the test-set (overall, deposit and
barren patterns) and in the capture-efficiency statis-
tic, D× (D/A), for the prospectivity map. In the case
of the normally distributed noise, there is a small in-
crease in the overall test-set performance and cor-
relation coefficient (ρ), and a large increase in the
classification performance for deposit patterns and
both capture-efficiency statistics D/Aand D× (D/A).
There is no increase in the best test-set results for ei-
ther uniform or normally distributed noise.

CONCLUSIONS

The use of random noise to create additional
synthetic deposit-patterns helps overcome the lack
of deposit patterns that limits the training set sizes
for neural networks trained using a backpropagation
training algorithm. Training with the larger noise-
augmented data sets results in significantly increased
classification accuracy for the independent test set
(overall) and test-set deposit patterns, area under
the ROC curve and capture efficiency (D/Aand D×
(D/A)) statistics. The best overall and deposit-pattern
test-set results are obtained with an MLP network
with a 10-20-1 topology, which is trained using±80%
and±40% uniform random noises, respectively. Uni-
form random noise generally gives better results than
normally distributed noise. Increasing the size of the
training-stop data set yields a small increase in aver-
age overall test-set and test-set deposit pattern clas-
sification performance. The method described here
could be applied to increase the number of patterns
available for training in other applications in which
training data are rare, difficult or expensive to obtain.
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