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EXTENDED ABSTRACT 

Hydrological models are increasingly relied upon 
for decision-making in catchment planning and 
management. But the impacts of errors in input 
data are seldom fully considered in the analysis of 
these and many other environmental models, even 
though they can be a potentially large source of 
model uncertainty.  

Precipitation data are an essential input for many 
hydrological modelling investigations but there are 
potentially significant errors in catchment areal 
rainfall estimates. Estimating rainfall at catchment 
scales is a difficult process, due to variations of 
rainfall both in time and space. Identifying, and 
preferably reducing, the errors present in 
catchment rainfall estimates is a necessary step 
towards determining and improving the accuracy 
of hydrological models. Sources of errors within 
areal rainfall estimates can include: extrapolating 
point measurements to spatial estimates, missing 
data, accumulation errors (rainfall is allowed to 
accumulate in the gauge for several days before it 
is measured), along with other measurement and 
timing errors. 

The focus of this paper is on patching and 
disaccumulation errors. Patching errors occur 
when missing rainfall within a record is estimated. 
Disaccumulation errors occur when accumulated 
rainfall is allocated to the preceding days within 
the period. In this paper we describe different 
rainfall patching and disaccumulation methods for 
dealing with accumulated and missing rainfall. We 
focus on conceptually simple and computationally 
inexpensive methods. The patching methods 
considered in the paper include:  

• Nearest Neighbour by Distance (ND): 
selecting the closest gauge with data. 

• Nearest Neighbour by Correlation (NC): 
selecting the neighbouring gauge that has 

the highest correlation with the gauge to 
be patched. 

• Inverse Distance Weighted (IDW): Using 
multiple neighbouring gauges weighted 
by distance. 

• Average of Gauges Selected by 
Correlation (A): all gauges with a 
correlation larger than 0.7 are averaged. 

• Weighted Average of Gauges Selected by 
Correlation (WA): all gauges with a 
correlation larger than 0.7 are averaged, 
weighted by the correlation level. 

For disaccumulation tests, the following methods 
were tested: 

• Allocating total rainfall accumulated 
equally over the days in the accumulation 
period. 

• Observing the temporal distribution of 
rainfall at a neighbouring station (selected 
by distance or correlation) during the 
accumulation period and using this 
information to allocate accumulated 
rainfall. 

These techniques are tested on catchments on the 
southeast coast of Australia. Of the techniques 
trialled, correlation techniques were observed to be 
an ideal station selection variable for patching 
processes, with the lowest root mean square error 
achieved using the WA method. Scaling of data 
using long-term means is not recommended 
particularly under conditions when the rainfall is 
highly variable, as observed in the test catchments. 
Further studies with short term means need to be 
completed to see if the method is a viable 
alternative. Using the total rainfall over an 
accumulation coupled with the rainfall distribution 
from a neighbouring station selected by correlation 
was found to achieve the lowest error for 
disaccumulation operations. 
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1. INTRODUCTION 

Hydrological models are increasingly relied upon 
for decision-making in catchment planning and 
management (Croke and Jakeman, 2001). It is 
therefore necessary to understand not just errors 
that occur as part of the  hydrological modelling 
process, but also input errors. The impacts of 
systematic and random errors are seldom fully 
incorporated in the analysis of environmental 
models but they can be a potentially large source 
of error. Careful consideration as to their potential 
effects and of methods for their control are needed. 
Treatment of input errors is all the more important 
for prediction in ungauged basins where models 
cannot be calibrated directly from gauged data and 
where input errors may have a greater impact. 

Historical rainfall records are measured at typically 
widely separated rain gauges on a daily basis. The 
availability of these measurements varies in time 
and space, with not all gauges operating at the 
same time. Using this data to generate estimates of 
a catchment’s rainfall can result in significant 
errors. This can include systematic measurement 
error in the data for individual gauges, systematic 
errors caused by spatial and elevation variations, as 
well as random errors affected by gauge density, 
measurement mistakes and how representative the 
gauges are for their surrounding area. (Hall and 
Barclay, 1975) This paper looks at two of these 
errors: (i) those caused by missing data in gauges 
and (ii) rainfall accumulation.  

Missing rainfall records often need to be estimated 
to complete rainfall records or assist in areal 
rainfall calculations. This however introduces 
errors into the records as the true measurement of 
rainfall is unknown. The magnitude of the error 
depends on the spatial and temporal variability of 
the rainfall and the density of gauges in the 
vicinity. Further errors can also be introduced into 
rainfall records when data accumulation occurs. 
Data accumulation is a form of missing data, 
occurring when rainfall over a number of days is 
allowed to accumulate in a gauge and is then 
allocated to the first day the gauge is next read. 

The objective of this study is to evaluate rainfall 
patching and disaccumulation methods with a 
particular focus on simple methods that can be 
easily computed. Each method is tested to 
determine its relative accuracy, a necessary step 
before any method can be used in modelling 
processes. Section 2 provides a brief background 
on previous studies. Sections 3 and 4 describe the 
methods used in the study and their application in 
the test catchments. Key results and a discussion of 

those results are presented in Sections 5 and 6, 
respectively. 

2. REVIEW OF PATCHING AND 
DISACCUMULATION PROCESSES 

The estimation of missing rainfall data has long 
been a problem in hydrology (e.g. Wei and 
McGuiness, 1973; and Simanton and Osborn, 
1973) and the problem has been extensively 
investigated. However, it is unlikely there is one 
method best for all applications and optimisation 
for each use may be required (Teegavarapua and 
Chandramoulia, 2005). Traditional approaches to 
patching of rainfall include nearest neighbour or 
inverse-distance weighted mean where the closest 
rain gauge or the weighted average of the nearby 
gauges are used to fill the missing data. Problems 
with these methods are generally related to the use 
of distance as a station selection variable, which 
may be a poor choice due to complex topographic 
and orographic effects on rainfall (McGuen, 1998). 
Research on patching methods has focused on 
different weighting schemes for inverse distance 
weighting or through improving methods of station 
selection. Research has extended to the use of the 
relatively complicated coordinate system methods 
where the gauge closest to the origin in each 
quadrant is averaged (McGuen, 1998). Other 
options to replace distance for station selection 
identified include the correlation of gauges, which 
should theoretically enable the optimal selection of 
gauges based on their relationship to each other. 
Teegavarapua and Chandramoulia (2005) tested 
this method on a region within Kentucky, USA 
and found it to be a significant improvement on 
distance-based selection techniques and 
recommended its use. 

More complicated methods for rainfall patching 
have also been tested. Makhuva et al. (1997) used 
techniques based on multiple linear regression to 
estimate missing rainfall records with the added 
benefit that predictions could still be made when 
the control data was also missing. However 
extensive computation is required for these 
calculations and they could be negatively affected 
by changing climatological relationships. Spatial 
kriging of rainfall data has also been tested (Seo, 
1996) but these are computationally heavy 
methods and often result in only small increases in 
accuracy (Teegavarapua and Chandramoulia, 
2005). Neural networks have been applied to 
patching of missing rainfall (e.g. French et al., 
1992). Such methods require training the data 
based on past relationships, may result in 
overfitting, are computationally expensive and  
difficult to interpret. 
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In contrast to the patching of missing rainfall, for 
accumulation periods there is extra information 
available in the record: the total rainfall over that 
period (assuming losses from the gauge are 
insignificant). This information can be used to 
reduce the errors involved in disaccumulation 
methods and yield less error than direct patching of 
rainfall. 

3. METHOD 

Simple rainfall patching techniques were tested to 
determine their accuracy. The following methods 
were included: 

Nearest Neighbour by Distance (ND): selecting 
the closest gauge with data. 

Nearest Neighbour by Correlation (NC): 
selecting the neighbouring gauge that has the 
highest correlation with the gauge to be patched.  

Inverse Distance Weighted (IDW): using 
multiple neighbouring gauges weighted by 
distance (1). 
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Where Pc is the rainfall for the gauge to be 
patched, Pi is a neighbouring gauge, dci is the 
distance between the gauges and k is a weight 
known as the friction distance that ranges from 1.0 
- 6.0. (Vieux, 2001) The most commonly used 
value for k is 2 (Teegavarapua and Chandramoulia, 
2005) which is applied here.  

Average of Gauges Selected by Correlation (A): 
All gauges with a correlation larger than 0.7 are 
averaged. 

Weighted Average of Gauges Selected by 
Correlation (WA): All gauges with a correlation 
larger than 0.7 are averaged weighted by the 
correlation level (2). 
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where rci is the Pearson correlation coefficient for 
the two gauges found by: 
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where P is the average rainfall for the time series, 
s is the standard deviation and n is the length of the 
time series. 

Because rainfall is closely related to topographic 
features, neighbouring rain gauges may receive 
different magnitudes of rainfall, especially in 
environments with sparsely located rainfall gauges. 
This can cause significant problems since the 
overall magnitude of rainfall at neighbouring 
stations can vary significantly. One method to 
overcome this is to scale the rainfall based on 
average rainfall. The scaling process weights the 
data based on long term means at the gauges (4). 
Thus 
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where P  is the mean rainfall calculated for a 
period of time (long term monthly means were 
used in this study.) The scaling process can be 
seen as a simple implementation of the spatial 
interpolation used in kriging or smoothing splines, 
in this case just using the data available at gauges 
rather than fitting a complete surface. 

Tests were completed for each rainfall patching 
method, both with and without scaling. 
Disaccumulation tests were also completed on the 
same data as the patching tests. The following tests 
were completed: 

Allocating equally (AE): the total rainfall 
accumulated is equally allocated over the days in 
the accumulation period. 

Distance (D): Observing rainfall distribution at a 
neighbouring station selected by distance during 
the accumulation period and using this information 
to allocate accumulated rainfall. 

Correlation (C): Observing rainfall distribution at 
a neighbouring station selected by long-term 
correlation during the accumulation period and 
using this information to allocate accumulated 
rainfall. 

Tests were completed for both patching and 
disaccumulation using the R software 
environment, an open source programming 
language providing data processing, statistical and 
graphical methods, making it ideal choice for these 
tasks (R Development Core Team, 2007). 

 The tests were completed by completely 
recalculating selected records on days when there 
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was complete (i.e. non-accumulated) data 
available. The constructed records were then 
compared against the actual records to evaluate the 
performance of the different techniques.  

The disaccumulation tests were completed by 
using the total rainfall over periods of 2-5 days as 
the accumulated rainfall, which was then 
disaccumulated to completely reconstruct a 
station’s record.  

The performance of all methods was compared 
using three error statistics: root mean square error 
(RMS), square root transformed root mean square 
error (RMSSQRT) and bias. These three 
commonly used measures allow analysis of errors 
biased towards higher and lower flows as well as 
determination of any over or underestimation. 

4. STUDY AREA 

The study area is focused on the Eurobodalla Shire 
on the south east coast of NSW. This area includes 
the Clyde (number 216), Moruya (217) and Tuross 
(218) River catchments. Data from 114 rainfall 
gauges were available between the periods of 1848 
and 2006 with relatively sparse coverage over 
some areas (Figure 1.) 

 

Figure 1. Map of study area and rain gauges 
(squares) 

5. RESULTS 

5.1. Rainfall Patching Results 

The results from the patching tests are shown for 
four example gauges. The results presented in 
Tables 1 and 2 indicate that no method performed 
best on all of the gauges. The NC method had the 
smallest error (RMS and RMSSQRT) for gauge 
69099 while the weighted average of highly 
correlated stations had the smallest error for all 
other gauges. The fact that the correlation methods 
performed best indicates that it is a good decision 
to select stations on metrics other than distance. 
Bias results varied for all of the gauges tested 
however it remained small for all of the methods. 

Overall the results for scaled data had a larger 
RMS error and did not support the use of this 
method. The fact that just using the raw station 
data achieves a lower error is a surprising result as 
it would be expected that gauges with higher 
average rainfall should on average have higher 
event rainfall. The cause of this problem could 
possibly be traced to the difference between the 
long term means that were used to scale the data 
and the short term relationship between the gauges. 
(e.g. Figure 2). 

Table 1. Error results for scaled tests 
 RMS error (mm) 
 69099 68079 69052 68021 

ND 3.91 11.12 8.26 8.73 
NC 3.16 11.12 7.23 8.73 

IDW 4.10 11.15 6.21 5.85 
A 3.82 11.14 5.51 5.75 

WA 3.76 10.99 5.49 5.75 

 RMSSQRT  error   (mm) 
 69099 68079 69052 68021 

ND 0.83 1.48 1.12 1.05 
NC 0.76 1.48 1.09 1.05 

IDW 0.83 1.50 0.88 0.92 
A 0.81 1.51 0.85 0.82 

WA 0.81 1.49 0.83 0.82 

 Bias (mm) 
 69099 68079 69052 68021 

ND 0.26 -0.62 0.35 -0.15 
NC 0.4 -0.62 0.32 -0.15 

IDW 0.25 0.21 -0.05 -0.03 
A 0.37 -0.54 -0.06 -0.04 

WA 0.3 -0.63 0.07 -0.04 

A further effect of patching rainfall was identified 
as significant changes to the number of wet days 
within a rainfall records. This occurs when the 
patching process result in the estimation of small 
rainfall events on days when there was not any 
rainfall. Figure 3 details these results for gauge 
69052 where rainfall distribution curves have been 
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calculated for records constructed using each of 
the methods. Overall it can be seen that the 
average methods (IDW, A and WA) perform 
significantly worse in this respect due to the 
multiple gauges used for each patching process. 

Table 2. Error results for unscaled tests 
 RMS error (mm) 
 69099 68079 69052 68021 

ND 3.46 10.62 7.58 7.7 
NC 3.41 10.62 7.13 7.7 

IDW 4.12 10.65 6.15 6.00 
A 3.88 10.65 5.34 5.62 

WA 3.72 10.44 5.2 5.62 

 RMSSQRT  error   
 69099 68079 69052 68021 

ND 0.81 1.43 1.10 1.03 
NC 0.79 1.43 1.08 1.03 

IDW 0.83 1.44 0.88 0.91 
A 0.83 1.45 0.83 0.82 

WA 0.81 1.42 0.84 0.82 

 Bias (mm) 
 69099 68079 69052 68021 

ND 0.43 0.15 -0.37 0.05 
NC 0.2 0.15 -0.24 0.05 

IDW 0.25 0.21 -0.05 -0.06 
A 0.28 0.25 0 -0.11 

WA 0.31 0.29 -0.02 -0.11 

Although the significant change in number of wet 
days has only a small effect on the overall RMS 
error it could cause more significant effects in 
modelling processes, such as rainfall-runoff 
modelling that uses catchment moisture deficit 
accounting (e.g. Croke and Jakeman, 2004).  

 

Figure 2. September rainfall results for gauge 
68079 and neighbouring gauges. (long term 

relationship: 68079 > 68034 > 68083 > 68078) 

5.2. Rainfall Disaccumulation Results 

The error results for the disaccumulation tests are 
shown in Tables 3, 4 and 5. From the results it can 
be seen that the correlation method had the lowest 
overall error with the same results as the distance 
method on some gauges and slightly better on 
other gauges.  

 

Figure 3. Rainfall distribution curve results for 
patching tests on 69052 

Generally, results using a five-day period had a 
larger error than tests using a two-day period. But 
there is not a consistent increase with error as the 
number of days is increased. Figure 4 shows the 
results for the correlation tests performed on gauge 
69099. This demonstrates that the disaccumulation 
method performs quite well for larger rainfall 
events, but there can be significant variance at 
lower rainfall levels. The bias results (Table 5) 
indicate a very low bias for all of the 
disaccumulation methods tested. 

 

Figure 4. Rainfall disaccumulation results (69099) 

Table 3. RMS error (mm) results for 
disaccumulation tests on four gauges 

 Days 69099 68079 69052 68021 
AE 2 3.97 7.57 6.41 6.14 

 3 4.85 8.9 7.71 7.5 
 4 5.27 9.72 8.47 8.18 
 5 5.48 9.96 8.18 8.67 

D 2 3.12 6.36 5.82 5.56 
 3 3.32 7.1 5.95 6.25 
 4 3.26 6.48 6.03 5.84 
 5 3.45 7.07 6.15 5.84 

C 2 3.10 6.36 4.59 5.56 
 3 3.31 7.1 5.18 6.25 
 4 3.22 6.48 5.06 5.84 
 5 3.44 7.07 5.05 5.84 

When comparing the correlation test results against 
the patching test results from the previous section, 
it can be seen that the disaccumulation test 
achieves a lower RMS error for most of the time 
periods selected. For a few gauges the errors are 

2524



slightly larger than direct patching. It could be 
generally recommended, however, to use the 
disaccumulation methods when the extra 
information is available. 

Table 4. RMSSQRT error results for 
disaccumulation tests on four gauges 

 Days 69099 68079 69052 68021 
AE 2 0.78 1.05 0.91 0.90 

 3 0.96 1.29 1.12 1.12 
 4 1.07 1.42 1.25 1.24 
 5 1.12 1.51 1.34 1.33 

D 2 0.73 1.02 0.88 0.90 
 3 0.94 1.06 1.03 0.98 
 4 0.87 1.04 0.97 0.97 
 5 1.05 1.07 1.05 0.97 

C 2 0.71 1.02 0.79 0.90 
 3 0.92 1.06 0.85 0.98 
 4 0.86 1.04 0.84 0.97 
 5 1.03 1.07 0.86 0.97 

Table 5. Bias results (mm) for disaccumulation 
tests on four gauges 

 Days 69099 68079 69052 68021 
AE 2 0.00 -0.01 -0.02 -0.01 

 3 -0.01 -0.02 -0.02 -0.02 
 4 -0.01 -0.02 -0.03 -0.02 
 5 -0.02 -0.03 -0.03 -0.03 

D 2 0 0 0 0 
 3 0 0 0 0 
 4 0 0 0 0 
 5 0 0 0 0 

C 2 0 0 0 0 
 3 0 0 0 0 
 4 0 0 0 0 
 5 0 0 0 0 

6. DISCUSSION 

The methods tested in this study were conceptually 
simple ones that allowed the quick computation of 
rainfall patching and disaccumulation and the 
associated errors. The errors calculated also give 
an indication of the magnitude of error for the 
areas between rain gauges when areal estimates are 
generated.  

The results indicate that significant errors could be 
present in the rainfall records between gauges. 
RMS errors were observed to be within 3 -12 mm 
for rainfall records which could add significant 
errors to rainfall records. A reduction in RMS and 
the RMSSQRT error was observed for some 
gauges when using correlation as a station 
selection variable instead of distance. The 
relationship between distance and correlation for 
all gauges is shown in Figure 5. Although a direct 
relationship between distance and correlation can 
be seen there is also significant variance where 
some gauges further apart have a higher 
correlation and close gauges have lower 
correlation. 

The scaling method often used in rainfall patching 
was observed to increase errors in patching for 
most gauges. Variance between short term and 
long term rainfall ratios between gauges were 
observed to be significant, indicating that the 
scaling method may not be ideal for variable 
Australian climate. There could be potential, 
however, in using short term means for scaling 
data with the possible use of rainfall surfaces to 
overcome the significant effect of missing data on 
short term means. 

 

Figure 5. Relationship between correlation and 
distance for all gauges 

Further consideration also needs to be applied to 
the types of errors generated by different rainfall 
patching methods. Methods that utilise multiple 
stations tend to have smaller maximal errors but 
may suffer from more errors at low rainfalls. 
Depending on the modelling application desired, 
different patching methods may perform better. 
For example, reducing high rainfall errors may be 
desirable for water quality modelling while low 
rainfall errors could potentially be of greater 
interest for water allocation and supply 
investigations. 

Identification of accumulation periods and use of 
the total rainfall during the disaccumulation was 
seen to reduce the error as compared to patching 
processes. Once again using correlation as a 
selection variable reduced the error for some 
gauges and it is a viable method to use instead of 
distance-based methods. Only periods between 
two and five days were tested as it is likely that for 
longer periods of accumulation the value of 
rainfall measured in the gauge would be of lesser 
reliability. These time periods are also the typical 
length over which accumulation occurs in BoM 
gauges. 

The results presented are generally applicable to 
all of the gauges within the sub catchments.  Using 
correlation as a station selector variable could 
potentially reduce the error; however for other 
gauges the performance was similar to using 
distance. A possible extension to the process 
would be to use seasonal correlations to account 
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for changing climatic patterns by season. Scaling 
by long term means did not necessarily reduce the 
error of the patching results and could potentially 
have the opposite effect. 

Further testing will be required to estimate the 
errors in rainfall estimates and fully compare the 
various methods available. Possible options could 
include investigating the difference between the 
simple and more complicated techniques such as 
kriging and neural networks. Another possible 
approach would be to remove some of the gauges 
from the analysis and determine the resulting 
effect on the rainfall estimate. Other possible 
estimation techniques that could be investigated 
include using thin plate smoothing splines, which 
could be used to determine longer term 
relationships between gauges (Hutchinson, 1995) 
offering an alternative that is in-between simple 
distance weighted and complex kriging techniques. 

7. CONCLUSION 

In this study different rainfall patching and 
disaccumulation methods were tested on a 
catchment on the southeast coast of Australia. Of 
the techniques trialled, correlation was observed to 
be the best station selection variable for patching 
processes, with the lowest error achieved using a 
correlation weighted average of neighbouring 
gauges. Scaling of data using long-term means is 
not recommended, particularly under conditions 
when the rainfall is highly variable as observed in 
this catchment. Further studies with short term 
means need to be completed to see if the method is 
a viable alternative. Using the total rainfall over an 
accumulation, coupled with the rainfall 
distribution from a neighbouring station selected 
by correlation, was found to achieve the lowest 
error for disaccumulation operations. 
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