
Journal of the Operational Research Society (2010) 61, 1133 --1143 © 2010 Operational Research Society Ltd. All rights reserved. 0160-5682/10

www.palgrave-journals.com/jors/

Dynamic scheduling of recreational rental vehicles
with revenue management extensions
AT Ernst1, M Horn2∗, P Kilby3 and M Krishnamoorthy4

1CSIRO Mathematical and Information Sciences, Victoria, Australia; 2CSIRO Mathematical and
Information Sciences, New South Wales, Australia; 3National ICT Australia, Australian Capital Territory,
Australia; and 4Monash University, Victoria, Australia

The rental fleet scheduling problem (RFSP) arises in vehicle-rental operations that offer a wide variety of
vehicle types to customers, and allow a rented vehicle to ‘migrate’ to a setdown depot other than the pickup
depot. When there is a shortage of vehicles of a particular type at a depot, vehicles may be relocated to that
depot, or vehicles of similar types may be substituted. The RFSP involves assigning vehicles to rentals so
as to minimise the costs of these operations, and arises in both static and online contexts. The authors have
adapted a well-known assignment algorithm for application in the online context. In addition, a network-flow
algorithm with more comprehensive coverage of problem conditions is used to investigate the determination
of rental pricing using revenue management principles. The paper concludes with an outline of the algorithms’
use in supporting the operations of a large recreational vehicle rental company.
Journal of the Operational Research Society (2010) 61, 1133–1143. doi:10.1057/jors.2009.78
Published online 29 July 2009

Keywords: scheduling; networks and graphs; revenue management; vehicle routing

Introduction

This paper reports on a study of rental operations in which
vehicles of different types are made available for hire from
several depots to retail customers. A customer’s request for a
rental includes the time and the depot where a vehicle is to be
picked up, and the time and the depot where the vehicle is to
be returned to the rental company. Before accepting a rental
request, the company must be confident that an acceptable
vehicle will be available at the pickup depot, and this feasi-
bility must be maintained until the requested pickup time.
More broadly, the rental company will wish to assign vehi-
cles to rentals in an efficient manner, while maintaining a reli-
able service to customers and orderly management of related
activities such as vehicle maintenance.

Tourism Holdings Limited (THL) is the leading company in
the recreational rentals market in Australia and New Zealand.
In Australia, THL maintains depots in 10 cities and a fleet
comprising several thousand vehicles—four-door cars, sport
utility vehicles, and campervans of various sizes. THL’s busi-
ness is characterised by long booking horizons, long booking
durations, a diverse range of vehicle types, and a policy
that allows return of a vehicle at a depot other than the
pickup point at no extra cost. These conditions imply a much
more complex scheduling task than in conventional rental

∗Correspondence: M Horn, Locked Bag 17, North Ryde, NSW 1670,
Australia.
E-mail: mark.horn@csiro.au

operations (eg where vehicles must be returned to their origin
depots), and they have provided the main practical motivation
for the research described in this paper.

In THL’s rental operations, a fleet schedule is a plan for
the deployment of each vehicle in the fleet so as to honour
all currently booked rentals, with provision for vehicle-
maintenance activities and changes in fleet composition.
A schedule may include adjustments called substitutions
and relocations that in effect extend the fleet’s capacity in
response to local peaks of demand. In both cases, the direct
costs are borne by the company, not by the customer.

In a substitution, a rental is planned with a vehicle type
different to the one requested by the customer. Associated
with each rental is a product, specifying a preferred vehicle
type (ie make and model), a set of alternative types, and other
attributes. Substitution replaces the preferred type with one
of the alternatives, usually of higher value.

A relocation shifts a vehicle from one location to another
in order to satisfy a planned (or anticipated) rental pickup at
the destination. Relocations help to ensure the availability of
vehicles at the places and times they are needed, but obviously
can be expensive for the company. Relocations of differing
durations may be available, with shorter times at greater cost.

Details that need to be considered in practice include
vehicle turnaround, where a vehicle is cleaned and under-
goes mechanical servicing before being passed to the next
customer. In addition, there may be times when vehicles are
unavailable for longer periods of time in order to undergo

1134 Journal of the Operational Research Society Vol. 61, No. 7

maintenance, or where part of the fleet is turned over with
disposal of old vehicles and arrival of new vehicles.

The main scheduling objective is to minimise the costs
associated with substitutions and relocations. We call this
the rental-fleet scheduling problem (RFSP). The static
problem—solved each day—is to find a solution to the RFSP.
A critical dynamic form of the problem is posed when a
response to a customer’s rental request is required in real time.

The problem as outlined above is similar in several respects
to that addressed by Hertz et al (2009), which was formu-
lated as a test problem by the French Society for Opera-
tional Research (ROADEF). Like the RFSP considered here,
the ROADEF problem is concerned with the management
of a vehicle rental fleet, with provision for substitutions.
The ROADEF formulation also incorporates maintenance
scheduling, subcontracting, and vehicle purchase decisions,
but makes no reference to location, and thus excludes provi-
sion for relocations. Hertz et al describe a combination of
tabu search and other techniques for the ROADEF problem.
These methods appear to be very effective for the problems
tested, which however are considered only in a static context,
and are much smaller than those addressed here (eg with 80
rather than 6000 or more bookings in the schedule).

Fink and Reiners (2006) discuss the management of vehicle
inventory by large European rental companies. They present
a decision-support framework, together with network-flow
based optimisation procedures that provide for relocation
between depots, but they do not seek the operational capa-
bility (eg tracking of particular vehicles) developed in the
present research, and their time horizon is very short (1 week).
Pachion et al (2003) describe vehicle-rental operations as
seen in the United States, including ‘pooling’ arrangements
within which relocations can be made. These arrangements
form the basis of a tiered decision framework, by contrast
with the unified approach taken here.

Parallels with the RFSP may be seen in the pickup and
delivery problem (PDP), where a fleet of vehicles is deployed
to handle a set of transport requests between designated
pickup and setdown points (Dumas et al, 1991; Ioachim
et al, 1995; Savelsbergh and Sol, 1998; Currie and Salhi,
2003). Related to the PDP are the multi-depot vehicle
scheduling problems (MDVSP) discussed by Desaulniers
et al (1998). There are significant differences between these
problems and the RFSP, notably the PDP’s assumption of a
homogeneous fleet (heterogeneous in the RFSP); the short
time-horizon in the PDP compared with a horizon of around
a year in the RFSP; and the combination of few depots and
many other locations in the PDP, as opposed to the larger
number of depots and an absence of non-depot locations in the
RFSP. The present research has however made use of some
of the network-flow concepts developed for the MDVSP.

There are parallels also in the scheduling of airline opera-
tions, where the RFSP can be viewed as encompassing both
fleet assignment and aircraft rotation (also called ‘tail assign-
ment’ or ‘aircraft routing’) (Clarke et al, 1997; Gopalan and

Talluri, 1998; Ahmed and Poojari, 2008). Again, these prece-
dents have been instructive but have not foreclosed the need
for substantial fresh thinking for the RFSP (Ernst et al, 2007a).

It is apparent then that the RFSP embodies complexities
which are not encountered in conventional vehicle-rental oper-
ations, and have not been addressed directly in the previous
research literature. This paper presents two approaches to
the problem, namely network-flow and assignment models.
Although the two approaches are essentially equivalent, an
exposition of this kind is useful in demonstrating the different
strengths of the two formulations. A well-known algorithm
for the assignment model has particular advantages in the
dynamic scheduling context, where there is a need to main-
tain a near-optimal solution under strict computational time
restrictions. The network-flow formulation is more compre-
hensive than the assignment model, and is well-suited to appli-
cation in the static context.

The network-flow model has proved useful also as a
basis for applying Revenue management (RM) ideas to the
vehicle-rental scheduling business. Revenue management
(also called Yield Management) involves setting prices in
response to expected demand, and is particularly relevant in
businesses—notably in the tourism and travel sectors—where
there are substantial fixed costs and each ‘product’ is instan-
tiated within a limited period of time (Botimer and Belobaba,
1999; Yeoman et al, 1999). This description matches quite
closely the conditions of the recreational rentals business, so
that there is at least a prima facie case for the investigation
of RM undertaken here.

It should be noted that for the assignment and network-
flow approaches discussed above this paper gives two separate
problem formulations, which are equivalent except for their
treatment of substitutions. For further details (eg with respect
to delays and expected profits), see Ernst et al (2007b).

The remainder of the paper is set out as follows. We
formulate the RFSP as an assignment problem considered in
both static and dynamic contexts; we develop a network-flow
formulation of the RFSP; and we report on simulation tests
performed on the assignment and network-flow models. We
then show how the network-flow formulation can be adapted
for RM purposes, and report on a set of tests devised to
validate this approach. We conclude with an outline of the
implementation of the algorithms and the benefits they have
delivered to THL.

An assignment approach

We commence with an assignment model that fully addresses
the RFSP. After presenting the model and defining a solution
procedure we will focus on its use in a dynamic context,
where a new rental (or an event such as a vehicle breakdown)
is to be incorporated in the current schedule, the latter having
been constructed initially by a static algorithm.

As a basis for the assignment model we partition the
company’s vehicles into sub-fleets, one for each vehicle type,

AT Ernst et al—Dynamic scheduling of recreational rental vehicles 1135

and associate each rental with the sub-fleet corresponding to
its preferred vehicle type. The scheduling task then involves
two parts: assigning rentals to vehicles efficiently in each
sub-fleet, and (for substitutions) providing for transfers of
rentals between fleets. Note, however, that the formulation
as presented here omits the substitution stage. That is, given
the breakdown of work between static and dynamic models
outlined above, all substitution decisions are made by the
static algorithm and are preseved in the assignment solution.

Problem formulation

We define sets I and J with |I |=|J |, representing rentals,
maintenance sessions, and other activities. Set I represents
the end-time-slots and locations of all activities, while set J
represents the corresponding start-time-slots and locations,
and each time-slot is defined in practice as the morning or
afternoon of a given calendar day. An assignment (i, j)
(i ∈ I, j ∈ J) indicates that i and j appear as a successive
pair in the list of activities to be carried out by a particular
vehicle; that is, the schedule proceeds from an ‘end-event’ i
to a ‘start-event’ j . The period between the end of an activity
i and the start of another activity j may include a turnaround
and a relocation to ensure that the vehicle is ready and in the
right location to commence j .

The sequence of activities assigned to a vehicle v

commences with a start-activity f irstv ∈ I , indicating the
time and place when the vehicle first becomes available,
and is terminated by a notional end-activity lastv ∈ J (or a
generic last), indicating when the vehicle becomes idle or is
to be taken out of service. Thus the sequence of rentals and
other activities for vehicle v is f irstv → i, i → j . . . k →
lastv . To ensure that a sequence is feasible (eg with chrono-
logical timings to avoid cycles), we define a set of feasible
activity-pairs A ⊂ I × J .

For each i ∈ I and j ∈ J there is an assignment cost ci j .
A comprehensive statement of costs is given by Ernst et al
(2007b). In summary, the main potential costs are a relocation
component (ie the cost of shifting the vehicle used by i from
the location of i to the location of j); a penalty for violation of
the commencement time associated with j ; and, in principle
(see below), a substitution cost if the vehicle used by j is not
a preferred type for j .

The task then is to find a set of assignments I × J , pairing
each i ∈ I with a j ∈ J so as to minimise total costs. Let
xi j = 1 if assignment i → j is in the solution, 0 otherwise.
The scheduling problem can then be stated as follows.

Minimize
∑

i∈I

∑

j∈J

xi j ci j (1)

Subject to
∑

i :(i, j)∈A

xi j = 1 ∀ j ∈ J (2)

∑

j :(i, j)∈A

xi j = 1 ∀i ∈ J (3)

xi j ∈ {0, 1} ∀i ∈ I, j ∈ J (4)

Equations (1)–(4) define a well-known assignment problem
(Dell’Amico and Toth, 1999). With arbitrarily high self-
assignment costs (ie cii = ∞ ∀i ∈ I ∪ J), an xii = 1 in the
optimal solution indicates that activity i cannot be scheduled
with the available vehicle fleet. Note that this formulation
requires vehicles of each type to be indistinguishable; for
example, an activity cannot be assigned in advance to a
particular vehicle, and there is no provision for individual
vehicles to terminate at specific locations at the end of the
scheduling period.

The complete problem across all vehicle types can be
specified as a set of assignment problems with interlinking
constraints. Let xti j = 1 indicate that the end of activity i will
follow the start of activity j as serviced by a vehicle of type
t ∈ T , where T is the set of vehicle types.

We then have a block of constraints for each t of the form
(1)–(4), linked by constraints of the form

∑

t∈T
xtii = |T | − 1 ∀i ∈ I ∩ J (5)

Equation (5) requires that each activity can be assigned to
a single vehicle type t ∈ T : for every other type t ′ ∈ T,

t ′ �= t, xt
′
i i = 1 indicates that activity i is not serviced by t ′.

We ensure this in practice by solving the assignment problem
separately for each vehicle type, with each rental activity
assigned to the most-preferred vehicle type for the rental.
Thus the assignment procedures at present do not handle
vehicle substitutions, which are delayed instead for periodic
re-optimisation by the static algorithm (see also the following
account of schedule repair and improvement).

Assignment algorithms

There are several algorithms for solving assignment problems
of the type defined in (1)–(4). For our purposes the succes-
sive shortest-path algorithm of Engquist (1982) is particu-
larly useful. Engquist’s algorithm begins by assigning every
activity i to its least-cost successor j , ignoring the requirement
Equation (3), that each j should have exactly one predecessor.
In this initial assignment, normally some j are deficient (with
no predecessor assigned) and some abundant (with more than
one predecessor assigned). A dummy activity is added, with
an assignment to one of the deficient activities (the choice in
this respect is arbitrary). The dummy is a notational conve-
nience to provide uniformity in the treatment of activities.

The main body of the algorithm involves iteration of a
reassignment step. In this step the current set of assignments
is treated as a meta-graph, with a meta-node representing
each current assignment. The arcs of the meta-graph indicate
possible changes to the activity-assignments represented by
the meta-nodes; in particular, an arc from (i → j) to (m → n)

means ‘delete assignment (i → j) and replace it with assign-
ment (m → j)’. An arc from (i → j) to (m → n) exists if
(m → j) is permitted, and has a cost of cmj − ci j .

1136 Journal of the Operational Research Society Vol. 61, No. 7

The focus for the reassignment step is the tree of shortest
paths from the dummymeta-node to the abundant meta-nodes.
The least-cost path in the tree is chosen, and the changes
specified by the chosen path are then applied to the schedule.
The reassignment step is repeated until no more abundant
nodes remain. A conclusion is guaranteed because at each
iteration, exactly one deficient node receives an assignment,
reducing the number of abundant nodes by one. Engquist
(1982) shows that the solution obtained in this way is optimal.

The operation of Engquist’s algorithm is illustrated by a
problem with I = {a, b, c, d, e} and J = {A, B,C, D, E}.
Suppose that the meta-nodes are initially as follows;

a → B

b → A

c → A

d → C

e → B

Here, A and B are abundant, while D and E are deficient.
A dummy activity is assigned to the deficient node E , and
this assignment is represented by an additional meta-node
(dummy → E). Now suppose that the least-cost path from
the dummy activity is (dummy → E) ⇒ (c → A) ⇒
(b → A). Making the changes implied by this path replaces
the corresponding assignments with (c → E) and (b → A).
The result (see below) leaves only A abundant, and only D
deficient.

a → B

b → A

c → E

d → C

e → B

An assignment algorithm for the static RFSP commences with
an empty schedule, that is with xii = 1 for all activities. Now
instead of reducing deficiency and abundance in each itera-
tion, we now try to find a shortest path for any unscheduled
activity. It is easy to show that this also leads to an optimal
solution of the assignment problem.

Adding rental bookings

We have adapted the algorithm outlined above for the online
task of adding a rental to the schedule. A rental query
is handled by using the same technique to accommodate
the requested rental in the schedule (if possible), and then
discarding the adjusted schedule.

The task is to find an efficient assignment for a rental-
request r for preferred vehicle type t in the sub-schedule for
Vt . We refer to the existing successor of an activity i as Si .

An arc (i → Si) ⇒ (j → Sj) in the meta graph is legal only
if Si is a feasible successor for j in terms of timing and other
conditions. To commence, we define two dummy meta-nodes
(dummy → r), (r → dummy). We then find the least-cost
path from (dummy → r) to (r → dummy), as indicated
earlier. This path represents an optimal insertion of r in the
sub-schedule for Vt .

The above technique can lead to radical changes in the
schedule, and is well suited to an operation with limited
execution time. The paths originating at (dummy → r) are
explored in a breadth-first manner; that is, all paths of length 2
are explored before moving on to paths of length 3, and so
on. Because any path from (dummy → r) to (r → dummy)
represents a feasible insertion, the algorithm can return a
useful result—indicating for example that r is feasible—if it
is terminated after a limited time (eg with a time-limit for
validating each rental request).

One consequence of a time-limited search is that the imple-
mentation found for a rental request may not be fully optimal,
which is quite acceptable in practice. However, if a sub-
schedule thus becomes sub-optimal, there will be cycles in the
corresponding meta-network, each cycle defining a path from
an activity back to itself, with a negative cost. The possibility
of negative-cost cycles precludes the use of some standard
shortest-path algorithms (eg the Dijkstra algorithm (Dijkstra,
1959)). Instead, we have used the Bellman–Ford algorithm
(Bellman, 1958; Ford and Fulkerson, 1962), with the imple-
mentation described by Cormen et al (1989).

Repairing and improving the schedule

Sub-optimality may be introduced in a schedule due to a
limitation on execution time as indicated above, or through
real-time contingencies, such as breakdowns or late returns
to depot. Techniques are described below for restoring opti-
mality, through the use of improvement and repair procedures.
Both procedures make use of the fact that a potential improve-
ment in the schedule is manifested as a negative-cost cycle in
the meta-network. The improvement procedure can be invoked
at any time for a given vehicle type t . The meta-network
corresponding with the sub-schedule for t is constructed, and
an existing assignment is chosen at random as the root for
a shortest-path tree. The procedure begins constructing the
tree, and when it discovers a negative-cost cycle, the cycle is
implemented and the procedure is restarted for t . If no cycles
are found, processing can re-start for another vehicle type t ′.
This procedure obviously is very well suited for implementa-
tion as a continuous ‘background’ process. Further improve-
ment might be obtained through a higher-level heuristic
procedure allowing transfer of rentals between sub-schedules,
so as to implement substitutions. In practice, however,
this is not required because substitutions are handled very
effectively in the periodic re-optimisation of the schedule
using the network flow procedure described in the following
section.

AT Ernst et al—Dynamic scheduling of recreational rental vehicles 1137

The repair procedure is invoked after a disruption, such as
the late return of a vehicle, which may introduce delays and
other inefficiencies in the schedule. Again the meta-network
is created for the relevant vehicle-type t , but the root of the
shortest path is defined as an activity close to the disruption
instead of the one chosen at random. In this way the proce-
dure focuses on the most severely affected parts of the meta-
network, and useful repairs are more likely to be discovered.

A network-flow approach

A network-flow formulation provides an alternative to the
assignment approach given above. As before, time is repre-
sented as a succession of morning and afternoon time-slots,
and scheduling is limited initially to a single vehicle type. We
use a time-layered network in which each node represents a
particular location at a particular time, identified by a (location
time) pair. We represent each possible activity that a vehicle
can perform as an arc, with a predefined cost and an upper
bound on flow, that is, on the number of vehicles carrying out
the activity associated with the arc. For example, a rental arc
connects the two nodes representing the start location/time
and end location/time for a rental, and has an upper bound on
flow of one. An idle arc represents a period when a vehicle
stands idle, and connects nodes representing the same loca-
tion on successive dates, with zero cost and no upper bound
on flow. Activities such as relocations and turnarounds are
represented as arcs in a similar fashion.

We denote the set of all nodes asN, the set of all arcs asA,
the idle arcs as I, and the origin and destination nodes of an
arc a as �(a) and �(a), respectively. Each node n has a supply
Sn , which is positive if there are vehicles available at this
location/time, or negative for location/times where vehicles
are taken off the fleet, and with all other nodes having Sn =0.
A dummy sink node is introduced to take all remaining flow
at the end of the planning horizon (an alternative would be
to pre-specify the number of vehicles that are to end up at
each location). Let xa represent the flow on arc a, and let Ca

represent the cost of the activity represented by a. The RFSP
can then be formulated as a network-flow problem of the form

Minimise
∑

a∈A\I
Caxa (6)

Subject to
∑

a∈A:�(a)=n

xa −
∑

a∈A:�(a)=n

xa = Sn ∀n ∈ N (7)

0�xa �ua ∀a ∈ A (8)

This can be extended to incorporate multiple vehicle types
by using a multi-commodity flow formulation. Denoting the
set of vehicle types again as T , and the flow of vehicle type
t ∈ T on arc a as xta , we supplement Equations (6)–(8) with
linking constraints:

∑

t∈T
xta �1 ∀ arcs a representing rentals (9)

In the present research, the problem defined above is solved—
with a very low incidence of fractional variables—using
CPLEX, a general purpose Integer Linear Programming
(ILP) solver (an alternative would be to use a specialised
multi-commodity flow solver). To construct a schedule for
individual vehicles from the optimal network flow, it is neces-
sary then to trace a path through the network for each vehicle.
In a simple greedy heuristic, the path is traced from the
vehicle’s start location to any sink node (or a particular sink
node, as discussed below), along arcs that carry positive flow:
the residual flow is then updated along the path chosen for
the vehicle, and the procedure is repeated for each remaining
vehicle in the fleet. If this is possible for each vehicle, the solu-
tion is optimal; in fact, when the vehicles are indistinguishable
it is always possible to create a path for every vehicle from
the remaining arcs in the residual network. However, when
some vehicles have fixed destinations (eg for maintenance or
pre-assigned bookings), then it may not be possible to find
such a path. Our practice is to handle these fixed-destination
vehicles (FDVs) first, in each case finding and fixing in place
a shortest path through the full network, but using arcs in
the residual network where possible. Once all schedules for
FDVs are fixed, the ILP is re-solved, and the schedules for
all other vehicles extracted from the residual network are
determined by the new solution. In practice this produces
very good solutions because most vehicles do not have fixed
destinations.

While the network-flow approach is a little more compli-
cated than the assignment formulation in some respects, it has
two important advantages. Firstly, because there are generally
multiple different ways of extracting individual vehicle sched-
ules from the network-flow solution, it may be possible to
deal with the issue of a small number of FDVs without explic-
itly including this condition in the formulation. An alterna-
tive is to create a separate network-flow/assignment problem
not just for each vehicle type, but also for each vehicle end
point location and end-time pair. However, this significantly
increases the overall formulation size for only very limited
improvement in solution quality.

The second advantage of the network-flow approach is
that it generally requires fewer variables than the assign-
ment formulation. For example, if there are 1000 rentals
to be scheduled on 500 vehicles without fixed destina-
tions, the assignment formulation implies 500 000 arcs
connecting the end-node of each rental (last i ∈ I) to the
end-node of each vehicle (last j ∈ J). By comparison, the
network-flow formulation for a problem of the same size
will normally require fewer than 10 000 arcs; for example,
with 10 locations and a 1-year scheduling horizon, there
are 1000 rental arcs, 3650 idle arcs, plus a few thou-
sand more arcs representing relocations and turnarounds.
While the large number of arcs in the assignment formu-
lation poses no difficulty for the dynamic rescheduling
task—where generally only a small part of the overall
problem is considered—the complete assignment problem

1138 Journal of the Operational Research Society Vol. 61, No. 7

Total current bookings

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Date

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

DVASS - unassigned bookings

VASS - unassigned bookings

U
na

ss
ig

ne
d

bo
ok

in
gs

To
ta

l b
oo

ki
ng

s

Figure 1 Simulation tests: current and unassigned bookings.

would be too large to be solved using currently available ILP
solvers.

Computational tests

The assignment and network-flow algorithms described
earlier in this paper are embodied in software modules called,
respectively, D-VASS and VASS. The latter solves the RFSP
to create an optimised schedule during an overnight run,
while the former dynamically updates the schedule whenever
a change is made during the day. Both modules have been
tested extensively through simulation tests involving different
assumptions with regard to aggregate demand, fleet size, and
so on. The results of the tests are broadly consistent, and
for brevity we shall focus mainly on a single test run whose
scale and complexity broadly reflect conditions encountered
in practice. This involves 20 pickup locations and 2123 vehi-
cles of 52 different types, marketed as 336 different products.
The simulation commenced with 6168 rentals, with random
attributes, which were scheduled by an initial run of the static
VASS optimisation procedure.

From the initial setup described above, scheduling opera-
tions were modelled over a period of 31 days, with incoming
rental requests randomised with respect to time of issue,
desired product, rental date and duration, and pickup and
setdown locations. Excluded from the simulation were
removals and additions to the vehicle fleet, and unexpected
events such as late returns (effective handling of these

events has been confirmed in other simulations and through
several years’ practical application). To obtain an approxi-
mately uniform load on the system over the course of the
simulation period, 63 new rental requests were modelled per
day, approximately matching the rate at which rentals were
dispatched. By this means the total number of bookings in
the system was maintained at a fairly steady level, as indi-
cated in Figure 1 (the range is between 6100 at the end of
day 30, and 6258 at the end of day 4).

As previously indicated, D-VASS is the module that seeks
to incorporate online requests into the current schedule; while
VASS is a static optimiser which is run late every night. To
compare the performance of the two algorithms, we have
considered revenue and costs at the end of each simulated
day: for D-VASS, after the last rental request or improvement
session of the day, and for VASS, just after its evening run.

The performance indicators reported here should be read
in the light of a subtle difference in the way optimisation
is carried out by the two modules. For D-VASS, the deci-
sion as to whether a rental is accepted initially is normally
determined by whether the rental can be fitted into the
current schedule. However, once a rental has been accepted,
it must be retained in the schedule at all cost, even if unfore-
seen conditions (eg due to a late return of a vehicle by
another customer) make the original assignment no longer
feasible. In order to stress-test the optimisation, we forced
D-VASS to accept all rentals, which may include some for
which it cannot find feasible assignments; that is, D-VASS’s

AT Ernst et al—Dynamic scheduling of recreational rental vehicles 1139

170,000,000

175,000,000

180,000,000

185,000,000

190,000,000

195,000,000

200,000,000

205,000,000

210,000,000

215,000,000

1 2 3 4 5 6 7 8 109 11 12 13 14 15 16 17 18 20 21 22 23 24 25 26 27 28 29 3019

Date

R
ev

en
ue

DVASS net revenue

VASS net revenue

D-VASS total revenue

VASS total revenue

Figure 2 Simulation tests: total and net revenue.

task here was to fit the rentals into the schedule at the least
possible incremental cost.

VASS on the other hand takes a global view: if it is not
possible to schedule all rentals, VASS tries to accommodate as
many as possible, dropping those of least value. This ‘value’
is based on how much the customer is paying, with a discount
on rentals that occur late in the planning period. The discount
is applied because later rentals are more likely to be accom-
modated through future changes to the schedule, and hence
present a less severe problem in practice than earlier unsched-
uled rentals. The objectives applied by D-VASS and VASS
are thus not quite identical when there are some unscheduled
rentals.

As indicated in Figure 1, the number of unassigned rentals
in the simulation runs is small (average 1.2%, at most 2.8%),
and differs very little between D-VASS and VASS. An inter-
esting aspect of these results is the apparent overall increase in
scheduling difficulty over the course of the simulation period,
as indicated by the general upward trend in the numbers of
unassigned rentals, with a marked peak in this respect between
days 22 and 28. This pattern is reflected also in the computa-
tional times (Figure 3), and to some extent in the revenue plots
(Figure 2), where there is an inverse dip corresponding with
the peak in unassigned rentals.

Total and net revenues are shown in Figure 2; note that
the revenues and costs shown here are provided for illus-
trated purposes only and bear no relation to dollar values
used by THL. Because of the close relationship between
revenue and number of assigned rentals, the differences
between the revenue obtained from the two modules were
less than 0.5% in each case. The differences with respect to
net revenue—defined as revenue minus costs—are somewhat

greater than for raw revenue, due to differences in costs.
Here the results from VASS are superior in nearly every case
to those from D-VASS, as one would expect, with significant
exceptions only at days 20 and 23. These apparent anomalies
can be explained by the differences between the objective
functions applied in the two algorithms, as discussed above.
Overall, the most interesting result here is the ability of
D-VASS to maintain the schedule in a near-optimal state
between runs of the more exhaustive optimisation procedure
embodied in VASS.

Figure 3 compares Central Processor Unit (CPU) times
for the two procedures. For D-VASS the daily value shown
here is the total time elapsed time consumed in all D-VASS
operations during the day (including background improve-
ment), while for VASS the value shown is simply the elapsed
time for the nightly run of the model. These plots show
that VASS’s CPU requirement is less than one-fifth that of
D-VASS throughout the simulation period. However given
that D-VASS’s execution was spread out through each
working day when—with a dedicated hardware platform
for schedule optimisation—there is no other demand on the
system, these times still represent less than 5% CPU util-
isation. It is notable also that in both cases the CPU time
appears to be dependent more on the ‘difficulty’ of the prob-
lems addressed (see the preceding discussion of unassigned
rentals), than on problem size as such (eg total bookings in
the system).

RM algorithms

Revenue management is concerned with the formulation
of profit-maximising pricing policies, not merely with

1140 Journal of the Operational Research Society Vol. 61, No. 7

0

100

200

300

400

500

600

700
C

P
U

 t
im

e
 (

s
e
c
)

DVASS - total elapsed time per day

VASS - total elapsed time per run

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Date

Figure 3 Simulation tests: CPU times.

operational tasks such as planning schedules. For example,
with respect to a rental-request r , the scheduling task is
concerned with the implementation of r ; but from an RM
perspective the more pertinent questions are whether r should
be accepted, and if so, at what price. The network-flow formu-
lation provides a convenient basis for investigating these
questions. In the investigation reported here it is assumed
that each customer responds to a specific, individually priced
offer, and that customers can be grouped into classes, each
customer class having some specified upper limit on what
they are willing to pay (per day) for a rental.

We consider a simplified situation where there is only one
vehicle type and a single location, turnaround times are zero,
and all rental requests occur on a single day, ‘today’. If we
knew exactly how many customers of each type would be
requesting rentals between today and the day of the rental,
we would accept only the most profitable |V | rentals (where
V is the set of available vehicles) and refuse the rest. Although
a deterministic approach of that sort is obviously impossible,
we can use predictions of future demand to estimate the profit
that could be obtained from a given number of vehicles if we
serviced only the highest-paying customers.

The predictive analysis then focusses on the calculation of
a cut-off price; that is, we accept rentals only from customers
willing to pay at least this amount. The cut-off price depends
on the number of unassigned vehicles and the time remaining
during which more customers may arrive, and thus is

represented in aggregate as a pricing matrix (see Figure 4).
This matrix specifies for each day (prior to the departure day)
what the price should be depending on how many vehicles
are still available. An obvious but important property of such
a pricing matrix is the decline in prices as the number of
available vehicles increases.

Outlined below are two alternative techniques for incorpo-
rating such prices into the network-flow model. In each case
substitutions are not allowed, and a rental over multiple days
is modelled by defining separate rentals on successive days.

Location-dependent pricing: A price matrix is calculated for
each location based on the expected value of rentals departing
that location. The idle arcs in the network are split into many
parallel idle arcs, each with a capacity of one, and with the cost
of the i th arc on day t given by the negative value of the price
matrix for i vehicles remaining with t days of lead time. In the
optimal solution, any idle vehicle collects a profit equivalent
to the expected revenue to be gained from the vehicle during
the time that it is idle. The solution may include relocations to
pre-position vehicles for expected rentals at more ‘profitable’
locations. In practice this could provide the opportunity to
accommodate lucrative last-minute bookings at locations that
are short of vehicles.
Fleet-based pricing: By ignoring the locational attributes of
rentals, the whole fleet can be treated as a single pool of
vehicles. We introduce a dummy location ‘anywhere’, so as to

AT Ernst et al—Dynamic scheduling of recreational rental vehicles 1141

 5
 10

 15
 20

 25
 30

 35
 40

 0
 10

 20
 30

 40
 50

 60
 70

 80
 90

 100

0
50

100
150
200
250
300

300
200
150
100

Vehicles remaining

Days before departure

Figure 4 Minimum prices for today’s rentals, from randomised data. Price is determined by the number of vehicles still available and
the number of days remaining before departure. Expected demand comprises four customer classes paying $100 to $300, the fleet size
is 40 vehicles, and the booking horizon is 100 days.

capture the total set of vehicles available anywhere. Idle arcs
with negative costs from the pricing matrix are added between
successive nodes of ‘anywhere’, while all other locations have
zero-cost idle arcs. Relocation arcs to and from the other
nodes in the network are connected to the ‘anywhere’ nodes.
The costs and durations of these arcs are sufficiently high that
a vehicle cannot be relocated faster or at lower cost by going
through ‘anywhere’ nodes than through a direct relocation.
Hence in this model a vehicle collects a ‘revenue management
bonus’ only along idle arcs to ‘anywhere’ if the arc has a
considerable duration. This reflects the fact that when most
rentals are for periods of a week or more, there is limited
value in making a vehicle available for only a day or two.

The procedure to decide whether a given rental should be
accepted is the same in both cases. An arc representing the
new rental is added to the network with lower bound of zero
and upper bound of one, and the flow is re-optimised. The
rental should be accepted only if the new optimal solution has
a unit of flow across the new arc. A very quick approximation
can be obtained by using dual prices to estimate the change
in objective due to the new arc and calculating a shortest-
flow augmenting path to ensure feasibility. This is similar in
principle to the way bookings are added in the assignment
model described earlier.

RM—test results

To validate the approach outlined above, we have carried out
some simple numerical experiments. We present results from
scenarios involving a single vehicle type and randomly gener-
ated customer arrivals from four classes of customers: Budget

($100/day), Discount ($150/day), International ($200/day),
and Full ($300/day). We refer to the consequent distribution
of rental requests in any given case as the historical demand,
and to a randomised re-generation of requests with the same
distribution as instantiated demand. This is used to distinguish
between the apparent demand used for planning purposes
and the ‘actual’ demand by which the effectiveness of the
planning is evaluated. The distributions were generated such
that rental requests from the lower-paying customers and for
longer durations are biassed to generally arrive in the earlier
part of the booking period.

We tested the randomised scenarios with the following
algorithms:

Non-RM: This is the base case: rental requests are accepted
whenever they can feasibly be included in the
schedule. The results from the other scenarios are
reported in terms of a percentage improvement in
profit over this case.

L-D: Pricing matrices for each location are calcu-
lated using the Location-dependent method with
historical data. The simulation is based on instan-
tiated demand.

F-B: A single pricing matrix is calculated using the
Fleet-based method with historical data. The
simulation is based on instantiated demand.

UB: An upper bound on performance is obtained
through retrospective optimisation, that is, by
determining the rental requests that we would
accept if we had perfect foreknowledge of all
rental requests and customers of the instantiated
demand.

1142 Journal of the Operational Research Society Vol. 61, No. 7

Table 1 Improvements in revenue using RM methods, relative
to the Non-RM base case

|B| |L| |V | UB (%) L-D (%) F-B (%)

500 3 51 17.4 6.3 14.0
500 5 58 19.0 8.6 14.8
500 10 60 19.9 11.9 15.0
1000 3 106 16.0 3.3 12.9
1000 5 105 19.3 6.3 13.8
1000 10 108 18.9 8.8 14.1

Table 2 Improvements in revenue using RM methods, with
less-than-expected demand

|B| UB (%) L-D (%) F-B (%)

900 11.4 5.7 6.8
800 8.4 3.9 2.8
700 5.1 2.3 −1.2
600 3.7 1.5 −2.3

The results are shown in Table 1: |B| is the number of rental
requests, |L| the number of locations, and |V | the number
of vehicles in the fleet. The results given are the average
percentage improvement in revenue over the base case, from
tests with five randomly generated 100-day scenarios with
varying numbers of locations, rental requests, and vehicles.
The fleet size is randomly generated based on the number of
rental requests, in such a way that demand always exceeds
supply.

These results show that RM can yield significant improve-
ments in profitability. It is surprising that the Fleet-based
approach appears to perform better than the Location-
dependent method, although the difference becomes less
pronounced as the number of locations increases. The
improvements achieved using the Fleet-based approach are
not far from the respective upper bounds, indicating that
there would be little to gain through the use of more elaborate
methods.

What impact does the accuracy of the forecast have on the
effectiveness of the RM methods? We have investigated this
question by running simulations with demand 10–40% less
than the forecast (ie historical) data used to calculate prices.
This simulates the case where an unexpected downturn in
tourism or other economic conditions has a negative impact
on demand—the opposite case is much less of an issue, since
in periods of unexpectedly high demand the fleet be fully
utilised, albeit with perhaps somewhat less profit than if the
increase in demand had been anticipated. Each test scenario
involved 128 vehicles and 10 locations over a period of
100 days. The results (see Table 2) indicate that RM can
yield substantial benefits to the fleet operator, even with
inaccurate forecasts. Of the two methods, it appears that the
Location-dependent procedure is more robust with respect to
errors in the forecast of the kind modelled here.

Conclusions

In this paper we have defined a significant and complex
problem arising from current practice in recreational vehicle-
rental operations, and we have presented assignment and
network-flow algorithms to solve the problem.We have shown
how the assignment approach can be applied to the problem
in a dynamic context, and we have explored the use of the
network-flow algorithm for RM purposes.

The assignment and network-flow algorithms described in
this paper are now established as vital elements of THL’s
rental operations (Ernst et al, 2007b), embodied in the
D-VASS and VASS modules (see the outline of computa-
tional tests, above). D-VASS uses the assignment algorithms
to support THL’s reservations system. D-VASS answers
availability queries submitted online by reservations staff
and inserts confirmed rentals into the current schedule, while
running an improvement procedure as a background process.
The static task is carried out by the VASS module, which
is based on the network-flow algorithm. VASS is invoked
each night to rebuild the schedule de novo, correcting sub-
optimalities introduced during the day.

The computational tests demonstrate the effectiveness of
the software in managing a full-scale schedule at optimal
or near-optimal efficiency, and indicate the reliability of the
D-VASS module in handling incremental changes to the
schedule without substantially impairing its efficiency. THL
estimates that the systems described here have produced
an improvement in fleet utilisation of approximately 20%
with total direct savings amounting to more than 5% of the
company’s AUD4 million annual operating costs. Besides
these direct impacts on operational efficiency, VASS and
D-VASS have yielded greatly improved flexibility in the
management of the rental fleet and in the company’s ability
to meet the desires of customers.

The results of the RM experiments show that the proposed
approach could yield significant further improvements in prof-
itability. To gain confidence that the estimated benefits could
be achieved in practice, a more comprehensive study would
be required, taking into account issues such as competition,
leakage between customer classes, cancellations, prediction
and monitoring techniques, and other considerations that lie
beyond the scope of this paper.

References

Ahmed A and Poojari C (2008). An overview of the issues in the
airline industry and the role of optimization models and algorithms.
J Opl Res Soc 59: 267–277.

Bellman R (1958). On a routing problem. Q Appl Math 16: 87–90.
Botimer T and Belobaba P (1999). Airline pricing and fare product

differentiation: A new theoretical framework. J Opl Res Soc 50:
1085–1097.

Clarke L, Johnson E, Nemhauser G and Zhu Z (1997). The aircraft
rotation problem. Ann Opns Res 69: 33–46.

AT Ernst et al—Dynamic scheduling of recreational rental vehicles 1143

Cormen TH, Leiserson CE and Rivest RL (1989). Introduction to
Algorithms. The MIT Electrical Engineering and Computer Science
Series. The MIT Press: Cambridge, Massachusetts.

Currie R and Salhi S (2003). Exact and heuristic methods for a full-
load, multi-terminal, vehicle scheduling problem with backhauling
and time windows. J Opl Res Soc 54: 390–400.

Dell’Amico M and Toth P (1999). Algorithms and codes for dense
assignment problems: The state of the art. Discrete Appl Math
100(1–2): 17–48.

Desaulniers G, Lavigne J and Soumis F (1998). Multi-depot vehicle
scheduling problems with time windows and waiting costs. Eur J
Opl Res 111: 479–494.

Dijkstra E (1959). A note on two problems in connexion with graphs.
Numer Math 1: 269–271.

Dumas Y, Desrosiers J and Soumis F (1991). The pickup and delivery
problem with time windows. Eur J Opl Res 54: 7–22.

Engquist M (1982). A successive shortest path algorithm for the
assignment problem. Infor 20: 370–384.

Ernst A, Horn M, Kilby P and Krishnamoorthy M (2007a). Static
and real-time algorithms for recreational vehicle fleet scheduling.
Technical Report 2007/46, CSIRO Mathematical and Information
Sciences.

Ernst A, Horn M, Kilby P, Krishnamoorthy M, Degenhardt P and
Moran M (2007b). Static and dynamic order scheduling

for recreational rental vehicles at Tourism Holdings Limited.
Interfaces 37: 334–341.

Fink A and Reiners T (2006). Modeling and solving the short-term
car rental logistics problem. Transport Res E 42: 272–292.

Ford L and Fulkerson DR (1962). Flows in Networks. Princeton
University Press: Princeton, NJ.

Gopalan R and Talluri K (1998). Mathematical models in airline
schedule planning: A survey. Ann Opns Res 76: 155–185.

Hertz A, Schindl D and Zufferey H (2009). A solution method for
a car fleet management problem with maintenance constraints.
J Heuristics DOI: 10.1007/S10732-008-9072-4.

Ioachim I, Desrosiers J, Dumas Y, Solomon MM and Villeneuve D
(1995). A request clustering algorithm for door-to-door
handicapped transportation. Transport Sci 29: 63–78.

Pachion J, Iakovou E, Ip C and Aboud R (2003). A synthesis of
tactical fleet planning models for the car rental industry. IEE Trans
35: 907–916.

Savelsbergh M and Sol M (1998). DRIVE: Dynamic routing of
independent vehicles. Opns Res 46: 474–490.

Yeoman I, Ingold A and Kimes S (1999). Yield management: Editorial
introduction. J Opl Res Soc 50: 1083–1084.

Received February 2008;
accepted April 2009 after one revision

