
Hierarchical Diagnosis of Multiple Faults

Sajjad Siddiqi and Jinbo Huang

National ICT Australia and Australian National University

Canberra, ACT 0200 Australia

{sajjad.siddiqi, jinbo.huang}@nicta.com.au

Abstract

Due to large search spaces, diagnosis of combina-
tional circuits is often practical for finding only sin-
gle and double faults. In principle, system mod-
els can be compiled into a tractable representation
(such as DNNF) on which faults of arbitrary cardi-
nality can be found efficiently. For large circuits,
however, compilation can become a bottleneck due
to the large number of variables necessary to model
the health of individual gates. We propose a novel
method that greatly reduces this number, allowing
the compilation, as well as the diagnosis, to scale
to larger circuits. The basic idea is to identify
regions of a circuit, called cones, that are domi-
nated by single gates, and model the health of each
cone with a single health variable. When a cone
is found to be possibly faulty, we diagnose it by
again identifying the cones inside it, and so on, un-
til we reach a base case. We show that results com-
bined from these hierarchical sessions are sound
and complete with respect to minimum-cardinality
diagnoses. We implement this method on top of
the diagnoser developed by Huang and Darwiche
in 2005, and present evidence that it significantly
improves the efficiency and scalability of diagnosis
on the ISCAS-85 circuits.

1 Introduction

In this work we consider fault diagnosis of combinational cir-
cuits, where the observed (abnormal) input and output values
of a circuit, together with its implementation, are given to a
diagnosis engine, which finds possible sets of faulty gates that
explain the observation.

A diagnosis tool implementing a model-based approach
was recently presented in [Huang and Darwiche, 2005],
where systems to be diagnosed are modeled as propositional
formulas in conjunctive normal form (CNF), which are then
compiled into decomposable negation normal form (DNNF)
[Darwiche, 2001]. This tool, which we shall refer to as HD05,
was shown particularly to improve in efficiency and scalabil-
ity over an earlier tool [Torta and Torasso, 2004] based on
compiling system models into ordered binary decision dia-
grams (OBDD) [Bryant, 1986].

¬¬¬¬okX ∨∨∨∨ ¬¬¬¬A ∨∨∨∨ ¬¬¬¬C

¬¬¬¬okX ∨∨∨∨ A ∨∨∨∨ C

¬¬¬¬okY ∨∨∨∨ B ∨∨∨∨ ¬¬¬¬D

¬¬¬¬okY ∨∨∨∨ C ∨∨∨∨ ¬¬¬¬D

¬¬¬¬okY ∨∨∨∨ ¬¬¬¬B ∨∨∨∨ ¬¬¬¬C ∨∨∨∨ D

C
DA

Y
X

B

Figure 1: A circuit and its CNF encoding.

Consider the example in Figure 1, reproduced from [Huang
and Darwiche, 2005]. HD05 models the circuit as a proposi-
tional formula where each signal of the circuit translates into
a propositional variable (A, B, C, D). For each gate an extra
variable (okX, okY) is introduced to model its health. The
propositional formula is such that when all health variables
are true, the remaining variables are constrained to model
the functionality of the gates. For instance, the first two
clauses shown in the figure are equivalent to the sentence
okX ⇒ (A ⇔ ¬C), modeling the health of the inverter X .

Given a (typically abnormal) valuation of the inputs and
outputs of the circuit, called an observation, a (consistency-
based) diagnosis is then a valuation of the health variables
that is consistent with the observation and system model. For
instance, given the observation ¬A ∧ B ∧ ¬D, one diagno-
sis is ¬okX ∧ okY , meaning that the inverter X is broken
and the and-gate is healthy. It is known that once the system
model is compiled into DNNF, one can compute a compact
representation of all diagnoses in time linear in the size of the
DNNF [Darwiche, 2001].

A major advantage of HD05 is that DNNF is known to
be a strictly more succinct representation than OBDD and
supports efficient algorithms that compute diagnoses of arbi-
trary cardinality as well as minimum cardinality [Darwiche,
2001]. When this approach is applied to large circuits, how-
ever, compilation of system models into DNNF can become
a bottleneck due to large numbers of health variables.

We propose a solution to this problem based on hierar-
chical diagnosis. We start with an abstraction of the circuit
where certain regions of the circuit, called cones, are “carved
out” based on a structural analysis. The abstract model, being
generally much simpler, allows larger circuits to be compiled
and their diagnoses computed. The cones are diagnosed only
when they are identified by the top-level diagnosis as possibly
faulty. We discuss the intricacies involved in properly diag-
nosing the cones so that redundancy is avoided and results

IJCAI-07
581

Figure 2: A circuit with cones.

combined from the hierarchical diagnosis sessions are sound
and complete with respect to minimum-cardinality diagnoses.

We implement our new approach on top of HD05. Using
ISCAS-85 benchmark circuits, we show that we can now di-
agnose some circuits (with arbitrary fault cardinality) for the
first time. For circuits that can already be handled by HD05,
we also observe a significant improvement in diagnosis time.

2 Notation and Definitions

We shall use the circuit in Figure 2 as a running example. The
numbers shown alongside the gate outputs are values of the
signals, which can be ignored for the moment.

2.1 Circuits, Dominators, and Cones

We use C to denote the circuit as well as the set of gates of
the circuit including the inputs (as trivial gates). We identify
a gate with its output signal. The set of inputs of the circuit
is denoted IC and the set of outputs OC. For example, IC =
{P, Q, R} and OC = {T, U, V } for the circuit in Figure 2.

One may observe that certain regions of this circuit have
only limited connectivity with the rest of the circuit. For
example, the dotted box containing gates {A, D, E, H, P}
is a sub-circuit that contributes a single signal (A) to the
rest of the circuit. The box containing gates {D, H, P} is
another such example. We refer to such a sub-circuit as a
cone (also known as fan-out free formula [Lu et al., 2003b;
2003a]), which we now formally define.

The fan-in region of a gate G ∈ C is the set of all those
gates that have a path passing through G going to some output
gate. The fan-in region of gate A in Figure 2, for example, is
{A, B, D, E, H, P, Q}.

Definition 1. (Dominator) A gate X in the fan-in region of
gate G is dominated by G, and conversely G is a dominator of
X , if any path from gate X to an output of the circuit contains
G [Kirkland and Mercer, 1987].

The notion of cone then corresponds precisely to the set of
gates dominated by some gate G, which we denote by ∆G.
For example, the dotted box mentioned above corresponds to
∆A = {A, D, E, H, P}. From here on, when the meaning is
clear, we will simply use G to refer to the cone rooted at G.

2.2 Abstraction of Circuit

A circuit can be abstracted by treating all maximal cones in it
as black boxes (a maximal cone is one that is either contained
in no other cone or contained in exactly one other cone which
is the whole circuit). For example, cone A can be treated
as a virtual gate with two inputs {P, B} and the output A.
Similarly, cone A itself can be abstracted by treating cone
D as a virtual gate. An abstraction of a circuit can hence
be defined as the original circuit minus all non-root gates of
maximal cones, or more formally:

Definition 2. (Abstraction of circuit) Given a circuit C,
let C

′ = C if C has a single output; otherwise let C
′ be C

augmented with a dummy gate collecting all outputs of Cs.
The abstraction ΘC of circuit C is then the set of gates X ∈
C such that there is a path from X to the output O of C′ that
does not contain any dominator of X other than X and O.

For example, ΘC = {T, U, V, A, B, C}. E �∈ ΘC as E
cannot reach any output without passing through A, which is
a dominator of E. Similarly, ΘA = {A, D, E}. H �∈ ΘA as
its only path to A contains D, which is a dominator of H .

3 DNNF-based Diagnosis

Before presenting our new algorithm we briefly review the
baseline diagnoser HD05 [Huang and Darwiche, 2005],
which is based on compiling the system model (circuit in our
case) from CNF to DNNF [Darwiche, 2001].

DNNF is a graph-based representation for propositional
theories. Specifically, each DNNF theory is a DAG (directed
acyclic graph) with a single root where all leaves are labeled
with literals and all other nodes are labeled with either AND
or OR; in addition the decomposability property must be sat-
isfied: children of any AND-node must not share variables.

Once a system model is converted into DNNF, consistency-
based diagnoses, as well as minimum-cardinality diagnoses,
can be computed in time polynomial in the size of the DNNF
[Darwiche, 2001]. The key is that decomposability allows
nonobservables to be projected out in linear time, and allows
diagnoses computed for children to be combined at a par-
ent AND-node simply by cross-concatenation (note that di-
agnoses computed for children can naturally be unioned at a
parent OR-node).

Our new algorithm aims to improve the efficiency and scal-
ability of this approach in the context of circuit diagnosis. We
will continue to model a circuit as a CNF formula and rely
on DNNF compilation to compute diagnoses. The main in-
novation is a structure-based method to reduce the number
of health variables required for the model and hence the dif-
ficulty of compilation, while maintaining the soundness and
completeness of the diagnoser. In the rest of the paper we will
assume that only minimum-cardinality diagnoses are sought.

4 Hierarchical Diagnosis

The key idea behind our new algorithm is to start by obtain-
ing the abstraction ΘC of a circuit C as defined in Section 2,
and then diagnose C pretending that only gates in ΘC could
be faulty. This is the basic technique that will significantly
reduce the number of health variables required in the system

IJCAI-07
582

model, allowing us to compile and diagnose larger circuits.
Once this top-level diagnosis session finishes, if a gate ap-
pearing in a diagnosis is the root of a cone, which has been
abstracted out, then we attempt to diagnose the cone, in a
similar hierarchical fashion.

Two things are worth noting here before we go into details.
First, cones are single-output circuits and hence the diagno-
sis of cones will alway produce diagnoses of cardinality one.
Second, the diagnosis of a cone is not performed simply with
a recursive call as one may be tempted to expect. Indeed the
later diagnosis sessions are very distinct from the initial top-
level session. The reason has to do with avoiding redundant
computation, which we will discuss later in the section.

We now present in detail our hierarchical diagnosis algo-
rithm, which we will refer to as HDIAG. Pseudocode of
HDIAG is given in Algorithm 1.

4.1 Algorithm

Step 1 (dominators)

HDIAG starts by identifying the nontrivial dominator gates
in the circuit (a trivial dominator is one that dominates only
itself). First the dominators of every gate are obtained. The
dominators of a gate are the gate itself union the intersection
of the dominators of its parents [Kirkland and Mercer, 1987],
which can be found by a simple breadth-first traversal of the
circuit starting from the outputs. During this process the non-
trivial dominators can be identified. FINDDOMINATORS im-
plements this procedure on line 3 of Algorithm 1.

In our example, the dominator sets for T , U , V , A, B, C
are {T }, {U}, {V }, {A}, {B}, {C}, respectively; the domi-
nator set for D is {D, A} and for H is {H, D, A}. It can be
easily seen that the gates T , U , and V are trivial dominators
whereas D and A are nontrivial dominators.

Step 2 (cones and their inputs)

Each nontrivial dominator defines a cone that can be ab-
stracted out. Next we identify the inputs of these cones by
a depth-first traversal of the circuit. Suppose G is a cone. The
inputs IG of G can be found by traversing the fan-in region
of G so that if we reach either an input of the circuit or a
gate that does not belong to ∆G, we add it to IG and back-
track. FINDCONES implements this procedure on line 3 of
Algorithm 1.

For cone D in our example, we traverse the fan-in region
of D in the order D, H, P, B. Gates P and B are added to
the inputs of cone D. We backtrack from B as B �∈ ∆D. The
inputs of cone D are thus {P, B}.

Step 3 (top-level diagnosis)

The rest of the algorithm proceeds in two phases. In the first
phase we have the (abnormal) observation for the whole cir-
cuit. We first propagate the values of the inputs bottom-up,
setting the (expected) value of each internal gate of the cir-
cuit. These values are saved for reference later. The observed
outputs of the circuit are then set which may be abnormal.
PROPAGATEINPUTS, SAVEVALUES, and SETOBSOUTPUTS

on lines 4 and 5 of Algorithm 1 implement these procedures.
The health of the abstraction of the circuit, ΘC, is then

diagnosed. This is achieved by associating a health vari-
able with every gate in ΘC. ΘC contains all the domina-

Algorithm 1 HDIAG : Hierarchical Diagnosis Algorithm

function HDIAG (C, Obs)
inputs: {C: circuit/set of gates}, {Obs: set of <gate,bool>}
output: {set of sets of gates}
local variables: {OC, IC,Π, T : set of gates},{Λ,D:set of sets
of gates}, {Ω :<CNF, set of gates>}

1: OC ← OUTPUTS(C)
2: IC ← INPUTS(C)
3: FINDDOMINATORS(OC), FINDCONES(OC)
4: PROPAGATEINPUTS (C, IC,Obs), SAVEVALUES (C)
5: SETOBSOUTPUTS (OC,Obs)
6: T ← TRAVERSE ΘC (OC, IC), ATTACHOKS(T)
7: Ω ← GENMODEL(C,OC ∪ IC)
8: Λ ←CALLHD05(Ω,Obs), ORDERBYDEPTH(Λ)
9: RESTOREVALUES ()

10: D ← φ
11: for all Π ∈ Λ do
12: D ← D ∪ FINDEQDIAGNOSES(Π)
13: return D

Algorithm 2 TRAVERSE ΘC : Traverses Top Level

function TRAVERSE ΘC (OC, IC)
inputs: {OCIC, set of gates}
output: {set of gates}
local variables: {Q, K,T: set of gates}, {Y, O} : gate

1: O ← SINGLEOUTPUT(OC)
2: Q ← {O}, T ← φ
3: while ¬ISEMPTY (Q) do
4: Y ← POP(Q)
5: if Y �∈ IC then
6: T ← T∪ {Y }
7: if ¬ISDOMINATOR (Y) || Y == O then
8: K ← CHILDREN (Y), Q ← Q ∪ K

9: return T

tors of the top-level hierarchy plus all the non-dominators
that sit between those dominators and the outputs OC of the
circuit. TRAVERSE ΘC traverses the top-level hierarchy of
the circuit. SINGLEOUTPUT on line 1 of Algorithm 2 im-
plements the attachment of dummy gate described in Defi-
nition 2. TRAVERSE ΘC is implemented so that as soon as
it encounters an input of the circuit or a nontrivial domina-
tor (other than root, see line 7 of Algorithm 2), it backtracks
(the inputs are excluded as they are assumed to be healthy).
ATTACHOKS associates health variables with each gate in
this hierarchy.

Now we create an abstract system model similar to the full
model used in [Huang and Darwiche, 2005]. The abstract
model contains a system description, in CNF, over the set of
observables (IC ∪OC) and nonobservables (C\(IC ∪OC)).
The model is generated by the function GENMODEL and re-
turned as Ω. Note that only the clauses representing the gates
marked by ATTACHOKS will have additional health variables.
HD05 is then called with Ω and the observation to perform the
diagnosis. The diagnoses thus obtained will be referred to as
top-level diagnoses. If a nontrivial dominator G ∈ ΘC is re-
ported to be possibly faulty, we then enter the second phase
by diagnosing the cone under G.

For example, in Figure 2, given the inputs, all the outputs
of the circuit should be 1, but, all of them are 0 in our ob-

IJCAI-07
583

Algorithm 3 FINDEQDIAGNOSES : Diagnosis of Cones

function FINDEQDIAGNOSES (Π)
inputs: {Π, set of gates}
output: {set of sets of gates}
local variables: {E,Λ: set of sets of gates},
{P, R,C, IX,Q, T,S: set of gates}, {X, Y : gate}, {Ω :<CNF,
set of gates>}, {Obs: set of <gate,bool>}

1: E ← {Π}, D ← {Π}
2: while ¬ISEMPTY(E) do
3: P ← POP(E)
4: PROPAGATEFAULT (P)
5: for all X ∈ P such that X is a cone and is not the whole

circuit do
6: if X �∈ Q then
7: Q ← Q ∪ {X}
8: C ← TRAVERSECONE (X), IX ← INPUTS (C)
9: T ← TRAVERSE ΘC ({X}, IX), ATTACHOKS (T)

10: Ω ← GENMODEL (C, {X} ∪ IX)
11: Obs ← VALUATION({X} ∪ IX)
12: Λ ← CALLHD05 (Ω, Obs), SETDIAGS(X,Λ)
13: else
14: Λ ← DIAGS(X)
15: for all R ∈ Λ do
16: Y ← POP (R)
17: if X �= Y then
18: S ← SUBSTITUTE (X, Y,P)
19: E ← E ∪ {S}, D ← D ∪ {S}
20: RESTOREVALUES ()
21: CLEARDIAGS(Q)
22: return D

servation. We introduce health variables for the set of gates
ΘC\IC = {T, U, V, A, B, C}, create a model of the abstrac-
tion of the circuit, and pass the model along with the obser-
vation ¬T ∧ ¬U ∧ ¬V ∧ P ∧ Q ∧ R to HD05. One of the
diagnoses returned by HD05 is ¬okA∧¬okB ∧¬okC or, to
use an alternative notation, {A, B, C} (in the rest of the paper
we will use this latter notation expressing a diagnosis as a set
of faulty gates). Since A is a cone, we enter the second phase.

Step 4 (diagnosis of cones)

Suppose that Π = {X, G1, . . . , Gn} is a diagnosis found in
the top-level phase and that X ∈ Π is (the root of) a cone.
It should be clear that given the faulty output b of X , if there
is a gate Y ∈ ∆X that, when assumed faulty, permits the
same value b at X , then replacing X with Y will yield a valid
global diagnosis. This way we try to expand our top-level
diagnoses in the procedure FINDEQDIAGNOSES (line 12 of
Algorithm 1), given in Algorithm 3.

Mainly, for each cone X in each top-level diagnosis Π,
we find a diagnosis for X hierarchically. We identify X as a
sub-circuit with the single output X and the inputs IX. The
minimum cardinality of diagnoses for X is always one as we
mentioned earlier. We then replace X with its singleton di-
agnoses, in Π, one by one, to produce new global diagnoses.
This process is iterated until we reach a base case (no cones
left to be diagnosed). We treat each Π and all diagnoses gen-
erated from it as a single class of diagnoses and use it to avoid
redundant computation (explained in Section 4.2).

Cone X could be diagnosed as is done for the whole circuit
but there is more to be done in order to find correct diagnoses.

Specifically, we need a set of values for the inputs and output
of cone X as an observation to pass to HD05. First of all we
restore expected values of the gates in the circuit (line 9 of
Algorithm 1) before we call FINDEQDIAGNOSES.

We want to diagnose cone X under the assumption that all
of the gates Gi ∈ Π are also faulty, so we need to propa-
gate the fault effect of all Gi into the sub-circuit. Since faults
in circuits propagate bottom-up, we put the set of gates in
each diagnosis in decreasing order of their depth in the circuit
(ORDERBYDEPTH on line 8 of Algorithm 1). A fault is pro-
cessed simply by flipping the output of the faulty gate and
propagating its effect. This is done for each G ∈ Π separately
in the order in which they appear in Π. This has the desired
effect of setting an observation across cone X (IX ∪ {X})
that is consistent with the observation of the overall circuit.
Cone X is now ready for diagnosis.

Note that, again, only the abstraction ΘX of cone X is di-
agnosed. As we mentioned earlier, however, this is not sim-
ply a recursive call to Algoritm 1, but needs to be handled
differently (Algorithm 3). TRAVERSECONE (line 8) iden-
tifies and returns the set of gates of the cone (i.e., ∆X).
VALUATION returns a set of <gate, bool> pairs which repre-
sents the currently assigned values to the set of gates {X} ∪
IX passed as input (line 11). The returned set serves as an
observation across the cone. Given the cone, its observables
and nonobservables, the health of its abstraction is diagnosed
using HD05 and the set of singleton diagnoses Λ found is
saved (line 12). These diagnoses can be retrieved by DIAGS

(line 14). SUBSTITUTE (X, Y,P) generates a new diagnosis
by replacing X with Y in P (line 18). Finally, we clear these
diagnoses before returning from the function (line 21).

The diagnosis of cones is similar to that of the overall cir-
cuit given in Algorithm 1. There are, however, a few details
worth mentioning: (i) Every cone is diagnosed hierarchically,
i.e., for a cone X we diagnose only the top-level hierarchy
ΘX of X . (ii) In a single call to FINDEQDIAGNOSES every
cone is diagnosed once (ensured by line 6 of Algorithm 3).
This is sufficient and will be explained later. (iii) Once a new
diagnosis is generated by substitution, it is added to the set
E for further processing (line 19 of Algorithm 3). (iv) The
fault effect of a diagnosis is propagated before the diagnosis
is processed, and undone afterwards. (v) As substitutions are
made, the gates in a newly generated diagnosis may not have
the depth order discussed above; however, we do not re-order
them for reasons that will be clear soon.

Continuing with our example, we reorder {A, B, C} as
{B, A, C}. We flip B to 0, propagate the effect that flips
E to 0 and D to 1. A remains 1 at this stage; we then flip A
to 0 (gate C is irrelevant to the diagnosis of cone A). Note
that the correct output of cone A should be 1 given its in-
puts P (1) and B(0). We place health variables at the gates
ΘA\IA = {A, D, E}, generate a model for cone A, and
pass it to HD05 with the observation ¬A ∧ P ∧ ¬B, which
returns three diagnoses of cardinality one: {A}, {D}, {E}.
Note that {A} is a trivial diagnosis. Substituting D and E
for A in the top-level diagnosis {B, A, C}, we get two new
diagnoses: {B, D, C}, {B, E, C}.

IJCAI-07
584

Figure 3: Redundancy scenarios.

4.2 Avoiding Redundancy

Since cones can be shared among different diagnoses, a cone
is potentially visited more than once before all final diagnoses
are computed. It may or may not be redundant to diagnose
one cone multiple times. There are three cases to consider:

• Suppose that in a top-level diagnosis, a cone S appears
in two diagnoses {S, T } and {S, U}, shown in Fig-
ure 3a. It can be seen that neither T nor U lies in the
fan-in region of cone S. Thus no fault at T or U can af-
fect values at the inputs or output of cone S. This means
that diagnosis of S can be obtained once and can be used
in the processing of both of the top-level diagnoses. This
case is currently not implemented in our code.

• In Figure 3b, both T and U lie in the fan-in region of the
cone S. Thus faults at T or U can affect values at the
inputs and output of cone S. However, if we consider a
fault at T and its effect across S (at the inputs and output
of S), it may not be same as a fault at U and its effect
across S. Thus the diagnosis of cone S during the pro-
cessing of {S, T } may be completely different from that
during the processing of {S, U}. Hence cone S has to
be diagnosed twice in this case. This is why we clear the
diagnoses before we return from FINDEQDIAGNOSES

in Algorithm 3.

• In Figure 3c, we assume that only {S, T } is a top-level
diagnosis whereas {S, U} is a diagnosis obtained during
the processing of {S, T } such that {U} is a cardinal-
ity one diagnosis for cone T . Hence the value seen at
the output of T due to a fault at T would be the same
as if seen due to a fault at U . Therefore, the effect of
both faults, individually, across S would be the same
and hence S needs to be diagnosed only once for both
diagnoses. This idea extends to any level of substitution
when diagnosing cone U further yields new diagnoses.
For this reason we do not reorder the gates in the newly
generated diagnoses (in FINDEQDIAGNOSES) accord-
ing to their depth. This case is taken care of on line 6 by
the if condition in FINDEQDIAGNOSES.

5 Soundness and Completeness

We now prove the following theorem, relying on the fact that
the baseline diagnoser HD05 has the same property.

Theorem 1. HDIAG is sound and complete with respect to
minimum-cardinality diagnoses.

Proof. Let C be the circuit in question. We show that every
diagnosis found by HDIAG is a minimum-cardinality diagno-

sis (soundness) and every minimum-cardinality diagnosis is
found by HDIAG (completeness).

Soundness: It should be clear that all diagnoses found by
HDIAG are in fact valid. Moreover, they all have the same
cardinality because (1) all top-level diagnoses found in Step 3
have the same cardinality by virtue of HD05 and (2) substi-
tutions in Step 4 do not alter the cardinality as cones whose
roots are in ΘC cannot overlap (i.e., two gates in a top-level
diagnosis cannot be substituted by the same gate in Step 4).

Hence it remains to show that the cardinality of these diag-
noses, call it d, is indeed the smallest possible. Suppose, on
the contrary, that there exists a diagnosis Π of a smaller car-
dinality: |Π| < d. Now, let each gate in Π be replaced with
its highest dominator in the circuit to produce Π

′. Clearly,
(i) Π

′ remains a valid diagnosis, (ii) Π
′ ⊆ ΘC, and (iii)

|Π′| ≤ |Π|. (i) and (ii) imply that Π
′ is a diagnosis for the

abstraction ΘC. (iii) implies |Π′| < d. This means that the
top-level diagnoses for ΘC found in Step 3 are not of mini-
mum cardinality, contradicting the soundness of the baseline
diagnoser HD05.

Completeness: Let Π be a diagnosis of minimum cardi-
nality d. Let each gate in Π be replaced with its highest dom-
inator in the circuit to produce Π

′. Again, we have (i) and (ii)
as above, and moreover |Π′| = d. This implies that Π

′ will
be found by HDIAG in Step 3 by virtue of the completeness
of HD05 in diagnosing ΘC. Π itself will then be found by
substitutions in Step 4 by virtue of the completeness of the
diagnosis of cones (which can be easily established by induc-
tion as all diagnoses for cones are of cardinality one).

6 Experimental Results

In order to compare the efficiency and scalability of our ap-
proach with that of [Huang and Darwiche, 2005], we ran both
systems on a set of ISCAS-85 circuits using randomly gener-
ated diagnostic cases. For each circuit, we randomly gener-
ated a set of input/output vectors accordingly to the correct
behavior of the circuit. We then randomly flipped k outputs,
with k ranging from 1 to 8, in each input/output vector to get
an (abnormal) observation (the minimum cardinality of the
diagnoses was often close to the number of flipped outputs).
All experiments were conducted on a 3.2GHz Pentium 4 with
1GB of RAM running on Diskless Linux, and a time limit of
1 hour was imposed on each experiment.

The results are given in Table 1. The fourth column shows
the number of health variables introduced by HDIAG for the
top-level diagnosis. Recall that the baseline approach HD05
requires a health variable for every gate. It is clear that
the proposed technique significantly reduces the number of
health variables required. We also observe that for most cir-
cuits, HDIAG was able to solve a significantly larger num-
ber of cases than HD05. In particular, HD05 could not solve
any of the cases for the last two circuits, where HDIAG suc-
ceeded. In the last two columns of the table, we also com-
pare the running times of the two systems on cases they both
solved. The new approach clearly results in better efficiency.

Finally, we note that both programs reported exactly the
same set of diagnoses for each case they both solved, as we
expect given Theorem 1.

IJCAI-07
585

circuit gates cones health vars cases cases solved time on common cases
for HDIAG HDIAG HD05 HDIAG HD05

c432 160 64 59 700 700 700 1.104 8.362
c499 202 90 58 300 299 297 3.054 9.709
c880 383 177 77 200 190 141 37.014 44.422
c1355 546 162 58 100 80 57 78.266 177.406
c1908 880 374 160 100 100 0 - -
c2670 1193 580 167 44 27 0 - -

Table 1: Comparing HDIAG and HD05 on ISCAS-85 circuits.

7 Related Work

In [Smith et al., 2004], the authors used satisfiability (SAT)
solvers to find single and double stuck-at faults in ISCAS-85
circuits. Multi-plexers are injected ahead of each gate such
that the selection line of the multi-plexer chooses between
the original and the faulty output line from a particular gate.
Thus a satisfying assignment for the propositional theory pro-
jected on the multi-plexers is actually a diagnosis. The SAT
solver is restarted with an added clause to find multiple diag-
noses. The cardinality of the diagnoses is enforced through
an additional adder circuit involving the selection lines with
a comparator to compare against the desired cardinality. To
improve the performance, the task is divided into two phases.
In the first phase, multi-plexers are injected only at the struc-
tural dominators of circuit. In the second pass, the faults are
found in their respective fan-in cones. This way of exploit-
ing the circuit structure is similar to our approach. However,
[Smith et al., 2004] reports results on only single and double
stuck-at faults.

In [Feldman and van Gemund, 2006] a hierarchical diag-
nosis algorithm is developed and tested on reverse engineered
ISCAS-85 circuits [Hansen et al., 1999] that are available
in high-level form. The idea is to decompose the system
into hierarchies in such a way as to minimize the sharing
of variables between them. This can be done for well en-
gineered problems and they have formed hierarchies by hand
for ISCAS-85 circuits. The system is represented by a hier-
archical CNF where each hierarchy is represented by a tra-
ditional CNF. This representation can be translated to a fully
hierarchical DNF or a fully flattened DNF or a partially flat-
tened DNF dictated by a depth parameter. After a hierarchical
DNF is obtained, a hierarchical search algorithm is employed
to find the diagnoses. There are similarities and obvious dif-
ferences between this and our approach. One similarity is that
both approaches aim to reduce the complexity of diagnosis by
exploiting the structural hierarchy of the system to be diag-
nosed. One major difference is that hierarchical DNF is not
decomposable and does not support some of the efficient op-
erations that DNNF supports. We reduce the time and space
complexity of the baseline approach while still computing the
common diagnosis queries efficiently.

8 Conclusions

From the model compilation viewpoint, the first benefit we
gain is that we significantly reduce the number of health vari-
ables needed in the model, allowing the diagnosis to scale to
larger circuits. As a related benefit, some parts of the circuits

may never be analyzed since a cone is only analyzed if it is
part of a diagnosis computed in the higher level. As a third
benefit we can now produce the complete set of minimum-
cardinality diagnoses in a compact form, as a set of top-level
diagnoses, each representing a class of diagnoses that can be
obtained by substitutions. Overall, our approach results in
improved efficiency and scalability as demonstrated against a
recent diagnosis tool on ISCAS-85 circuits.

Acknowledgments

Thanks to Alban Grastien, Jussi Rintanen, Andrew Slater, and
the anonymous reviewers for their feedback on an earlier ver-
sion of this paper. National ICT Australia is funded by the
Australian Government’s Backing Australia’s Ability initia-
tive, in part through the Australian Research Council.

References
[Bryant, 1986] Randal E. Bryant. Graph-based algorithms for

Boolean function manipulation. IEEE Transactions on Comput-
ers, 35(8):677–691, 1986.

[Darwiche, 2001] Adnan Darwiche. Decomposable negation nor-
mal form. Journal of the ACM, 48(4):608–647, 2001.

[Feldman and van Gemund, 2006] A. Feldman and A.J.C van
Gemund. A two-step hierarchical algorithm for model-based di-
agnosis. In AAAI, 2006.

[Hansen et al., 1999] Mark C. Hansen, Hakan Yalcin, and John P.
Hayes. Unveiling the ISCAS-85 benchmarks: A case study
in reverse engineering. IEEE Design and Test of Computers,
16(3):72–80, 1999.

[Huang and Darwiche, 2005] Jinbo Huang and Adnan Darwiche.
On compiling system models for faster and more scalable diag-
nosis. In AAAI, pages 300–306, 2005.

[Kirkland and Mercer, 1987] T. Kirkland and M. R. Mercer. A
topological search algorithm for ATPG. In DAC, pages 502–508,
1987.

[Lu et al., 2003a] Feng Lu, Li-C. Wang, K.-T. (Tim) Cheng, John
Moondanos, and Ziyad Hanna. A signal correlation guided ATPG
solver and its applications for solving difficult industrial cases. In
DAC, pages 436–441, 2003.

[Lu et al., 2003b] Feng Lu, Li-C. Wang, Kwang-Ting Cheng, and
Ric C-Y Huang. A circuit SAT solver with signal correlation
guided learning. In DATE, pages 10892–10897, 2003.

[Smith et al., 2004] Alexander Smith, Andreas Veneris, and Anas-
tasios Viglas. Design diagnosis using Boolean satisfiability. In
ASP-DAC, pages 218–223, 2004.

[Torta and Torasso, 2004] Gianluca Torta and Pietro Torasso. The
role of OBDDs in controlling the complexity of model-based di-
agnosis. In DX, 2004.

IJCAI-07
586

