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We present a new systematic algorithm, energy-directed tree search (EDTS), for exploring the

conformational space of molecules. The algorithm has been designed to reliably locate the global

minimum (or, in the worst case, a structure within 4 kJ mol�1 of this species) at a fraction of the

cost of a full conformational search, and in this way extend the range of chemical systems for

which accurate thermochemistry can be studied. The algorithm is inspired by the build-up

approach but is performed on the original molecule as a whole, and objectively determines the

combinations of torsional angles to optimise using a learning process. The algorithm was tested

for a set of 22 large molecules, including open- and closed-shell species, stable structures and

transition structures, and neutral and charged species, incorporating a range of functional groups

(such as phenyl rings, esters, thioesters and phosphines), and covering polymers, peptides, drugs,

and natural products. For most of the species studied the global minimum energy structure was

obtained; for the rest the EDTS algorithm found conformations whose total electronic energies

are within chemical accuracy from the true global minima. When the conformational space is

searched at a resolution of 1201, the cost of the EDTS algorithm (in its worst-case scenario) scales

as 2N for large N (where N is the number of rotatable bonds), compared with 3N for the

corresponding systematic search.

1. Introduction

The location of stationary points, particularly energy minima,

on the potential energy surfaces of large molecules plays an

important role in computational quantum chemistry. Stan-

dard geometry optimisation routines are typically based on the

Newton–Raphson procedure in which derivatives are fol-

lowed, so as to find the nearest local minimum energy struc-

ture. However, it is well known that any potential energy

surface may contain several local energy minima, many of

which can be many tens (or even hundreds) of kJ mol�1 higher

than the lowest energy conformation. It is therefore important

to take additional steps to identify the global minimum

structure in order to predict accurate thermodynamic and

kinetic quantities. Algorithms for efficiently locating the low-

est energy conformations are therefore of great practical

importance. This paper describes a new type of conforma-

tional searching algorithm, the energy-directed tree search

method, which is designed to combine the accuracy of a full

conformational search routine, such as tree search,1 but at a

significantly reduced computational cost. The algorithm has

been developed with a view to extending the range of mole-

cular systems for which accurate thermochemistry can be

studied.

The most rigorous method for locating the global minimum

is to perform a full conformational search. For most molecular

systems, this would entail the calculation of the potentials for

simultaneous rotations about every bond in the molecule,

yielding a large multi-dimensional potential energy surface

from which the lowest energy structure can be identified. In

practical full search methods (such as tree search1 and variants

such as SUMM2,3 and complementarity4), the torsional angles

are varied at some specified degree of resolution to generate

starting structures for Newton–Raphson geometry optimisa-

tions. The search can be further simplified by rejecting sym-

metry equivalent species and/or ‘‘unreasonable structures’’

(i.e. those having close contacts between non-bonded atoms

and/or, in the case of cyclic structures, failing to satisfy ring

closure constraints). Provided the resolution is fine enough,

and the filtering is not over-zealous, such methods can almost

guarantee the location of every minimum energy structure on

the potential energy surface, and hence allow one to identify

the global minimum with a very high degree of certainty.

Although the need to specify the resolution adds a certain

degree of non-objectivity to such methods, one can normally

make an informed choice, based on chemical knowledge. For

example, in an organic molecule a bond between two sp3
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carbon centres should normally have at most 3 local minima

separated at approximately (though not necessarily exactly)

1201, and this degree of resolution is usually sufficient if one

commences the search from an optimised structure and per-

forms subsequent geometry optimisations on each point. For

problematic cases, a resolution of 601 virtually ensures that

structures are not missed.

When implemented at an appropriate degree of resolution,

full conformational search methods such as tree search are

objective and offer reliable access to the global minimum

energy structure in a finite number of steps. As such, these

methods (either explicitly or implicitly) have been almost

universally adopted in accurate thermochemical studies of

small molecular systems. However, while they are practical

for small systems, such methods suffer from a combinatorial

explosion problem with increasing molecular size. For exam-

ple, at a resolution of 1201, a full conformation search on a

molecule with 2 rotatable bonds might entail the optimisation

of just 9 (32) starting structures, however, with 7 bonds the

conformational space grows to over 2000 (37) starting struc-

tures and with 10 bonds there would be nearly 60 000 (310)

structures to consider. In such cases, a complete search is, of

course, impractical. More generally, such methods scale as

(3601/R)N, where R is the resolution and N the number of

rotatable bonds.

Until recently, the application of high-level quantum-che-

mical methods (i.e. those having ‘‘kcal accuracy’’) has itself

been limited to relatively small systems for which the con-

formational space is small and manageable. However, in

recent years this situation has changed: the increase in avail-

able computer power, and other developments such as parallel

code, linear scaling methods and efficient algorithms, now

allows us to carry out calculations at highly sophisticated

levels of theory for systems having thousands of basis func-

tions. For example, using an ONIOM-based procedure that

sequentially improves large basis set RMP2 calculations to the

G3(MP2)-RAD and then W1 levels of theory, we recently

reported accurate thermochemical calculations on the reac-

tions of trimeric styryl radicals with dithioester compounds

such as SQC(Ph)SC(CH3)2CN.5 However, this work entailed

the laborious task of optimising thousands of starting struc-

tures for the various reactants and products, so as to identify a

small number of global minimum energy structures. In es-

sence, we are now in a situation where the computational

bottleneck is the conformational searching rather than the

high-level single point energy calculations, even though the

former can be reliably performed at much lower levels of

theory. Efforts to extend further the range of systems for which

accurate thermochemistry can be studied are thus dependent

upon the development of reliable methods for searching con-

formational space. This is the aim of the present study.

In the present work, we present a new systematic algorithm

for locating global minimum energy structures, and then

evaluate it for a range of organic molecules for which full

conformational searches have also been performed. It should

be stressed that, unlike many other studies of this kind, our

primary aim is to find an algorithm that reliably locates the

global minimum (or, in the worst case, a structure within 4 kJ

mol�1 of this species) with a very high degree of confidence,

rather than merely locating relatively low energy structures at

an efficient rate. Having satisfied this condition, other desir-

able properties of the algorithm include computational effi-

ciency, objectivity in its implementation, and ease of use. In

what follows, we first outline the principal existing algorithms

and discuss their potential suitability for accurate thermoche-

mical studies, we then describe our new algorithm, and

conclude with computational testing.

2. An overview of current conformational search

methods

The problem of locating global (or even low energy) confor-

mations has long plagued the computational study of large

molecules such as proteins. In such cases, there are billions of

potential conformations and full conformational searches

have been (and probably always will be) impossible. For these

situations, a range of stochastic searching algorithms has been

developed. In addition, there are a limited number of simpli-

fied systematic algorithms, in which attempts have been made

to defeat the combinatorial explosion problem by the limiting

regions of the conformational space that are explored. In the

following we briefly outline the main elements of these differ-

ent approaches, with a view to identifying the most suitable

course for obtaining low energy conformations with a suffi-

ciently high reliability for chemically accurate studies.

Stochastic methods

In general terms, stochastic search methods explore conforma-

tional space through random or semi-random variations to the

coordinates or torsional angles, usually subject to some con-

straints and with some element of bias. The search is stopped

either when an arbitrary number of iterations is performed, or

when the search fails to find new conformers over a certain

number of iterations. Classic examples of stochastic search

methods include the cartesian coordinate stochastic search6 and

the internal coordinate Monte Carlo search.7 Since stochastic

search methods that utilize the energies of the existing con-

formations to bias the sampling have been found to outper-

form purely random searches,8,9 many stochastic methods

have been developed to exploit this. These range from variants

of the simple Monte Carlo search methods that incorporate

biased sampling,10 to methods that place random probes over

a potential energy surface and then use the information to

locate new probes in low energy areas,11–14 methods that allow

conformations to ‘‘walk’’ across the potential energy surface

using adaptive grids,15 and methods based on genetic algo-

rithms.16 In these latter methods, one starts with a random

population of ‘‘chromosomes’’ which, in the case of a con-

formation search, would consist of a bit string of length N,

where N is the number of rotatable bonds, and where each bit

is the value of the torsional angle for the bond in question.

Members of the population are then selected based on their

‘‘fitness’’ (i.e. some function of their relative energy), and

various operations are then performed including random

mutations and ‘‘crossover’’ (i.e. one part of one chromosome

is matched with the complementary part of another). The

analysis is then repeated for an arbitrary number of ‘‘genera-

tions’’ or until certain stopping criteria have been met (such as
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the failure of the lowest energy to change over a specified

number of generations).

Another important class of stochastic search method utilizes

molecular dynamics. Starting from a random conformation,

thermal energy is supplied and new geometries and velocities

are derived by integration of Newton’s laws over a small time

step, thereby forming the starting point for the next iteration.

Provided they are given sufficient thermal energy, molecules

can ‘‘walk’’ over small energy barriers and move toward lower

energy regions of the potential energy surface. At certain time

intervals, the conformations of the molecules being simulated

are collected and (usually) minimised; favourable trajectories

are allowed to continue as long as they satisfy certain criteria.

In simulated annealing17,18 the conformations are accepted or

rejected with a certain probability based on where they fit into

a Boltzmann distribution. The analysis is initially performed at

‘‘high’’ temperatures (for which the high energy conformations

have a reasonable probability of being accepted and energy

barriers can thus be crossed) and then the system is slowly

‘‘cooled’’ so that only the low energy conformations are

retained. The entire analysis is repeated at different initial seed

conformations, to ensure greater coverage of the conforma-

tional space. A number of variants of molecular dynamics

methods have been suggested, including versions in which the

initial velocities are concentrated in rotational modes (rather

than vibrations and bends) which are more relevant to con-

formational searching,19 and conformational space annealing,

in which a genetic algorithm is used to generate starting

conformations for simulated annealing.20 There are also a

range of quantum annealing methods, in which quantum

mechanics rather than classical mechanics is used to walk

across the potential energy surface.21–23

Systematic methods

Strictly speaking, systematic methods are those that explore all

conformational space at some fixed degree of resolution.

Examples include methods (such as tree search,1 SUMM2,3

and complementarity4) that search via systematic variation of

torsional angles as described above, and methods (such as

LMOD24 and TORK25) that exhaustively search conforma-

tional space using eigenvector following routines. Since full

systematic searches of conformational space suffer from the

combinatorial explosion problem that renders them imprac-

tical for the study of large molecules, a range of simplified

systematic methods have been developed that explore only

portions of the conformational space but in a deterministic

manner. These methods are also referred to as ‘‘systematic’’ so

as to distinguish themselves from stochastic methods.

The main approach to reducing the dimensionality of the

conformational space is to perform systematic conformational

searches on small portions of the molecule (either as isolated

fragments or in situ), and then build the conformation of the

whole molecule from the optimal parts with only limited

additional searching of the relative conformations of the

fragments. Methods that incorporate this principle, known

as ‘‘build-up’’,26–28 include chemometrics,29 A*,30 and sparse

matrix drive.31 It has also been said that genetic algorithms

owe their success to the implicit inclusion of build-up (through

the bias toward retention in the population of combinations of

torsional angles that are ‘‘fit’’).16 The extreme example of the

build-up approach would be to perform a ‘‘linear search’’ of

the conformational space, in which each torsional angle is

optimised independently of the others resulting in a linear

scaling (but potentially inaccurate) method.

Assessment

There have been numerous comparative studies in which the

relative merits of various conformational search routines have

been examined.8,9,16,21,31–35 However, it is difficult to identify a

definitive optimal method as the criteria by which the methods

were assessed varies considerably amongst the studies, and no

one study has compared all of the principal types of methods.

Nonetheless, a few general observations may be made.

Amongst the stochastic methods studied, it has been found

that those which use the existing results to direct the search

outperform purely random methods,8,9 methods based on

genetic algorithms tend to outperform simulated anneal-

ing,15,31 and the quantum annealing method, quantum path

minimization, was shown in one study to outperform both

simulated annealing and a genetic algorithm.21 When stochas-

tic methods are compared with (full) systematic methods, the

stochastic search methods tend to be more efficient in identify-

ing low energy conformations early in the search, but they

rapidly lose this advantage as the search proceeds and are less

efficient in finding the global minimum structure.34 Indeed,

systematic search methods, by their very nature, offer the most

efficient means to cover all conformational space. In contrast,

‘‘no stochastic method has a probability of one to converge to

the global minimum in a finite number of steps.’’36 Moreover,

it is clear that the stopping criteria needed to guarantee that a

structure which lies within an acceptable level of energy of the

global minimum are difficult to ascertain (without already

knowing the answer) and vary considerably with the system

under study. In summary, the stochastic methods would

appear to be extremely useful for the applications for which

they were designed—that is, identifying relatively low energy

conformation(s) of large molecules with minimal computa-

tional expense. However, they do not appear to offer the

degree of reliability desired for kcal-accurate thermochemical

studies without sacrificing their computational efficiency.

Fortunately, the simplified systematic methods based on the

build-up principle appear to be more promising. For example,

a previous study compared the sparse matrix drive algorithm,

a build-up method designed especially for protein side-chain

optimisation, with both simulated annealing and various

genetic algorithms.31 They found that the sparse matrix drive

algorithm not only yielded the most accurate results, it was

also significantly more efficient. More generally, build-up

based methods are attractive as a chemically intuitive ap-

proach to defeating the combinatorial explosion problem as,

provided substituents are sufficiently separated from one an-

other, it seems unlikely that their optimal conformations are

affected by those of the other substituent. However, the

separation point at which the conformational properties be-

come independent of one another is often highly dependent on

the chemistry of the system. It would be desirable to design a

more general objective method for achieving this, and one that
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avoids the cumbersome task of actually fragmenting a mole-

cule and then later reassembling the optimised aggregates. In

the present work, we present a new systematic algorithm that

is inspired by the build-up approach but is performed on the

original molecule as a whole, and determines the combinations

of torsional angles to optimise using a learning process.

3. Algorithm description

In simple terms, the energy-directed tree search (EDTS) algo-

rithm is a modified version of the tree search algorithm in

which the combinatorial explosion problem is defeated

through the examination of only certain ‘‘branches’’ (i.e.

combinations of torsional angles) of the tree. It is based on

the build-up principle, whereby it is assumed that the optimal

conformations of certain parts of a molecule (usually remote

parts) are unlikely to influence one another and can thus be

searched independently, thereby reducing the dimensionality

of the conformational space. However, the key aspect of our

new algorithm EDTS is that the choice of which combinations

of torsions are important is determined objectively, based on

the energies of the existing conformations. In other words, it

includes a learning process and does not rely upon the specific

chemistry of the system and/or the chemical intuition of the

user. It is also distinct from many of the existing build-up

algorithms in that the torsional angles are optimised in

situ—that is, the molecule is not fragmented into portions.

This not only simplifies the analysis but also allows for the

optimisation of combinations of physically remote torsions,

should their energies appear to be coupled (due to, for

example, through-space interactions).

A flowchart of the EDTS algorithm is provided in Fig. 1. In

broad terms, the algorithm consists of one or more ‘‘linear’’

searches of the complete conformational space. In a linear

search, geometry optimisations are performed for all values of

the first rotation but with the others unchanged. The first

Fig. 1 The flowchart of the new algorithm. Based on our empirical studies, the values of EC1 and EC2 are set at 3 and 4 kJ mol�1, respectively,

and NMAX is set at 5 so as to ensure the reliability with which the global minimum can be found. In the flowchart gi shows how many individual

conformations can be generated rotating around the ith bond.
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rotation is then set at its optimal value, and geometry optimi-

sations are then performed for the second rotation, which is

then also updated, and so on until all rotations are exhausted

(see Fig. 2). During the course of our work, we have found

that such linear searches of conformational space are some-

times capable of identifying the global minimum energy

structure but their success is highly dependent upon the

starting structure chosen, and the order in which the rotations

are performed. This is seen quite clearly in Table 1, which

shows the results of various linear searches for a number of the

species in the present work. Our new algorithm addresses this

problem by using an initial scan (and if necessary subsequent

full searches on part of the conformational space) both to

identify one or more improved starting structures for the

subsequent linear search and to define the order in which the

rotations are to be examined. We now explain the implemen-

tation of the algorithm via means of an example.

To implement the algorithm, one first chooses an arbitrary

conformation of the molecule and optimises its geometry to

the nearest local minimum. From this structure, one can then

define the full conformational space as generated by the tree

search method. For example, for structure in Scheme 1 there

are 4 carbon–carbon bond rotations to consider, and at a

conservative resolution of 601, one would consider all

Fig. 2 Tree diagram (a) showing the combinations of rotations examined in a full conformational search for structure 1, and (b) highlighting

those that might be examined in a linear search of the same space.

Table 1 B3LYP lowest energy conformation (C1), dihedral angle sequence used in the linear search algorithm, lowest-energy structure (C2) found
by the algorithm with the predefined sequence and the energy difference (in kJ mol�1) between the C1 and C2 structuresa

Species C1 Dih. angle sequence C2 DE(C1–C2)

SQC(CH3)–SCH(COOCH3)CH2–CH(COOCH3)–CH3 a1e2 f e d c b a a1e2 0.0
1 a c f b d e a2b3c3 3.0

d e b c f a a1b3d2e2 4.0

CH3–CH(COOCH3)–S–C
�(CH3)–S–CH(COOCH3)–CH3 a2b3c2 f e d c b a a1b3c2f2 0.7

2 b a c d e f a1b2c2f2 5.4
c d e b a f a1c2d2e2 7.4

CH3–CH(COOCH3)–CH2–C
�H(COOCH3) a1b2c2 a b c d a2b3 1.6

4 d c b a a1b2c2 0.0
b a d c a2b2 2.9

P(CH3)2(CH2)4P
�CH3 a3b3c3e3 a b c e d a3b3c3e2 0.0

5 e d c b a a2d2e3 5.3
a e d b c a3c3d2e2 6.1

a All structure numbers refer to Fig. S1 of the ESI,w wherein the dihedrals angles are also depicted.
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combinations of all 6-fold rotations of each bond, leaving 64

structures to be optimised.

In practice, one might consider only 33 structures corre-

sponding to 3-fold rotations (a resolution of 1201) about

bonds a–c, with rotation d omitted due to symmetry. As noted

above, in a more general case the full conformation space will

contain (3601/R)N conformations, where R is the resolution

and N the number of rotatable bonds. If it is possible through

symmetry or chemical knowledge to simplify the full confor-

mational space further (for example, one might wish to use a

resolution of 1801 for the rotation of the double bond b) this is

easily accommodated by the EDTS algorithm. To illustrate

this point, we will assume for the present example that the full

conformation space for molecule 1 is that illustrated in Fig. 2a,

in which bonds a and c are considered at a 1201 resolution and

bond b is considered at a 1801 resolution.

Having decided which rotations to include in a full search of

the conformational space, the next step in the algorithm is to

perform a linear search of this conformational space. How-

ever, unlike a true linear search (as in Fig. 2b), in this initial

scan we do not update values of the torsional angles after each

rotation. Rather, we generate starting structures having all

possible values for rotation a, but with bonds b–c unchanged,

we generate starting structures having all possible values for

rotation b, but with bonds a and c unchanged, and then all

rotations of bond c with a–b unchanged. This allows us to

establish which rotations have the largest effect on the con-

formational energy. In the present example, if we designate the

three rotations of bond a as a1, a2 and a3 (where a1 corre-

sponds to the original value, and a2 and a3 to increments of

1201 and 2401, respectively), the two rotations of bond b as b1

and b2, and the three of c as c1, c2 and c3, the structures to be

optimised would consist of {a1b1c1}, {a2b1c1}, {a3b1c1},

{a1b2c1}, {a1b1c2} and {a1b1c3}. The results of the linear

search are then ranked in order of increasing energy and the

relative energies of the conformations are calculated. On this

basis, one of two scenarios is identified: (i) more than one

conformation lies within a certain tolerance level (EC1, which

we have set at 3 kJ mol�1 based on the empirical studies below)

of the minimum energy structure, or (ii) one conformation

(which we term a ‘‘leading conformation’’) is significantly

lower than the others by this tolerance level.

In scenario (i) we have no leading conformation and it is

therefore necessary to choose our starting structures for the

next linear search very carefully. To this end, a full conforma-

tional search is next performed, but only using the lower half of

the conformational space. For example, supposing the ranking

of the conformations from the initial linear search was {a2b1c1},

{a1b2c1}, {a1b1c3}, {a1b1c1}, {a1b1c2} and {a3b1c1}, we

would examine all combinations of torsional angles a2, b2 and

c3, with all other angles unchanged. The species to be optimised

would thus be: {a2b2c1}, {a2b1c3}, {a1b2c3} and {a2b2c3},

which would be added to the existing pool of structures.

Having performed the full search on the lower half of the

conformational space, the energies of all existing species are

again ranked. On the basis of this ranking one selects either all

species within the tolerance level (EC2, set at 4 kJ mol�1) of

the lowest energy structure, or (if there are too many) the

lowest NMAX species (where NMAX is set at 5 based on our

empirical studies). Using these selected species as starting

structures, one then performs a linear search of the remaining

conformational space, but this time rotations are considered in

the order in which they appeared in the initial energy ranking.

Moreover, after each individual rotation is performed, all

species are ranked and, if necessary, the starting structures

are updated. It should be noted that, since a full search has

already been performed on the first half of these rotations, the

first rotation in the new linear search is actually lowest species

of the top half of the rotations. The search terminates once the

last rotation is completed.

In the present example, the original order was {a2b1c1},

{a1b2c1}, {a1b1c3}, {a1b1c1}, {a1b1c2} and {a3b1c1} and a

full search was performed on a2, b2 and c3; hence the linear

search is performed by applying a1, c2 and a3 (in that order) to

the new lowest energy structure(s). Supposing after the full

search on a2, b2 and c3, the ranking was {a2b1c1}, {a1b2c1},

{a2b2c1}, {a2b1c3}, {a1b2c3}, {a2b2c3}, {a1b1c3}, {a1b1c1},

{a1b1c2} and {a3b1c1}, and supposing only {a1b2c1} lay

within 4 kJ mol�1 of the lowest energy structure, {a2b1c1},

one would perform a linear search on these two. The first

structures would be generated from a1 applied to {a1b2c1}

and {a2b1c1}; that is, {a1b2c1} and {a1b1c1} (which we

already have from the original linear search). The next two

would be from c2 applied to {a1b2c1} and {a2b1c1}; that is,

{a1b2c2} and {a2b1c2}, and so on until there are no further

rotations to examine.

In scenario (ii) there is a leading conformation and it is used

as the single starting structure for the subsequent linear search.

In other words, the full search on the lowest half of the

conformational space is omitted entirely. As in scenario (i)

the linear search is again performed on the remaining rotations

in their ranked order, and using the lowest energy species as a

starting structure. After each individual rotation is performed,

the energies of all species are ranked and the starting struc-

ture(s) is updated if necessary. In our current example, the

initial linear search yielded the order {a2b1c1}, {a1b2c1},

{a1b1c3}, {a1b1c1}, {a1b1c2} and {a3b1c1}. Supposing

{a2b1c1} is significantly lower than the others, we take this

structure and apply rotation b2 to give {a2b2c1}. If this structure

lies within 4 kJ mol�1 of the minimum, we then continue our

linear search on both {a2b2c1} and {a2b1c1}. We next apply

rotation c3 to give {a2b2c3} and {a2b1c3}, and so on. The search

again terminates once all rotations are considered. The fully

worked examples of the algorithm for both scenarios are given in

Appendix S1 of the Supporting Information.

To implement EDTS algorithm computationally one needs

only a means of systematically generating the starting struc-

tures for a full tree search method. One then selectively runs

batches of geometry optimisations as dictated by the

Scheme 1

2512 | Phys. Chem. Chem. Phys., 2007, 9, 2507–2516 This journal is �c the Owner Societies 2007



algorithm, using any standard computational chemistry soft-

ware at a level of theory appropriate for the system at hand.

After each step in the process, a simple spreadsheet can be

used to rank the energies of the conformations, thereby

enabling the user to determine the next batch of optimisations

to run. In principle, the entire process could be implemented

computationally; however, in our experience the interactive

approach is relatively straightforward and leads to the most

efficient use of computer time.

4. Algorithm testing

Optimisation of parameters

In implementing the EDTS algorithm, one needs to set values

for the parameters (labelled EC1, EC2 and NMAX in Fig. 2)

that govern how many starting conformations are considered

in the search. The first of these, the energy cut-off value EC1,

determines whether there is a clear leading conformation, or

whether a full search needs to be performed on the lower half

of the conformational space to identify starting structure(s) for

the subsequent linear search. The second closely related value,

EC2, is applied after each step in the subsequent linear search

to determine which starting structures are included in the next

step. The third parameter NMAX is used to limit the number

of starting structures in the event that the EC2 parameter leads

to the inclusion of an impractically large number of starting

structures. If EC1 and EC2 are vanishingly small, and NMAX

is set at 1, the EDTS algorithm collapses to a linear search; if

EC1 and EC2 are extremely large and NMAX is set at the

total number of available conformations, the EDTS algorithm

expands to the full tree search algorithm. To be successful,

intermediate values for EC1, EC2 and NMAX should be

chosen so that the number of conformations to be optimised

is limited as much as possible but without compromising the

accuracy of the final result. To this end, we initially performed

the EDTS algorithm on 4 selected structures from our test set,

using various values for the three parameters. The results for

one typical case (structure 2) are shown in Table 2. The results

for other 3 species (structures 1, 3 and 4) are given in Tables

S1–S3 of the ESI.w
From Table 2, it is seen that, in all cases the algorithm

yielded either the lowest energy conformation or, in the worst

case, the second lowest conformation (which was only 0.7 kJ

mol�1 above the global minimum). Thus, at least for the

values examined, the accuracy of the algorithm appears to

be relatively insensitive to values of the EC1, EC2 and

NMAX. Based on the data in Table 2, the minimal parameters

needed to obtain the global minimum are EC1 = 3 kJ mol�1,

EC2 = 4 kJ mol�1 and NMAX = 5, and these have been

adopted as our optimal parameters. More generally, we have

found that if there is one leading conformation then it is

usually lower in energy than the others by more than 10 kJ

mol�1. In that scenario, following the right-hand side on the

algorithm flow chart in Fig. 1 only makes minor refinements to

this conformation and in that way ensures that the lowest-

energy conformation has not been missed. When there are,

instead, a few conformations with energies within a couple kJ

mol�1 of the lowest energy structure, optimisation of all of the

conformations within the lower half of the conformational

space produces the final leading conformation. In all cases

studied, the rotations that appear in this half of the conforma-

tional space are always present in the lowest-energy structure.

In most cases, the search may be stopped there but the

algorithm checks the rest of the rotations to eliminate the

possibility of missing out on the lowest-energy one. The

NMAX criterion is usually set to 5, as including more struc-

tures in the search will only expand the conformational space

and one would like to keep this as small as possible. By doing

this, there is a danger that if there are multiple low energy

structures within the tolerance level, the global minimum

structure may be missed. However, this disadvantage is not

relevant in thermochemical studies, since it is the energy of the

conformation used that is important. If the final conforma-

tional energy is very close to that of the global minimum then

accurate thermodynamical quantities can still be obtained.

The results for other 3 species (structures 1, 3 and 4) confirmed

the selected values for the EC1, EC2 and NMAX criteria:

EC1 = 3 kJ mol�1, EC2 = 4 kJ mol�1 and NMAX = 5.

Test set and computational details

To evaluate the EDTS algorithm we firstly selected a series of

14 molecules as the test set-1, including as a reference the 4

species (1–4) for which the parameters (EC1, EC2 and

NMAX) were optimised. The species were drawn from our

own studies of polymerisation processes and include open- and

closed-shell species, stable structures and transition structures,

and neutral and charged species. A range of functional groups,

including phenyl rings, esters, thioesters and phosphines are

represented in the test set. In order to check that the size of the

conformational space does not represent a limitation to the

Table 2 Performance of the EDTS algorithm for CH3CH
(COOCH3)SC

�(CH3)SCH(COOCH3) CH3 (2) for various values of
EC1, EC2 and NMAXa

NMAX EC1 EC2 Lowest conf Nalg

5 3.0 3.0 Conf 2 23 (16%)
4.0 Conf 1 37 (26%)

5.0 Conf 1 37 (26%)
4.0 3.0 Conf 1 25 (17%)

4.0 Conf 1 37 (26%)
5.0 Conf 1 37 (26%)

5.0 3.0 Conf 1 29 (20%)
4.0 Conf 1 29 (20%)
5.0 Conf 1 37 (26%)

8 3.0 3.0 Conf 2 23 (16%)
4.0 Conf 1 43 (30%)
5.0 Conf 1 43 (30%)

4.0 3.0 Conf 1 26 (18%)
4.0 Conf 1 43 (30%)
5.0 Conf 1 43 (30%)

5.0 3.0 Conf 1 30 (21%)
4.0 Conf 1 43 (30%)
5.0 Conf 1 43 (30%)

a In this table, conf 1 is the global minimum and conf 2 is the second

lowest conformation which lies 0.7 kJ mol�1 above the global mini-

mum. Nalg is the number of conformers optimized during the search

and the number in parentheses is the percentage of the full conforma-

tion space that this corresponds to. All structure numbers refer to Fig.

S1 of the ESI.w The optimal values are shown in bold.
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efficiency of the algorithm, we also selected a test set-2 that

includes 8 species such as polymers, peptides, drugs, and

natural products, which are significantly larger in size than

the test set-1 and contain from 8 to 11 rotatable bonds. Most

of the species selected have polar terminal groups that are

capable of undergoing through-space interactions, situations

that normally present difficulties for build-up based algo-

rithms. The global minimum energy conformations of each

species are illustrated in Fig. S1 and S2 of the ESI,w and

corresponding coordinates for both the starting conforma-

tions and global minima are also provided.

For each molecule a full conformational search was per-

formed using a tree search algorithm. For most species in the

test set-1, geometry optimisations were performed at the B3-

LYP/6-31G(d) level of theory; however for the anionic species

(11) B3-LYP/6-31+G(d) was used, while for adduct radicals

of xanthates (8 and 9) HF/6-31G(d) was used. All the species

in the test set-2 were optimised at the AM1 semi-empirical

level of theory to reduce the computational cost for perform-

ing the full conformational space. The resolution was typically

set at 1201; however, bonds involving sp2 centres were scanned

at 1801 and rotations that led to symmetry equivalent struc-

tures were omitted from the analysis. Where relevant, we also

further simplified the full conformational space by making the

assumption that the ester linkages are always cis and not trans.

In some cases we also simplified the conformational space by

omitting some of the rotations (such as some of the phenyl

rotations). The EDTS algorithm as described above was

applied to the same conformational space at the same level

of theory so that a consistent comparison could be made.

Various linear searches, in which the same full conformational

space was selectively sampled according to the algorithm

illustrated in Fig. 2b, were also carried out for selected

structures (Table 1), and these were also performed at the

same level of theory. The torsional angles that were varied

during the full and linear searches are labelled in Fig. S1 and

S2 of the ESI.w

All geometry optimisations were performed in Gaussian

03.37 All algorithms were implemented interactively using a

simple Fortran program to generate the starting structures for

the full conformational search (from which starting structures

for the simplified searches were selected), and spreadsheets

were used to the sort energies and organise results at each

stage of the search.

Performance of EDTS

Having found optimal values of EC1, EC2 and NMAX

parameters, we next implemented both the EDTS algorithm

and the full tree search algorithm for our full test of 22 species.

In each case we compared the lowest energy conformation

obtained in each search and the number of conformations

optimised during search (see Tables 3 and 4). In most of the

cases, the EDTS algorithm successfully found the correct

global minimum conformation. For the rest of the species

the EDTS algorithm was able to find conformations whose

total electronic energies are within chemical accuracy (1 kcal

mol�1) from the true global minima. This would still allow for

accurate calculations of kinetics and thermochemistry.

The number of conformations requiring optimisation in the

EDTS algorithm depends not only on the size of the con-

formational space, but also upon whether or not a leading

conformation was found at the first step of the search, and

upon the number of starting structures that are retained at

each step of the subsequent linear search. This in turn depends

upon both the chemistry of the system (for example, how

strongly the arrangement of one substituent affects that of

another) and how close the specific starting structure chosen

for the search was to the final global minimum. As a result,

there was a wide variation in both the number of optimisations

required by the algorithm and the fraction of the full con-

formational space that was explored. Nonetheless, in all cases

the EDTS algorithm substantially reduced the number of

conformations requiring optimisation when compared with a

Table 3 Performance of the EDTS algorithm on the test set-1 using the optimal values of EC1, EC2 and NMAXa

Species Ntot Nalg Species Ntot Nalg

CH3–CH(COOCH3)–CH2–C
�H(COOCH3) 36 21 (58%) TS[CH3CH(COOCH3)CH2CH(COOCH3)

� +
CH2QCHCOOCH3]

54 34 (63%)

4 7

TS[CH3CH(COOCH2CH3)CH2CH(COOCH2CH3)
� +

CH2QCHCOOCH2CH3]
54 27 (50%) CH3–CH(COOCH3)–S–C

�(CH3)–S–CH2CN 72 27 (38%)

6 3

CH3O–C(QO)–CH2–SC
�(OC2H5)–SCH3 144 28 (16%) P(CH3)2(CH2)3P

�CH3 81 32 (40%)
8 10

C�H(Ph)–CH2–CH(Ph)–CH2–CH(CH3)Ph 81 33 (41%) CH3O–C(QO)–CH2–SC
�(OC(CH3)3)–SCH3 96 29 (30%)

14 9

CN(CH3)2S–C
�(Ph)–SCH(Ph)–CH2–CH(Ph)–CH2

–C(CH3)2CN
108 27 (25%) CH3–CH(COOCH3)–S–C

�(CH3)–S–CH(COOCH3)
–CH3

144 25 (17%)

13 2

SQC(CH3)–SCH(COOCH3)CH2–CH(COOCH3)–CH3 216 17 (8%) P(CH3)2(CH2)4P
�CH3 243 45 (19%)

1 5

SQC(Ph)–SCH(Ph)–CH2–CH(Ph)–CH2–C(CH3)2Ph 243 50 (21%) P(CH3)2(CH2)4P
�(CH3) 243 40 (17%)

12 11

a In this table, Ntot is the total number of conformations to be explored in the complete conformation space and Nalg is the number of conformations needed for the

new algorithm to find the global minimum. The percentage of the conformation space explored is given in parentheses. All structure numbers refer to Fig. S1 of the

ESI.w The optimal values of EC1, EC2 and NMAX are 3 kJ mol�1, 4 kJ mol�1 and 5, respectively.
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full search, and this fraction tended to decrease as the con-

formational space increased. For example, for 7 molecules

having 100 to 1000 conformations in their full space, the

fraction of conformational space explored ranged from

7–25%; for the other species having their full space in the

range of 10 000 to 80 000 conformations the fraction reduces

to only 0.1–1.1%.

The efficiency of the EDTS algorithm would be expected to

increase further as the conformational space expands, as the

method (in its worst case scenario) effectively scales as 2N

conformations for a resolution of 1201, compared with 3N for

the corresponding systematic search. That is, the efficiency

scales as (2/3)N with the number of rotatable bonds in the

corresponding full search. (A derivation of this result is

supplied in Appendix S2 of the ESI.w) For example, for a full

conformational space of 310 structures (10 bonds at 1201

resolution), the corresponding worst-case EDTS algorithm

(in which a linear search on all of the space is followed by

full search on half of the space, and then 5 additional linear

searches on the rest of the space) would require less than 1083

starting structures—less than 2% of the full conformational

space. Importantly, such searches, whilst expensive, are none-

theless practical whereas the full searches (of nearly 60 000

conformations) are not. Since the algorithm maintains the

reliability of a full search, it does effectively expand the range

of systems for which accurate thermochemistry can be studied.

Of course, this accuracy comes at a cost, and the algorithm

remains too expensive for larger systems. For example, for a

species with 20 rotatable bonds (for which the full conforma-

tional space at a resolution of 1201 would contain 320 struc-

tures), less than 0.03% of the conformational space would be

explored in a worst-case EDTS algorithm; however, this would

nonetheless translate to around a million starting structures.

The EDTS algorithm is therefore not currently competitive as

an alternative to the approximate stochastic algorithms for

these larger systems, but rather is intended to bridge the gap

between the moderately large systems for which accurate

thermochemistry is now possible and the size limitations

imposed by the practicality of full conformational searches.

5. Conclusions

In the present work, we have introduced a new systematic

algorithm, energy-directed tree search (EDTS) for exploring

the conformational space of molecules. The algorithm has

been designed to reliably locate the global minimum at a

fraction of the cost of a full conformational search, and in

this way extend the range of chemical systems for which

accurate thermochemistry can be studied. The algorithm was

tested for a set of 22 large molecules, including open- and

closed-shell species, stable structures and transition structures,

and neutral and charged species, incorporating a range of

functional groups (such as phenyl rings, esters, thioesters and

phosphines) and covering polymers, peptides, drugs, and

natural products. In most of the cases the global minimum

energy structure was obtained at a substantially reduced

computational cost when compared with the corresponding

full conformational search. For the rest of the species the

EDTS algorithm was able to find conformations whose total

electronic energies are within chemical accuracy from the true

global minima. This would still allow for accurate calculations

of kinetics and thermochemistry.
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