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Abstract: We overview our recent theoretical results on spatio-spectral control, diffraction management, and broad-
band all-optical switching of polychromatic light in periodically curved one and two dimensional arrays of
coupled optical waveguides. In particular, we show that polychromatic light beams and patterns produced
by white-light and supercontinuum sources can experience wavelength-independent normal, anomalous,
or zero diffraction in specially designed structures. We also demonstrate that in the nonlinear regime, it
is possible to achieve broadband all-optical switching of polychromatic light in a directional waveguide
coupler with special bending of the waveguide axes. Our results suggest novel opportunities for cre-
ation of all-optical logical gates and switches which can operate in a very broad frequency region, e.g.,
covering the entire visible spectrum.
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1. Introduction

Flexible shaping and steering of optical beams can berealized in periodic photonic structures, where the fun-damental aspects of light propagation such as the beamdiffraction and refraction can be engineered to suit spe-cific application requirements [1, 2]. In particular, the nat-ural tendency of beams to broaden during propagationcan be controlled through diffraction management [3, 4].Diffraction can be eliminated in periodic structures lead-
∗Presented at 9-th International Workshop on Nonlinear Optics Applica-tions, NOA 2007, May 17-20, 2007, Świnoujście, Poland
†E-mail: ilg124@rsphysse.anu.edu.au

ing to self-collimation effect where the average beamwidth does not change over hundreds of free-space diffrac-tion lengths [5]. On the other hand, diffraction can be madenegative allowing for focusing of diverging beams [6] andimaging of objects with sub-wavelength resolution [7, 8].
Advances in the generation of light with broadband orsupercontinuum spectrum in photonic-crystal fibers [9–11]open many new possibilities for a wide range of appli-cations including optical frequency metrology [12], spec-troscopy [13], tomography [14], and optical characteriza-tion of photonic crystals [15]. However, extended pho-tonic structures are primarily optimized for beam shap-ing and deflection in a narrow-frequency range. Indeed,the physics of periodic structures is governed by scatter-ing of waves from modulations of the refractive index and
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Figure 1. Schematic drawing of a curved waveguide array com-
posed of the periodically bended waveguides.

their subsequent interference. This is a resonant process,which is sensitive to both the frequency and propagationangle. Strong dependence of the beam refraction on theoptical wavelength known as superprism effect was ob-served in photonic crystals [16]. Spatial beam diffractionalso depends on the wavelength; for example it was foundin recent experiments [5, 17] that the effect of beam self-collimation through diffraction cancellation was restrictedto a spectral range of less than 10% of the central fre-quency. Such a strong dependence of the spatial beamdynamics on wavelength can be used for multiplexing anddemultiplexing of signals in optical communication net-works [18, 19]. On the other hand, it is important toexplore the potential of periodic photonic structures fortunable spatial shaping of the polychromatic light beams.In this paper, we overview our recent theoretical re-sults [20–22] on shaping and switching of polychromaticlight beams in arrays of coupled optical waveguides, whichaxes are periodically curved in the propagation direc-tion as schematically shown in Fig. 1. In particular,we show that intrinsic wavelength-dependence of diffrac-tion strength in periodic systems can be compensated bygeometrically-induced dispersion and introduce the con-cept of wavelength-independent diffraction managementin a very broad frequency range covering a spectral rangeup to 50% of the central frequency. This opens up novelopportunities for efficient self-collimation, focusing, andshaping of white-light beams and patterns. We alsodemonstrate that in the nonlinear regime, it is possible toachieve broadband all-optical switching of polychromaticlight in a directional waveguide coupler with special bend-ing of the waveguide axes. Our results suggest new oppor-tunities for all-optical control of polychromatic light, offer-ing additional flexibility compared to the spatial-spectralreshaping recently demonstrated experimentally in arraysof straight optical waveguides [23–25].

The paper is organized as follows. In Sec. 2 we presentthe basic concepts of polychromatic light propagation inperiodically curved waveguide arrays at low light intensity(linear propagation) and introduce the concept of broad-band diffraction management in modulated lattices. InSec. 3 and Sec. 4 we describe how to design modulatedlattices optimized for broadband diffraction cancellation,and wavelength-independent normal or anomalous diffrac-tion, respectively. We then show how these structurescan be used to realize multicolor discrete Talbot effect forpolychromatic light patterns in Sec. 5. Sec. 6 describesthe nonlinear polychromatic coupler designed for collec-tive all-optical switching of frequency components in avery broad spectral region. Finally, in Sec. 7 we brieflydescribe novel opportunities for spatio-spectral shaping ofsupercontinuum radiation in two-dimensional modulatedphotonic lattices.
2. Light propagation in periodically
curved waveguide arrays
We study propagation of beams emitted by a continuouswhite-light source in a periodic array of coupled opticalwaveguides, where the waveguide axes are periodicallycurved in the propagation direction z, as it is schemat-ically shown in Fig. 1(a). Such waveguide array struc-tures can be created using established fabrication tech-niques [3, 17, 26–29].In media with slow nonlinear response, where the co-herent four-wave-mixing processes are suppressed andoptically-induced refractive index change is defined by thetime-averaged light intensity of different spectral compo-nents [30, 31], the overall beam dynamics is governed bythe set of normalized paraxial equations for the complexbeam envelopes E(x, z; λ) at vacuum wavelengths λm,
i ∂Em∂z + zsλm4πn0x2

s

∂2Em
∂x2 + 2πzs

λm
{ν [x − x0(z)] + G}Em = 0,(1)where x and z are the transverse and propagation coor-dinates normalized to the characteristic values xs = 1 µmand zs = 1 mm, respectively, c is the speed of light, n0 isthe average refractive index of the medium, ν(x) ≡ ν(x+d)is the transverse refractive index profile of the waveguidearray with the transverse period d, longitudinal bendingprofile of the waveguide axis x0(z) ≡ x0(z + L) definesthe periodic longitudinal lattice modulation with the pe-riod L � d, G = αM−1∑M

m=1 γ(λm)|Em|2 defines nonlinearchange of refractive index, α is the nonlinear coefficient,and γ(λ) accounts for dispersion of the nonlinear response.In numerical simulations, we choose a large number of
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Figure 2. Discrete diffraction in (a) straight waveguide array with
period d = 9 µm. (b) Coupling coefficient is normal-
ized to the coupling at the central wavelength C0. (c-e)
Evolution of beam intensity and output intensity profiles
after 80 mm propagation of a 3 µm wide input beam for
(c) λr = 580 nm, (d) λ0 = 532 nm, and (e) λb = 490
nm, which correspond to the points ‘c’, ‘d’, and ‘e’ in (b).
Waveguide width is 3 µm and substrate refractive index
is n0 = 2.35 [20].

components M = 50 to model accurately the dynamics ofbeams with broadband spectrum.When the tilt of beams and waveguides at the input facetis less than the Bragg angle at each wavelength, thebeam propagation is primarily characterized by couplingbetween the fundamental modes of the individual waveg-uides. Then, beam evolution can be described by the tight-binding equations taking into account periodic waveguidebending [17, 32], which in the linear regime take the form
idΨn

dz + C (ω) [Ψn+1 + Ψn−1] = ωẍ0(z)nΨn, (2)
where Ψn(z;ω) are the mode amplitudes, n is the waveg-uide number, ω = 2πn0d/λ is the dimensionless fre-quency, and the dots stand for the derivatives. Coefficient
C (ω) defines a coupling strength between the neighboringwaveguides, and it characterizes diffraction strength in astraight waveguide array with x0 ≡ 0 [33, 34]. The cou-pling coefficient increases with the wavelength [35], andaccordingly the beam broadening is substantially largerat long wavelengths, see Figs. 2(b-e).In order to specially distinguish the effects due to diffrac-tion management, we consider the light propagation in thewaveguide arrays with symmetric bending profiles, sinceasymmetry may introduce other effects due to the modi-fication of refraction, such as beam dragging and steer-ing [36–38]. Specifically, we require that x0(z) = f(z − z̃)

for a given coordinate shift z̃, where function f(z) is sym-metric, f(z) ≡ f(−z). Then, by analyzing the plane-wavesolutions of Eqs. (2) [17, 20, 32], it can be shown that afterthe full modulation period (z → z+L) the beam diffractionin the periodically curved waveguide array is the same asin a straight lattice with the effective coupling coefficient
Ceff (ω) = C (ω)L−1 ∫ L

0 cos [ωẋ0(ζ)]dζ. (3)
Therefore, diffraction of multicolor beams is defined byan interplay of the additional bending-induced dispersionintroduced through the frequency dependence of the inte-grand in Eq. (3), and the intrinsic frequency dependenceof the coupling coefficient in a straight waveguide array
C (ω). We suggest that spatial evolution of all frequencycomponents can be synchronized allowing for shaping andsteering of multicolor beams, when effective coupling re-mains constant around the central frequency ω0,

dCeff (ω)
dω

∣∣∣∣
ω=ω0 = 0, (4)

and we demonstrate below that this condition can be sat-isfied by introducing special waveguide bending profiles.
3. Self-collimation of white light
First, we demonstrate the possibility for self-collimation
of white-light beams, where all the wavelength compo-nents remain localized despite a nontrivial evolution inthe photonic structure. Self-collimation regime is real-ized when the diffraction is suppressed and the effectivecoupling coefficient vanishes, Ceff = 0. This effect waspreviously observed for monochromatic beams in arrayswith zigzag [3] and sinusoidal [17] bending profiles.For example, for a sinusoidal modulation function of theform x0(z) = A0{cos [2πz/L] − 1}, which is similar tothe one which has been employed to observe experimen-tally the effect of dynamical localization [17], the self-collimation condition for the frequency ω0 is realized forthe modulation amplitude A = A0 such that 2πA0ω0/L =
ξ̃1, where ξ̃1 ' 2.40 is the first root of the Bessel functionof the first kind of zero order J0. However, in such structurethe condition of zero coupling cannot be satisfied simulta-neously with Eq. (4), resulting in strong beam diffractionunder frequency detuning from the exact self-collimationvalue ω0 by several percent [17], see an example of thebeam propagation in a sinusoidally curved waveguide ar-ray for different wavelengths in Fig. 3.
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Figure 3. Beam propagation in a sinusoidal waveguide array.
(a) Waveguide bending profile with the period L = 18
mm and modulation amplitude A0 = 27 µm. (b) Effective
coupling normalized to the coupling in the straight array
at the central wavelength C0 = C (λ0). (c-e) Evolution of
the beam intensity and output intensity profiles for dif-
ferent wavelengths (c) λr = 560 nm, (d) λ0 = 532 nm,
and (e) λb = 400 nm, which correspond to points ‘c’, ‘d’,
and ‘e’ in (b). Self-collimation takes place for the central
wavelength λ0 = 532 nm.

We find that broadband diffraction management becomespossible in hybrid structures with a periodic bending pro-file that consists of alternating segments [see example inFig. 4(a)], x0(z) = A1{cos [2πz/z0] − 1} for 0 ≤ z ≤ z0,
x0(z) = A2{cos [2π(z − z0)/(L/2− z0)] − 1} for z0 ≤ z ≤
L/2, and x0(z) = −x0(z − L/2) for L/2 ≤ z ≤ L. Effectivecoupling in such hybrid structure can be calculated an-alytically, Ceff (ω) = C (ω)2L−1[z0J0(ξ1) + (L/2 − z0)J0(ξ2)],where Jm is the Bessel function of the first kind of theorder m, ξ1 = 2πA1ω/z0, and ξ2 = 2πA2ω/ (L/2− z0).We select here a class of symmetric profiles of the waveg-uide bending to avoid asymmetric beam distortion due tohigher-order effects such as third-order diffraction. Addi-tionally, the waveguides are not tilted at the input, i.e.
ẋ0(0) = 0, in order to suppress excitation of higher-orderphotonic bands by incident beams inclined by less thanthe Bragg angle. The effect of Zener tunneling to higherbands [39, 40] and associated scattering losses can besuppressed irrespective of the waveguide tilt inside thephotonic structure by selecting sufficiently slow modula-tion to minimize the curvature ẍ0(z) and thereby achieveadiabatic beam shaping.In order to realize broadband self-collimation, we choosethe structure parameters such that ξ1(ω0) = ξ̃1, and
ξ2(ω0) = ξ̃2, where ξ̃2 ' 5.52 is the second root of the

Figure 4. Broadband self-collimation in an optimized modulated
waveguide array. (a) Waveguide bending profile with the
period L = 60 mm and modulation parameters A1 =27 µm, A2 = 42 µm, z0 = 18 mm. (b) Effective cou-
pling normalized to the coupling in the straight array at
the central wavelength C0 = C (λ0). (c-e) Evolution of
the beam intensity and output intensity profiles for differ-
ent wavelengths (c) λr = 560 nm, (d) λ0 = 532 nm, and
(e) λb = 400 nm, which correspond to points ‘c’, ‘d’, and
‘e’ in (b).

function J0. Then, the self-collimation condition is exactlyfulfilled at the central frequency ω0, Ceff (ω0) = 0, andsimultaneously the condition of wavelength-independentcoupling in Eq. (4) is satisfied for the following modulationparameters, A1 = [ξ̃1ξ̃2J1(ξ̃2)/2π(ξ̃2J1(ξ̃2)− ξ̃1J1(ξ̃1))ω0]L/2,
A2 = −[J1(ξ̃1)/J1(ξ̃2)]A1, and z0 = 2πω0A1/ξ̃1. As a re-sult, we obtain an extremely flat coupling curve shown inFig. 4(b) where the point ‘d’ corresponds to the centralwavelength.In this hybrid structure not only the first deriva-tive vanishes according to Eq. (4), but the secondderivative vanishes as well, ∣∣∣d2Ceff (ω)/dω2∣∣

ω=ω0
∣∣∣ ∼∣∣∣ξ̃1J2(ξ̃1)J1(ξ̃2)− ξ̃2J2(ξ̃2)J1(ξ̃1)∣∣∣ < 10−15. As a result, theeffective coupling remains close to zero in a very broadspectral region of up to 50% of the central frequency. Wenote that the modulation period L is a free parameter, andit can always be chosen sufficiently large to avoid scat-tering losses due to waveguide bending since the maxi-mum waveguide curvature is inversely proportional to theperiod, max|ẍ0(z)| ∼ L−1. Although the beam evolutioninside the array does depend on the wavelength, the in-cident beam profile is exactly restored after a full modu-lation period, see examples in Figs. 4(c-e), where resultsof numerical simulations of Eq. (1) are presented. Self-collimation is preserved even at the red spectral edge,
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where coupling length is the shortest and discrete diffrac-tion in the straight array is the strongest [cf. Fig. 4(c)and Fig. 2(c)]. The hybrid structure provides a dramaticimprovement in the bandwidth for self-collimation effectcompared to the array with a simple sinusoidal modu-lation, where beams exhibit diffraction under small fre-quency detuning, see Fig. 3.
4. Broadband diffraction manage-
ment
We now analyze the conditions for wavelength-
independent normal or anomalous diffraction that may findapplications for reshaping of multicolor beams. In order toreduce the device dimensions, it is desirable to increasethe absolute value of the effective coupling and simulta-neously satisfy Eq. (4) to achieve broadband diffractionmanagement. We find that Eq. (4) can be satisfied in thetwo-segment hybrid structure with z0 = L/2 and A1 =(ξ/2πω0) L/2. Here a set of possible parameter values ξis determined from the relation J0(ξ)/J1(ξ) = C0ξ/C1ω0,where C0 = C (ω0) and C1 = dC (ω)/dω|ω=ω0 characterizedispersion of coupling in a straight array. It is possibleto obtain both normal and anomalous diffraction regimesfor normally incident beams, corresponding to positiveand negative effective couplings Ceff (ω0) = C0J0(ξ) de-pending on the chosen value of ξ . For example, for thewaveguide array shown in Fig. 2, at the central frequency
ω0 = 250 [corresponding wavelength is λ0 = 532 nm] cal-culated numerically coupling parameters are C0 ' 0.13mm−1 and C1 ' −0.0021 mm−1. Then, constant positivecoupling around the central frequency Ceff (ω0) ' 0.25C0is realized for ξ ' 6.47 and constant negative coupling
Ceff (ω0) ' −0.25C0 for ξ ' 2.97.We perform a comprehensive analytical and numericalanalysis, and find that a hybrid structure with bend-ing profile consisting of one straight (i.e A1 ≡ 0)and one sinusoidal segment can provide considerablyimproved performance if ω0C1/C0 > ξcrJ1(ξcr)/J0(ξcr),where value ξcr ' 5.84 is found from the equation[J1(ξcr) + ξcr [J0(ξcr)− J2(ξcr)] /2] [J0(ξcr)− 1] + ξcrJ21 (ξcr) =0. Under such conditions, larger values of positive effectivecoupling can be obtained in a hybrid structure with A1 ≡0, A2 = [C1Ceff (ω0)/2πC 20 J1(ξ̃2)]L/2, z0 = [Ceff (ω0)/C0]L/2.In this structure, the effective coupling at central frequencyis Ceff (ω0) = ξ̃2C 20 J1(ξ̃2)/[ξ̃2C0J1(ξ̃2) + ω0C1].Example of a hybrid structure which provides strongwavelength-independent diffraction is shown in Fig. 5(a),and the corresponding effective coupling is plotted inFig. 5(b). The diffraction rate in this optimized structure isalmost the same in a broad spectral region, see examples

Figure 5. Wavelength-independent diffraction in an optimized peri-
odically curved waveguide array. (a) Waveguide bending
profile with the period L = 40 mm and (b) correspond-
ing effective coupling normalized to the coupling in the
straight array at the central wavelength C0 = C (λ0). (c-
e) Evolution of beam intensity and output intensity pro-
files after propagation of two full periods for the wave-
lengths (c) λr = 580 nm, (d) λ0 = 532 nm, and (e) λb = 490
nm, which correspond to points ‘c’, ‘d’, and ‘e’ in (b) [20].

for three wavelengths in Figs. 5(c-e). We note that theoutput beam profiles at these wavelengths are substan-tially different after the same propagation length in thestraight waveguide array, as shown in Figs. 2(c-e).
5. Multicolor Talbot effect
As one of the applications of the broadband diffrac-tion management we consider a multicolor Talbot ef-
fect which allows to manipulate polychromatic light pat-terns. The Talbot effect, when any periodical monochro-matic light pattern reappears upon propagation at cer-tain equally spaced distances, has been known since thefamous discovery in 1836 [41]. It was recently shownthat the Talbot effect is also possible in discrete sys-tems for certain periodic input patterns [35]. For exam-ple, for the monochromatic periodic input pattern of theform {1, 0, 0, 1, 0, 0, . . .}, Talbot revivals take place at thedistance L(1)

T = (2π/3) [1/C (ω)], see Fig. 6(a).Period of the discrete Talbot effect in the waveguide ar-ray is inversely proportional to the coupling coefficient
C (ω), which strongly depends on frequency, see Fig. 2(b).Therefore, for each specific frequency Talbot recurrencesoccur at different distances [35], and periodic intensity re-vivals disappear for the multicolor input, see Fig. 6(b).
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Figure 6. (a) Monochromatic Talbot effect in the straight waveguide
array shown in Fig. 2(a): periodic intensity revivals every
L(1)
T = 16.5 mm of the propagation distance for the input

pattern {1, 0, 0, 1, 0, 0, . . .} and the wavelength λ0 = 532
nm. (b) Disappearance of the Talbot carpet in the straight
array when input consists of three components with equal
intensities and different wavelengths λr = 580 nm [red-
shifted], λ0 = 532 nm [green], and λb = 490 nm [blue-
shifted]. (c) Multicolor Talbot effect in the optimized
structure with wavelength-independent diffraction [see
Fig. 5.] Half of the bending period L/2 = L(2)

T = 53.2
mm is equal to the Talbot distance for the corresponding
effective coupling length [20].

Multicolor Talbot effect is also not possible in free spacewhere revival period is proportional to frequency. Mostremarkably, we demonstrate that multicolor discrete Tal-bot effect can be observed in optimized modulated waveg-uide arrays with wavelength-independent diffraction, seeFig. 6(c). In this example, we use the shape of struc-ture with constant positive diffraction shown in Fig. 5, andchoose half of the bending period to be equal to the periodof the Talbot recurrences for the corresponding effectivecoupling in this structure, L(2)
T = (2π/3) [1/Ceff (ω)].

6. Directional coupler for white
light
Directional waveguide coupler is the device which utilizeslight tunneling between two optical waveguides placed inclose proximity to each other, as schematically shown inFig. 7(a). In the linear regime, as light propagates ina directional coupler made of straight identical waveg-uides, the power is periodically exchanged between thetwo waveguides [42] with the period which is defined bythe coupling length, Zc = π/[2C (λ)], where C (λ) is the cou-pling coefficient. Then, the complete power transfer fromone waveguide at the input to the other waveguide at theoutput can be realized by choosing the device length asan odd number of coupling lengths.Over the last decades, nonlinear waveguide couplers, firstintroduced by Jensen [42] and Maier [43], have attracteda great deal of attention as major candidates for cre-ation of ultra-fast all-optical switches, as at high inputpowers, intensity-dependent change of the refractive in-

Figure 7. (a) Conventional directional coupler composed of two
evanescently coupled straight waveguides. (b) Polychro-
matic light coupler with specially designed bending of
the waveguide axes. Waveguide width and separation
between waveguide axes are 3 µm and 9 µm, respec-
tively. Refractive index contrast is ∆ν = 8 × 10−4, and
n0 = 2.35.

dex through optical nonlinearity creates detuning betweenthe waveguides which can suppress power transfer be-tween coupler arms, such that light remains in the inputwaveguide. Since the first experimental demonstration ofa subpicosecond nonlinear coupler switch in a dual-corefiber [44], various aspects of switching in different couplerconfigurations has been extensively analyzed [45–49].However, conventional coupler can only perform switch-ing of signals with rather limited spectral bandwidth, be-cause the coupling length depends on optical frequency[see Fig. 2(b)], resulting in strong separation of differentfrequency components between the waveguides, as shownin Figs. 8(a) and (c).We find that the operating bandwidth of conventional cou-pler consisting of straight parallel waveguides [Fig. 7(a)]can be improved dramatically by introducing special bend-ing of waveguide axes in the propagation direction asillustrated in Fig. 7(b). The effect of axes bending onlight propagation in two coupled waveguides can be ap-proximately described in terms of the effective couplingcoefficient Ceff , which takes the same form as for theinfinite array of coupled optical waveguides [50], seeEq. (3). Similar to the method used in Sec. 4, wefind that wavelength-insensitive effective coupling aroundthe central wavelength λ0 can be realized in a hybridstructure consisting of alternating straight and sinusoidalsegments [see Fig. 7(b)], x0(z) = 0 for 0 ≤ z ≤ z0,
x0(z) = A{cos [2π(z − z0)/(z1 − z0)] − 1} for z0 ≤ z ≤ z1,
x0(z) = 0 for z1 ≤ z ≤ L/2, and x0(z) = −x0(z − L/2)for L/2 ≤ z ≤ L. We set A = ξ̃2(z1 − z0)λ0(4π2n0a)−1and z1 = L/2 − z0. Effective coupling in this structure is
Ceff (λ) = C (λ)L−1[4z0 + (L − 4z0)J0(ξ̃2λ0/λ)], and the con-dition of wavelength-insensitive coupling (4) is satisfiedfor z0 = (L/4) [1− C1(ξ̃2J1(ξ̃2)C0)−1]−1. Here the coeffi-
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Figure 8. (a,b) Wavelength dependence of linear transmission
of straight and optimized curved couplers, respectively.
Shown are output powers in the left (dashed curve, P1)
and right (solid curve, P2) coupler arms when light is
launched into the left coupler arm at the input. Shading
marks spectral regions where the switching ratio P2/P1
is larger than 10. (c,d) Evolution of polychromatic light
with flat spectrum covering 450 − 700 nm in the straight
and in the optimized curved structures, respectively. Top
panels in (c) and (d) show the total intensity distributions
at the output [22].

cients C0 = C (λ0) and C1 = λ0 dC (λ)/dλ|λ=λ0 characterizecoupling dispersion for straight waveguides. In numer-ical simulations, we choose λ0 = 532 nm, and find thecoupling dispersion for waveguides shown in Fig. 7(a) as
C0 ' 0.13 mm−1 and C1 ' 0.52 mm−1. Then, we cal-culate the optimal parameters of the curved coupler, andobtain almost constant coupling Ceff (λ ' λ0) ' 0.31C0 ina broad spectral region.Such optimized curved coupler can be used to collectivelyswitch all spectral components around the central wave-length λ0 from one input waveguide to the other waveguideat the output if the device length is matched to the effectivecoupling length, i.e. L = π/ [2Ceff (λ0)] ' 39 mm. We thenperform numerical simulations based on full model Eqs. (1)and confirm that the proposed coupler structure indeed ex-hibits extremely efficient switching into the crossed statesimultaneously in a very broad spectral region of about450− 700 nm, which covers almost the entire visible, seeFigs. 8(b) and 8(d). This is in a sharp contrast to theconventional straight coupler [Figs. 8(a) and 8(c)] that can

Figure 9. Nonlinear switching of polychromatic light. (a) Power
distribution at the output ports of the coupler as a func-
tion of the input power. Polychromatic input is the same
as in Figs. 8(c) and 8(d). Solid and dashed curves
show power in the left (P1) and in the right (P2) out-
put coupler ports, respectively. (b) Sensitivity function
γ describing wavelength-dispersion of the nonlinear re-
sponse. (c,d) Propagation dynamics and output spec-
trum, respectively, in the nonlinear switched state real-
ized at the total input power Pin = 0.085. Nonlinear co-
efficient is α = 10 [22].

only operate in the spectral region of ∼ 510 − 560 nm,which is about five time less than for the proposed curvedcoupler. We note that slight decrease of the output powerat the red edge of the spectrum for the curved coupler[Fig. 8(b)] is caused by the radiation at the waveguidebends [50], but such losses do not affect the broadbandswitching behavior.At high input powers, nonlinear change of the refrac-tive index modifies waveguide propagation constant anddecouples waveguides from each other similar to othernonlinear coupler structures studied before [42, 44, 51].This causes switching from crossed state into the paral-lel state as shown in Figs. 9(a), 9(c) and 9(d). Remark-ably, nonlinear switching also takes place in a very broadspectral region ∼ 450 − 700 nm, which enables the cou-pler to act as an all-optical digital switch for polychro-matic light. In our simulations, we consider the case ofa photorefractive medium such as LiNbO3 where opticalwaveguides of arbitrary configuration can be fabricatedby titanium indiffusion [52, 53]. In the LiNbO3 waveg-uide arrays, the photovoltaic nonlinearity arises due tocharge excitations by light absorption and correspond-ing separation of these charges due to diffusion. Thespectral response of this type of nonlinearity depends onthe crystal doping and stoichiometry, and it may vary
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from crystal to crystal. In general light sensitivity ap-pears in a wide spectral range with a maximum for theblue spectral components [54], but the sensitivity extendsalso in the near infra-red region [55]. We approximatethe photosensitivity dependence by a Gaussian function
γ(λ) = exp[−log(2)(λ − λb)2/λ2

w ], where λb = 400 nm and
λw = 150 nm [Fig. 9(b)]. We have checked that the switch-ing behavior of the coupler remains essentially the samefor a range of other values of λw , which primarily affect thequantitative characteristics such as the switching power.
7. Periodically curved two-
dimensional waveguide arrays
The recent advances in waveguide fabrication with di-rect femtosecond laser writing [26–29] make it possibleto realize structures of arbitrary two-dimensional geom-etry. It is therefore important to extend the concept ofpolychromatic light diffraction management to the case oftwo-dimensional structures. As an example, we considera hexagonal modulated photonic lattice, [see Fig. 10(a)],where the waveguide axes are periodically curved inthe longitudinal propagation direction [see an examplein Fig. 10(b)]. We take into account the mode cou-pling between the neighboring waveguides, defined bythe real-valued coefficients C1, C2, and C3 which charac-terize diffraction in a straight hexagonal waveguide array[see Fig. 10(c)]. Using the approach developed for one-dimensional periodically curved waveguide arrays whichhas been outlined in Sec. 2, we show that after the fullbending period [z → z+L], the beam diffraction in the pe-riodically curved hexagonal waveguide array is the sameas in a straight hexagonal waveguide array with the ef-fective coupling coefficients [21]

C1eff = C1L−1 ∫ L

0 cos [ωẋ0(ζ)]dζ, (5)
C2eff = C2L−1 ∫ L

0 cos [ω2 ẋ0(ζ) + √32 ωẏ0(ζ)]dζ, (6)
C3eff = C3L−1 ∫ L

0 cos [ω2 ẋ0(ζ)− √32 ωẏ0(ζ)]dζ, (7)
where the two functions x0(z) ≡ x0(z + L) and y0(z) ≡
y0(z + L) define periodic axes bending in the two-dimensional lattice.We note that the values of the effective coupling coef-ficients depend not only on the specific bending pro-file x0(z) and y0(z), but also on the frequency ω, simi-lar to the bending-induced coupling dispersion which ap-pears in one-dimensional periodically curved waveguide

Figure 10. Sketch of modulated hexagonal photonic lattice. (a)
Transverse lattice cross-section. Shading marks the
unit cell, each lattice site has six nearest neighbors.
(b) Schematic of the individual waveguide with the axis
periodically curved in the z-direction. (c) Couplings be-
tween the nearest neighbours in the hexagonal lattice.
Lattice sites are numbered along the n and m-axes [21].

arrays [20]. This means that different frequency compo-nents may experience very different types of diffraction in
the same physical structure. This feature provides uniqueopportunities for the control and reshaping of polychro-matic light beams in two dimensional photonic lattices.To illustrate this effect, we consider the propagation oflight beams of different wavelengths in the same modu-lated hexagonal lattice with a simple sinusoidal bendingprofile in the x − z plane: x0(z) = A1{cos [4πz/L]− 1} for0 ≤ z ≤ L/2, x0(z) = −x0(z − L/2) for L/2 ≤ z ≤ L, and
y0(z) ≡ 0.From the Eqs. (5)-(7) it follows that for the light wave-length such that the normalized frequency is ω1 =
ξ̃1L/2πA1, the diagonal couplings vanish, C2eff = C3eff =0, while the horizontal coupling is reduced, C1eff =
C1J0(2ξ̃1) ' −0.24C1. Then, the beam at this wavelengthwill experience a one dimensional diffraction, as shown inFig. 11(a). In this example, some weak coupling to up-per and lower lattice rows also takes place. This is dueto high-order coupling and increased scattering effects,which are stronger for long wavelengths. We expect thatthe high-order coupling can be suppressed in modulatedlattices by a special design of waveguide bending pro-files, similar to results demonstrated for one-dimensionalwaveguide arrays [56].On the other hand, for the frequency ω2 = ξ̃L/2πA1, where
ξ̃ ' 2.61 is determined from the equation J0(ξ̃) = J0(2ξ̃),all three couplings are reduced simultaneously by thesame factor C1,2,3eff = C1,2,3J0(ξ̃) ' −0.10C1,2,3, and thesymmetry of the original hexagonal lattice is exactly pre-served, see Fig. 11(b) where the beam experiences reduced
hexagonal diffraction.For the frequency ω3 = ξ̃2L/4πA1, the horizontal couplingis canceled C1eff = 0, while the diagonal couplings arereduced symmetrically C2,3eff = C2,3J0(ξ̃2/2) ' −0.17C2,3.Accordingly, the beam at this frequency experiences a
rectangular diffraction [see Fig. 11(c)]. Indeed, despite
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Figure 11. Examples of different diffraction patterns in the same
modulated hexagonal lattice. (a) One-dimensional
diffraction at the wavelength λ = 633 nm. (b) Hexagonal
diffraction at the wavelength λ = 583 nm. (c) Rectan-
gular diffraction at the wavelength λ = 550 nm [21].

the nontrivial beam evolution in between the periods, thediffraction pattern after each bending period is similar todiffraction patterns which are characteristic of the dis-crete diffraction in square and rectangular photonic lat-tices, where each lattice site is coupled to four nearestneighbors.
8. Conclusions
We have presented an overview of the basic theoreticalstudies of spatio-spectral control of polychromatic light inperiodically modulated photonic lattices. We have demon-strated that the wavelength dispersion can be engineeredin optimized arrays of curved optical waveguides allow-ing an efficient diffraction management of polychromaticlight beams, and realization of multicolor Talbot effectfor polychromatic light patterns, which is not possible infree space or in conventional photonic lattices. We havealso demonstrated that the nonlinear interaction of differ-ent spectral components in specially designed periodicallycurved directional coupler enables broadband all-opticalswitching of polychromatic light. Our simulations indi-cate that these theoretically predicted effects can be ob-served experimentally in a variety of photonic structures.We anticipate that suggested approaches for the switch-ing and control of polychromatic light beams may also

find applications for tunable shaping of optical pulses withultra-broad spectrum, offering additional functionality forbroadband optical systems and devices.
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