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Abstract: We overview our recent theoretical results on spatio-spectral control, diffraction management, and broad-
band all-optical switching of polychromatic light in periodically curved one and two dimensional arrays of
coupled optical waveguides. In particular, we show that polychromatic light beams and patterns produced
by white-light and supercontinuum sources can experience wavelength-independent normal, anomalous,
or zero diffraction in specially designed structures. We also demonstrate that in the nonlinear regime, it
is possible to achieve broadband all-optical switching of polychromatic light in a directional waveguide
coupler with special bending of the waveguide axes. Our results suggest novel opportunities for cre-
ation of all-optical logical gates and switches which can operate in a very broad frequency region, e.g.,
covering the entire visible spectrum.
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1 . |ntrOdUCti0n ing to self-collimation effect where the average beam
width does not change over hundreds of free-space diffrac-
tion lengths [5]. On the other hand, diffraction can be made

negative allowing for focusing of diverging beams [6] and

Flexible shaping and steering of optical beams can be
realized in periodic photonic structures, where the fun-
damental aspects of light propagation such as the beam
diffraction and refraction can be engineered to suit spe-
cific application requirements [1, 2. In particular, the nat-
ural tendency of beams to broaden during propagation
can be controlled through diffraction management [3, 4].
Diffraction can be eliminated in periodic structures lead-
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imaging of objects with sub-wavelength resolution [7, 8].

Advances in the generation of light with broadband or
supercontinuum spectrum in photonic-crystal fibers [9-11]
open many new possibilities for a wide range of appli-
cations including optical frequency metrology [12], spec-
troscopy [13], tomography [14], and optical characteriza-
tion of photonic crystals [15] However, extended pho-
tonic structures are primarily optimized for beam shap-
ing and deflection in a narrow-frequency range. Indeed,
the physics of periodic structures is governed by scatter-
ing of waves from modulations of the refractive index and
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Figure 1. Schematic drawing of a curved waveguide array com-
posed of the periodically bended waveguides.

their subsequent interference. This is a resonant process,
which is sensitive to both the frequency and propagation
angle. Strong dependence of the beam refraction on the
optical wavelength known as superprism effect was ob-
served in photonic crystals [16]. Spatial beam diffraction
also depends on the wavelength; for example it was found
in recent experiments [5, 17] that the effect of beam self-
collimation through diffraction cancellation was restricted
to a spectral range of less than 10% of the central fre-
quency. Such a strong dependence of the spatial beam
dynamics on wavelength can be used for multiplexing and
demultiplexing of signals in optical communication net-
works [18, 19].
explore the potential of periodic photonic structures for
tunable spatial shaping of the polychromatic light beams.

On the other hand, it is important to

In this paper, we overview our recent theoretical re-
sults [20-22] on shaping and switching of polychromatic
light beams in arrays of coupled optical waveguides, which
axes are periodically curved in the propagation direc-
tion as schematically shown in Fig. 1. In particular,
we show that intrinsic wavelength-dependence of diffrac-
tion strength in periodic systems can be compensated by
geometrically-induced dispersion and introduce the con-
cept of wavelength-independent diffraction management
in a very broad frequency range covering a spectral range
up to 50% of the central frequency. This opens up novel
opportunities for efficient self-collimation, focusing, and
We also
demonstrate that in the nonlinear regime, it is possible to

shaping of white-light beams and patterns.

achieve broadband all-optical switching of polychromatic
light in a directional waveguide coupler with special bend-
ing of the wavegquide axes. Our results suggest new oppor-
tunities for all-optical control of polychromatic light, offer-
ing additional flexibility compared to the spatial-spectral
reshaping recently demonstrated experimentally in arrays
of straight optical waveguides [23-25].

The paper is organized as follows. In Sec. 2 we present
the basic concepts of polychromatic light propagation in
periodically curved waveguide arrays at low light intensity
(linear propagation) and introduce the concept of broad-
band diffraction management in modulated lattices. In
Sec. 3 and Sec. 4 we describe how to design modulated
lattices optimized for broadband diffraction cancellation,
and wavelength-independent normal or anomalous diffrac-
tion, respectively. We then show how these structures
can be used to realize multicolor discrete Talbot effect for
polychromatic light patterns in Sec. 5. Sec. 6 describes
the nonlinear polychromatic coupler designed for collec-
tive all-optical switching of frequency components in a
very broad spectral region. Finally, in Sec. 7 we briefly
describe novel opportunities for spatio-spectral shaping of
supercontinuum radiation in two-dimensional modulated
photonic lattices.

2. Light propagation in periodically
curved waveguide arrays

We study propagation of beams emitted by a continuous
white-light source in a periodic array of coupled optical
waveguides, where the waveguide axes are periodically
curved in the propagation direction z, as it is schemat-
ically shown in Fig. 1(a). Such waveguide array struc-
tures can be created using established fabrication tech-
niques [3, 17, 26-29].

In media with slow nonlinear response, where the co-
herent four-wave-mixing processes are suppressed and
optically-induced refractive index change is defined by the
time-averaged light intensity of different spectral compo-
nents [30, 31], the overall beam dynamics is governed by
the set of normalized paraxial equations for the complex
beam envelopes E(x, z; A) at vacuum wavelengths A,,,

0E, z A, O%E, 2z,
"oz 47nox? Ox? Am

{vix =x0(2)] + G} E, = 0,

(1)
where x and z are the transverse and propagation coor-
dinates normalized to the characteristic values x; = 1 pym
and z; =1 mm, respectively, c is the speed of light, ng is
the average refractive index of the medium, v(x) = v(x+d)
is the transverse refractive index profile of the wavequide
array with the transverse period d, longitudinal bending
profile of the waveguide axis xp(z) = xo(z + L) defines
the periodic longitudinal lattice modulation with the pe-
riod L » d, G = aM~" Y™ . y(A,)|En|? defines nonlinear
change of refractive index, a is the nonlinear coefficient,
and y(A) accounts for dispersion of the nonlinear response.
In numerical simulations, we choose a large number of
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Figure 2.

Discrete diffraction in (a) straight waveguide array with
period d = 9 ym. (b) Coupling coefficient is normal-
ized to the coupling at the central wavelength Cp. (c-e)
Evolution of beam intensity and output intensity profiles
after 80 mm propagation of a 3 ym wide input beam for
(c) A = 580 nm, (d) Ay = 532 nm, and (e) A, = 490
nm, which correspond to the points ‘c’, ‘d’, and ‘e’ in (b).
Waveguide width is 3 ym and substrate refractive index
is np = 2.35 [20].

components M = 50 to model accurately the dynamics of
beams with broadband spectrum.

When the tilt of beams and waveguides at the input facet
is less than the Bragg angle at each wavelength, the
beam propagation is primarily characterized by coupling
between the fundamental modes of the individual waveg-
uides. Then, beam evolution can be described by the tight-
binding equations taking into account periodic wavequide
bending [17, 32], which in the linear regime take the form

i

;;" + C(w) [Vt + Vo] = wio(2)n¥,,  (2)
where W, (z; w) are the mode amplitudes, n is the waveg-
uide number, w = 2mngd/A is the dimensionless fre-
quency, and the dots stand for the derivatives. Coefficient
C(w) defines a coupling strength between the neighboring
waveguides, and it characterizes diffraction strength in a
straight waveguide array with xo = 0 [33, 34]. The cou-
pling coefficient increases with the wavelength [35], and
accordingly the beam broadening is substantially larger
at long wavelengths, see Figs. 2(b-e).

In order to specially distinguish the effects due to diffrac-
tion management, we consider the light propagation in the
waveguide arrays with symmetric bending profiles, since
asymmetry may introduce other effects due to the modi-
fication of refraction, such as beam dragging and steer-
ing [36-38]. Specifically, we require that xo(z) = f(z — 2)

for a given coordinate shift Z, where function f(z) is sym-
metric, f(z) = f(—z). Then, by analyzing the plane-wave
solutions of Egs. (2) [17, 20, 32], it can be shown that after
the full modulation period (z — z+L) the beam diffraction
in the periodically curved wavequide array is the same as
in a straight lattice with the effective coupling coefficient

L
Cef(w) = C(w)L’1/0 cos[wxo({)] d<. (3)

Therefore, diffraction of multicolor beams is defined by
an interplay of the additional bending-induced dispersion
introduced through the frequency dependence of the inte-
grand in Eq. (3), and the intrinsic frequency dependence
of the coupling coefficient in a straight waveguide array
C(w). We suggest that spatial evolution of all frequency
components can be synchronized allowing for shaping and
steering of multicolor beams, when effective coupling re-
mains constant around the central frequency wy,

dCe(w)
dw

=0, 4)

w=w

and we demonstrate below that this condition can be sat-
isfled by introducing special wavequide bending profiles.

3. Self-collimation of white light

First, we demonstrate the possibility for self-collimation
of white-light beams, where all the wavelength compo-
nents remain localized despite a nontrivial evolution in
the photonic structure. Self-collimation regime is real-
ized when the diffraction is suppressed and the effective
coupling coefficient vanishes, Cot = 0. This effect was
previously observed for monochromatic beams in arrays
with zigzag [3] and sinusoidal [17] bending profiles.

For example, for a sinusoidal modulation function of the
form xo(z) = Ao{cos[2nz/L] — 1}, which is similar to
the one which has been employed to observe experimen-
tally the effect of dynamical localization [17], the self-
collimation condition for the frequency wy is realized for
the modulation amplitude A = Ay such that 2rAywy/L =
&, where & ~ 2.40 is the first root of the Bessel function
of the first kind of zero order Jy. However, in such structure
the condition of zero coupling cannot be satisfied simulta-
neously with Eq. (4), resulting in strong beam diffraction
under frequency detuning from the exact self-collimation
value wy by several percent [17], see an example of the
beam propagation in a sinusoidally curved wavequide ar-
ray for different wavelengths in Fig. 3.
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Figure 3. Beam propagation in a sinusoidal waveguide array.

(a) Waveguide bending profile with the period L = 18
mm and modulation amplitude Ay = 27 ym. (b) Effective
coupling normalized to the coupling in the straight array
at the central wavelength Cy = C(Ao). (c-e) Evolution of
the beam intensity and output intensity profiles for dif-
ferent wavelengths (c) A, = 560 nm, (d) Ao = 532 nm,
and (e) A, = 400 nm, which correspond to points ‘c’, ‘d’,
and ‘e’ in (b). Self-collimation takes place for the central
wavelength Ap = 532 nm.

We find that broadband diffraction management becomes
possible in hybrid structures with a periodic bending pro-
file that consists of alternating segments [see example in
Fig. 4(a)], xo(z) = Ai{cos[2mz/zg] — 1} for 0 < z < z,
x0(z) = Ax{cos[2m(z — z0)/(LI2 — zp)] — 1} for zp < z <
L/2, and xo(z) = —xo(z — L/2) for L/2 < z < L. Effective
coupling in such hybrid structure can be calculated an-
alytically, Cui(w) = C(w)2Lz0Jo(&) + (L2 — 20)Jo(&2)),
where J, is the Bessel function of the first kind of the
order m, & = 2nA1w/zp, and & = 2nAw/ (L2 — Zp).

We select here a class of symmetric profiles of the waveg-
uide bending to avoid asymmetric beam distortion due to
higher-order effects such as third-order diffraction. Addi-
tionally, the wavequides are not tilted at the input, iLe.
%0(0) = 0, in order to suppress excitation of higher-order
photonic bands by incident beams inclined by less than
the Bragg angle. The effect of Zener tunneling to higher
bands [39, 40] and associated scattering losses can be
suppressed irrespective of the waveguide tilt inside the
photonic structure by selecting sufficiently slow modula-
tion to minimize the curvature Xo(z) and thereby achieve
adiabatic beam shaping.

In order to realize broadband self-collimation, we choose
the structure parameters such that & (wp) = &, and
&(wg) = &, where & ~ 5.52 is the second root of the
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Figure 4.

Broadband self-collimation in an optimized modulated
waveguide array. (a) Waveguide bending profile with the
period L = 60 mm and modulation parameters A; =
27 ym, A, = 42 pm, z; = 18 mm. (b) Effective cou-
pling normalized to the coupling in the straight array at
the central wavelength G, = C(Ao). (c-e) Evolution of
the beam intensity and output intensity profiles for differ-
ent wavelengths (c) A, = 560 nm, (d) Ay = 532 nm, and
(e) A, = 400 nm, which correspond to points ‘c’, ‘d’, and
‘e’ in (b).

function Jo. Then, the self-collimation condition is exactly
fulfilled at the central frequency wy, Cei(wo) = 0, and
simultaneously the condition of wavelength-independent
coupling in Eq. (4) is satisfied for the following modulation
parameters, Ay = [51 SNE)R2a(&NE) - §1j1(5~1))w0]L/2,
A = —[/1(51)/11(52)}/\1, and zp = 2JTwoA1/<?1- As a re-
sult, we obtain an extremely flat coupling curve shown in
Fig. 4(b) where the point ‘d’ corresponds to the central
wavelength.

In this hybrid structure not only the first deriva-
tive vanishes according to Eq. (4), but the second

) P Clw)ldo?]_,,
]21/2(21)11(32)—3212(22)11(21)] < 10-"5. As a result, the

effective coupling remains close to zero in a very broad
spectral region of up to 50% of the central frequency. We
note that the modulation period L is a free parameter, and

~

derivative vanishes as well,

it can always be chosen sufficiently large to avoid scat-
tering losses due to waveguide bending since the maxi-
mum waveguide curvature is inversely proportional to the
period, max|%(z)| ~ L~'. Although the beam evolution
inside the array does depend on the wavelength, the in-
cident beam profile is exactly restored after a full modu-
lation period, see examples in Figs. 4(c-e), where results
of numerical simulations of Eq. (1) are presented. Self-
collimation is preserved even at the red spectral edge,
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where coupling length is the shortest and discrete diffrac-
tion in the straight array is the strongest [cf. Fig. 4(c)
and Fig. 2(c)]. The hybrid structure provides a dramatic
improvement in the bandwidth for self-collimation effect
compared to the array with a simple sinusoidal modu-
lation, where beams exhibit diffraction under small fre-
quency detuning, see Fig. 3.

4. Broadband diffraction manage-
ment

We now analyze the conditions for wavelength-
independent normal or anomalous diffraction that may find
applications for reshaping of multicolor beams. In order to
reduce the device dimensions, it is desirable to increase
the absolute value of the effective coupling and simulta-
neously satisfy Eq. (4) to achieve broadband diffraction
management. We find that Eq. (4) can be satisfied in the
two-segment hybrid structure with zp = L/2 and A; =
(€/2mwo) L/2. Here a set of possible parameter values &
is determined from the relation Jo(&)//1(E) = Go&/Ciwo,
where Gy = C(wp) and G = dC(w)/dw|w:mO characterize
dispersion of coupling in a straight array. It is possible
to obtain both normal and anomalous diffraction regimes
for normally incident beams, corresponding to positive
and negative effective couplings Ceni(wo) = Colo(&) de-
pending on the chosen value of & For example, for the
waveguide array shown in Fig. 2, at the central frequency
wo = 250 [corresponding wavelength is Ag = 532 nm] cal-
culated numerically coupling parameters are ¢, ~ 0.13
mm~" and C; ~ —0.0021 mm~'. Then, constant positive
coupling around the central frequency Ce(wg) ~ 0.25C,
is realized for & ~ 6.47 and constant negative coupling
Cei(wg) ~ —0.25C, for & ~ 2.97.

We perform a comprehensive analytical and numerical
analysis, and find that a hybrid structure with bend-
ing profile consisting of one straight (e Ay = 0)
and one sinusoidal segment can provide considerably
improved performance if woGi/Go > Eohi(Er)o(Eer),
where value &, =~ 5.84 is found from the equation
1 (&er) + Ger Ho(&er) = J2(Eer)] 1200 (Eer) = 1] + Eerdi(Eer) =
0. Under such conditions, larger values of positive effective
coupling can be obtained in a hybrid structure with A; =
O, Az = [C1 Ceﬁ(wo)/ZﬂCgh(fz)]L/Z, zy = [Ceﬁ(wg)/Co]L/Z.
In this structure, the effective coupling at central frequency
is Cei(wo) = HCH(E)[ECN (&) + woCi)

Example of a hybrid structure which provides strong
wavelength-independent diffraction is shown in Fig. 5(a),
and the corresponding effective coupling is plotted in
Fig. 5(b). The diffraction rate in this optimized structure is
almost the same in a broad spectral region, see examples
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Figure 5. Wavelength-independent diffraction in an optimized peri-
odically curved waveguide array. (a) Waveguide bending
profile with the period L = 40 mm and (b) correspond-
ing effective coupling normalized to the coupling in the
straight array at the central wavelength C; = C(Ag). (c-
e) Evolution of beam intensity and output intensity pro-
files after propagation of two full periods for the wave-
lengths (c) A, = 580 nm, (d) Ao = 532 nm, and (e) A, = 490
nm, which correspond to points ‘c’, ‘d’, and ‘e’ in (b) [20].

for three wavelengths in Figs. 5(c-e). We note that the
output beam profiles at these wavelengths are substan-
tially different after the same propagation length in the
straight wavequide array, as shown in Figs. 2(c-e).

5. Multicolor Talbot effect

As one of the applications of the broadband diffrac-
tion management we consider a multicolor Talbot ef-
fect which allows to manipulate polychromatic light pat-
terns. The Talbot effect, when any periodical monochro-
matic light pattern reappears upon propagation at cer-
tain equally spaced distances, has been known since the
famous discovery in 1836 [41].
that the Talbot effect is also possible in discrete sys-

It was recently shown

tems for certain periodic input patterns [35]. For exam-
ple, for the monochromatic periodic input pattern of the
form {1,0,0,1,0,0,...}, Talbot revivals take place at the
distance LY = (271/3)[1/C(w)], see Fig. 6(a).

Period of the discrete Talbot effect in the waveguide ar-
ray is inversely proportional to the coupling coefficient
C(w), which strongly depends on frequency, see Fig. 2(b).
Therefore, for each specific frequency Talbot recurrences
occur at different distances [35], and periodic intensity re-
vivals disappear for the multicolor input, see Fig. 6(b).
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Figure 6. (a) Monochromatic Talbot effect in the straight waveguide
array shown in Fig. 2(a): periodic intensity revivals every
L‘T” = 16.5 mm of the propagation distance for the input
pattern {1,0,0,1,0,0,...} and the wavelength Ay = 532
nm. (b) Disappearance of the Talbot carpet in the straight
array when input consists of three components with equal
intensities and different wavelengths A, = 580 nm [red-
shifted], Ao = 532 nm [green], and A, = 490 nm [blue-
shifted]. (c) Multicolor Talbot effect in the optimized
structure with wavelength-independent diffraction [see
Fig. 5.] Half of the bending period L/2 = L‘TZ' = 532
mm is equal to the Talbot distance for the corresponding
effective coupling length [20].

Multicolor Talbot effect is also not possible in free space
where revival period is proportional to frequency. Most
remarkably, we demonstrate that multicolor discrete Tal-
bot effect can be observed in optimized modulated waveg-
uide arrays with wavelength-independent diffraction, see
Fig. 6(c). In this example, we use the shape of struc-
ture with constant positive diffraction shown in Fig. 5, and
choose half of the bending period to be equal to the period
of the Talbot recurrences for the corresponding effective
coupling in this structure, L(Tz) = (27/3) [1/ Cer(w)].

6. Directional coupler for white
light

Directional waveguide coupler is the device which utilizes
light tunneling between two optical waveguides placed in
close proximity to each other, as schematically shown in
Fig. 7(a).
a directional coupler made of straight identical waveg-
uides, the power is periodically exchanged between the
two waveguides [42] with the period which is defined by
the coupling length, Z. = 7/[2C(})], where C(A) is the cou-
pling coefficient. Then, the complete power transfer from

In the linear regime, as light propagates in

one waveguide at the input to the other waveguide at the
output can be realized by choosing the device length as
an odd number of coupling lengths.

Over the last decades, nonlinear waveguide couplers, first
introduced by Jensen [42] and Maier [43], have attracted
a great deal of attention as major candidates for cre-
ation of ultra-fast all-optical switches, as at high input
powers, intensity-dependent change of the refractive in-

90

0
X[Hm]

Figure 7. (a) Conventional directional coupler composed of two

evanescently coupled straight waveguides. (b) Polychro-
matic light coupler with specially designed bending of
the waveguide axes. Waveguide width and separation
between waveguide axes are 3 ym and 9 ym, respec-
tively. Refractive index contrast is Av = 8 x 10, and
no = 2.35.

dex through optical nonlinearity creates detuning between
the waveguides which can suppress power transfer be-
tween coupler arms, such that light remains in the input
waveguide. Since the first experimental demonstration of
a subpicosecond nonlinear coupler switch in a dual-core
fiber [44], various aspects of switching in different coupler
configurations has been extensively analyzed [45-49].
However, conventional coupler can only perform switch-
ing of signals with rather limited spectral bandwidth, be-
cause the coupling length depends on optical frequency
[see Fig. 2(b)] resulting in strong separation of different
frequency components between the wavequides, as shown
in Figs. 8(a) and (c).

We find that the operating bandwidth of conventional cou-
pler consisting of straight parallel waveguides [Fig. 7(a)]
can be improved dramatically by introducing special bend-
ing of wavequide axes in the propagation direction as
illustrated in Fig. 7(b). The effect of axes bending on
light propagation in two coupled waveguides can be ap-
proximately described in terms of the effective coupling
coefficient Cg, which takes the same form as for the
infinite array of coupled optical waveguides [50] see
Eq. (3). Similar to the method used in Sec. 4, we
find that wavelength-insensitive effective coupling around
the central wavelength Ay can be realized in a hybrid
structure consisting of alternating straight and sinusoidal
segments [see Fig. 7(b)], xo(z) = 0 for 0 < z < 2z,
x0(z) = A{cos[27(z — z0)/(z1 — 20)] — 1} for 2z < z < z,
xo(z) = 0 for zy < z < L/2, and xo(2) = —xo(z — L/2)
for /2 < z< L Weset A= 52(21 — 20)Ao(4m?nga)™
and z; = L/2 — z,. Effective coupling in this structure is
Ceﬂ()\) = C()L)L_1[4ZO + (L — 4Z())j0((?2)\0/)\)], and the con-
dition of wavelength-insensitive coupling (4) is satisfied

for zo = (L/4) [1 - C1(§2j1($2)C0)*1]71. Here the coeffi-



Ivan L. Garanovich, Andrey A. Sukhorukov, Yuri S. Kivshar

O 0 S~ -_
400 500 600 700 400 500 600 700

Alnm] Alnm]

90

0 -90 0
x{pm] X[pm]

Figure 8.

(a,b) Wavelength dependence of linear transmission
of straight and optimized curved couplers, respectively.
Shown are output powers in the left (dashed curve, P;)
and right (solid curve, P;) coupler arms when light is
launched into the left coupler arm at the input. Shading
marks spectral regions where the switching ratio P,/P;
is larger than 10. (c,d) Evolution of polychromatic light
with flat spectrum covering 450 — 700 nm in the straight
and in the optimized curved structures, respectively. Top
panels in (c) and (d) show the total intensity distributions
at the output [22].

cients Gy = C(Ag) and G = A dC()\)/d)\|A:A0 characterize
coupling dispersion for straight waveguides. In numer-
ical simulations, we choose Ay = 532 nm, and find the
coupling dispersion for wavequides shown in Fig. 7(a) as
Co ~ 013 mm™" and G ~ 052 mm~'. Then, we cal-
culate the optimal parameters of the curved coupler, and
obtain almost constant coupling Ce(A =~ Ag) ~ 0.31(, in

a broad spectral region.

Such optimized curved coupler can be used to collectively
switch all spectral components around the central wave-
length Ag from one input wavequide to the other wavequide
at the output if the device length is matched to the effective
coupling length, i.e. L = 71/[2Cei(Ao)] = 39 mm. We then
perform numerical simulations based on full model Egs. (1)
and confirm that the proposed coupler structure indeed ex-
hibits extremely efficient switching into the crossed state
simultaneously in a very broad spectral region of about
450 — 700 nm, which covers almost the entire visible, see
Figs. 8(b) and 8(d). This is in a sharp contrast to the
conventional straight coupler [Figs. 8(a) and 8(c)] that can

"™N®

0 N
400 500 600 700

Alnm]

Figure 9. Nonlinear switching of polychromatic light. (a) Power
distribution at the output ports of the coupler as a func-
tion of the input power. Polychromatic input is the same

as in Figs. 8(c) and 8(d). Solid and dashed curves
show power in the left (P;) and in the right (P,) out-
put coupler ports, respectively. (b) Sensitivity function
y describing wavelength-dispersion of the nonlinear re-
sponse. (c,d) Propagation dynamics and output spec-
trum, respectively, in the nonlinear switched state real-
ized at the total input power P;, = 0.085. Nonlinear co-
efficient is o = 10 [22].

only operate in the spectral region of ~ 510 — 560 nm,
which is about five time less than for the proposed curved
coupler. We note that slight decrease of the output power
at the red edge of the spectrum for the curved coupler
[Fig. 8(b)] is caused by the radiation at the waveguide
bends [50], but such losses do not affect the broadband
switching behavior.

At high input powers, nonlinear change of the refrac-
tive index modifies waveguide propagation constant and
decouples wavequides from each other similar to other
nonlinear coupler structures studied before [42, 44, 51].
This causes switching from crossed state into the paral-
lel state as shown in Figs. 9(a), 9(c) and 9(d). Remark-
ably, nonlinear switching also takes place in a very broad
spectral region ~ 450 — 700 nm, which enables the cou-
pler to act as an all-optical digital switch for polychro-
matic light. In our simulations, we consider the case of
a photorefractive medium such as LiNbOs; where optical
waveguides of arbitrary configuration can be fabricated
by titanium indiffusion [52, 53]. In the LiNbO; waveg-
uide arrays, the photovoltaic nonlinearity arises due to
charge excitations by light absorption and correspond-
ing separation of these charges due to diffusion. The
spectral response of this type of nonlinearity depends on
the crystal doping and stoichiometry, and it may vary
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from crystal to crystal. In general light sensitivity ap-
pears in a wide spectral range with a maximum for the
blue spectral components [54], but the sensitivity extends
also in the near infra-red region [55]. We approximate
the photosensitivity dependence by a Gaussian function
Y(A) = exp[—log(2)(A — A)?/A2], where A, = 400 nm and
Ay = 150 nm [Fig. 9(b)]. We have checked that the switch-
ing behavior of the coupler remains essentially the same
for a range of other values of A,,, which primarily affect the
quantitative characteristics such as the switching power.

7. Periodically curved two-

dimensional waveguide arrays

The recent advances in wavequide fabrication with di-
rect femtosecond laser writing [26-29] make it possible
to realize structures of arbitrary two-dimensional geom-
etry. It is therefore important to extend the concept of
polychromatic light diffraction management to the case of
two-dimensional structures. As an example, we consider
a hexagonal modulated photonic lattice, [see Fig. 10(a)],
where the wavequide axes are periodically curved in
the longitudinal propagation direction [see an example
in Fig. 10(b)] We take into account the mode cou-
pling between the neighboring waveguides, defined by
the real-valued coefficients C;, G, and (3 which charac-
terize diffraction in a straight hexagonal waveguide array
[see Fig. 10(c)]. Using the approach developed for one-
dimensional periodically curved waveguide arrays which
has been outlined in Sec. 2, we show that after the full
bending period [z — z+ L], the beam diffraction in the pe-
riodically curved hexagonal waveguide array is the same
as in a straight hexagonal wavequide array with the ef-
fective coupling coefficients [21]

L

Gt = GL™ / cos[wxo(Q)] dC, (5)
0
L

Coti = GL™ /0 cos[‘z"xo(()Jr‘fwgo(c)] d¢, (6)

CBeﬂ

L
Gl /0 cos[‘;xo(c)_\fwgo(c)] dg, (7)

where the two functions x(z) = xo(z + L) and yo(z) =
yo(z + L) define periodic axes bending in the two-
dimensional lattice.

We note that the values of the effective coupling coef-
ficients depend not only on the specific bending pro-
file xo(z) and yo(z), but also on the frequency w, simi-
lar to the bending-induced coupling dispersion which ap-
pears in one-dimensional periodically curved wavequide

Figure 10. Sketch of modulated hexagonal photonic lattice. (a)
Transverse lattice cross-section. Shading marks the
unit cell, each lattice site has six nearest neighbors.
(b) Schematic of the individual waveguide with the axis
periodically curved in the z-direction. (c) Couplings be-
tween the nearest neighbours in the hexagonal lattice.
Lattice sites are numbered along the n and m-axes [21].

arrays [20]. This means that different frequency compo-
nents may experience very different types of diffraction in
the same physical structure. This feature provides unique
opportunities for the control and reshaping of polychro-
matic light beams in two dimensional photonic lattices.
To illustrate this effect, we consider the propagation of
light beams of different wavelengths in the same modu-
lated hexagonal lattice with a simple sinusoidal bending
profile in the x — z plane: xo(z) = Ai{cos[4nz/L]— 1} for
0<z< L2 x(z) = —xo(z — L/2) for L/2 < z < L, and
yo(z) = 0.

From the Eqgs. (5)-(7) it follows that for the light wave-
length such that the normalized frequency is w;

& L12nA,, the diagonal couplings vanish, Coef = Gief =
0, while the horizontal coupling is reduced, Gy =
C1jo(2&:1) ~ —0.24C;. Then, the beam at this wavelength
will experience a one dimensional diffraction, as shown in
Fig. 11(a).
per and lower lattice rows also takes place. This is due

In this example, some weak coupling to up-

to high-order coupling and increased scattering effects,
which are stronger for long wavelengths. We expect that
the high-order coupling can be suppressed in modulated
lattices by a special design of waveguide bending pro-
files, similar to results demonstrated for one-dimensional
waveguide arrays [56].

On the other hand, for the frequency w, = 3L/2ﬂA1, where
& ~ 261 is determined from the equation 10(3) = 10(23),
all three couplings are reduced simultaneously by the
same factor Gy e = C1_2,3]0(2) ~ —0.10G 23, and the
symmetry of the original hexagonal lattice is exactly pre-
served, see Fig. 11(b) where the beam experiences reduced
hexagonal diffraction.

For the frequency w3 = &L/47tA,, the horizontal coupling
is canceled G = 0, while the diagonal couplings are
reduced symmetrically Gz = C2,3jo(5~2/2) ~ —0.17C,3.
Accordingly, the beam at this frequency experiences a
rectangular diffraction [see Fig. 11(c)]. Indeed, despite
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Figure 11. Examples of different diffraction patterns in the same
modulated hexagonal lattice. (a) One-dimensional
diffraction at the wavelength A = 633 nm. (b) Hexagonal
diffraction at the wavelength A = 583 nm. (c) Rectan-
gular diffraction at the wavelength A = 550 nm [21].

the nontrivial beam evolution in between the periods, the
diffraction pattern after each bending period is similar to
diffraction patterns which are characteristic of the dis-
crete diffraction in square and rectanqular photonic lat-
tices, where each lattice site is coupled to four nearest
neighbors.

8. Conclusions

We have presented an overview of the basic theoretical
studies of spatio-spectral control of polychromatic light in
periodically modulated photonic lattices. We have demon-
strated that the wavelength dispersion can be engineered
in optimized arrays of curved optical waveguides allow-
ing an efficient diffraction management of polychromatic
light beams, and realization of multicolor Talbot effect
for polychromatic light patterns, which is not possible in
free space or in conventional photonic lattices. We have
also demonstrated that the nonlinear interaction of differ-
ent spectral components in specially designed periodically
curved directional coupler enables broadband all-optical
switching of polychromatic light. Our simulations indi-
cate that these theoretically predicted effects can be ob-
served experimentally in a variety of photonic structures.
We anticipate that suggested approaches for the switch-
ing and control of polychromatic light beams may also

find applications for tunable shaping of optical pulses with
ultra-broad spectrum, offering additional functionality for
broadband optical systems and devices.
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