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Abstract 

In this paper, a robust and optimal control 
method is proposed for the attitude control 
problem of multirotors. The designed controller 
consists of an optimal controller and a robust 
compensator. The optimal controller is designed 
based on the linear quadratic regulation control 
method for the desired tracking of the nominal 
linear system, whereas the robust compensator is 
introduced to restrain the influence of multiple 
uncertainties. Tracking errors are proven to be 
bounded with specified boundaries ultimately. 
Simulation and experimental results on the 
hexarotor demonstrate the effectiveness of the 
proposed robust optimal control approach.  

1 Introduction 

In the automatic control field, multirotors have received 
much attention in respect that they have some 
adaventages over the regular helicopters. First, fixed-pitch 
rotors are used instead and their lift thrusts can be altered 
without swashplatse. Second, the payload and the 
maneuverability of the rotorcrafts can be inceased by 
multiple rotors. Third, for a given size, each rotor of the 
multirotors is smaller than the equivalent main rotor of a 
regular helicopter due to the usage of multiple rotors and 
thus the safety of the operations can also be enhanced. 
Consequently, in the automatic control circle, intensive 
efforts, have been devoted to the control problem of 
multirotors. In this paper, we investigate the robust 
control problem for hexarotors (see, Fig. 1). Compared to 
the quadrotors, hexarotors can carry more payload and are 
more highly maneuverable.  
 Previous studies on multirotors mainly focused 
on achieving automatic flight for quadrotors. The PID 
control methods (see, [Mahony et al., 2012], [Hoffmann 
et al., 2011], and [Altug et al., 2005]) and the nonlinear 
control methods (see, [Castillo et al., 2004], [Tayebi and 
McGilvray, 2006], [Das et al., 2009], [Bertrand et al., 
2011], [Aguilar-Ibanez et al., 2012], and 
[Guerrero-Castellanos et al., 2011] to mention a few)  

 
Fig. 1.  The hexarotor in the air.  

 
were discussed for the quadrotors to achieve attitude and 
position control. These works involve designing flight 
controllers based on accurate model, whereas the effects 
of uncertainties were not further discussed.  
 Many efforts have been done on achieving the 
robust flight control of the qudarotors. In [Zhang et al., 
2011], under the effects of a class of time-varying 
disturbances, the attitude control was achieved for a 
quadrotor. In [Alexis et al., 2011], a novel switching 
model predictive controller was designed based on an 
affine model of the quadrotor to achieve the attitude 
control. By combining command-filtered backstepping 
based control approach and position control method, the 
attitude angles the attitude angles were stabilized and the 
trajectory tracking control was achieved in [Zuo, 2010]. 
However, the uncertainties, considered in [Zhang et al., 
2011], [Alexis et al., 2011], and [Zuo, 2010], were limited 
to being time-invariant in their simulation and 
experimental tests. Furthermore, further restraining the 
effects of various uncertainties including nonlinear 
dynamics, parametric uncertainties, unmodeled dynamics, 
and external disturbances simultaneously, still remains 
open.  
 The robust controller design of a hexarotor is 
similar to that of a quadrotor. However, there also exist  
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Fig. 2.  The schematic of the hexarotor.  

 
differences between them due to different aerodynamic 
forces and torques generated by the rotors. As the 
hexarotor possesses two more rotors, the resulted torque 
of the hexarotor is different from that of the quadrotor. 
Many works focued on achieving the automatic flight 
control of the quadrotors, whereas the discussions on the 
robust hexarotor control problem is rare.  
  In this paper, the attitude system is divided into three 
subsystems: that is, the pitch, roll, and yaw subsystems. 
For each subsystem, a linear nominal model is obtained 
by the linearizing method, whereas coupling, nonlinear 
dynamics, parametric uncertainties, and external 
disturbances are regarded as uncertainties, which are 
named as the named equivalent disturbances. A robust 
and decoupled control method is proposed based on the 
linear quadratic regulation (LQR) control scheme and the 
robust compensation technique. For each sybsystem, the 
designed controller consists of a nominal optimal 
controller and a robust compensator. The nominal optimal 
controller is designed to achieve the desired tracking of 
the nominal linear system, whereas the robust 
compensator is designed for restraining the influence of 
the various uncertainties mentioned above.  
 Compared to the previous studies on the control 
problem of the multirotors, the influence of uncertainties 
can be restrained in this article. The tracking errors of the 
hexarotor are proven to be bounded with specified 
boundaries in a finite time. Moreover, the robust 
compensation enables the decoupled controller design for 
each axis, making the system architecture more modular. 
For each angle, this decoupled control method results in a 
linear time-invariant controller, which is comparatively 
easy to implemente in practical applications. Furthermore, 
the parameters of the optimal controllers can be 
determined easily according to the specified requirements 
of the tracking performance by selecting the values of 
weighting matrices in cost functions.  
 The following parts of this paper are organized 
as follows. In Section 2, the hexarotor mathematical 
model is briefly described. In Section 3, the optimal 
controller and the robust compensator are designed. In 
Section 4, robust tracking properties of the whole 
closed-loop system are proved. In Section 5, simulation 
results are given. In Section 6, experimental results of the 
hexarotor in hovering conditions are provided and we 
conclude the paper with future direction Section 7.  

2 Model of Hexarotor 

The schematic of the multirotor is depicted in Fig. 2. 

Define  ,  ,  x y zE E E   the earth-fixed inertial frame 

and  ,  ,  bx by bzE E E   the frame attached to the body 

with origin in the mass center. Let  T     denote 

the three Euler angles: the pitch angle  , the roll angle 
 , and the yaw angle  , which define the rotation from 
  to  . The mathematical model of angular dynamics 
three angle motions of hexarotor can be written as 
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1
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             (1) 

where ( ,  ,  )iJ i     are the moments of inertias, 

( , ) ( ,  ,  )iC i      are the Coriolis terms, and 
T

          are the external body-fixed frame 

torques.  
 The desired references of the pitch, roll, and yaw 
angles are denoted by r , r , and r  respectively. The 

control inputs for  ,  , and   are  ( ,  ,  )iu i    , 

which are proportional to  ( ,  ,  )i i     and satisfy 

2/i i iu a , where 2ia  is a positive constant. A power 
distribution board is applied to distribute the control 
inputs to the six rotors, therefore the three rotational 
motions of the vehicle are being controlled by 

( ,  ,  )iu i     directly.  
 Let us define an angular error vector with the 
error and its derivative and integral terms as 

 1 2 3  ( ,  ,  )
T

i i i ie e e ie    , 

where 
1i ie i r  , 

2 1i ie e  , and 
3 1i ie e . This paper will 

investigate the robust control of attitude so that the 
attitude tracking errors are bounded with specified 
boundaries ultimately.  
 Let 1 2 /  ( ,  ,  )i i i ia a a J i     . The vehicle 

parameters ( ,  ,  )ia i     can be split up into the 

nominal parts (denoted by N ) and the uncertain parts 
(denoted by  ) as 

= , ,  ,  .N
i i ia a a i       

Define 

0 1 0 0

0 0 0 ,  

1 0 0 0

.i
N
iiA aB

   
       
      

 

From the hexarotor model (1), we can obtain that 
( )  ,  , ,,  i i i i i ie Ae B u q i            (2) 

where ( ,  ,  )iq i     are the equivalent disturbances. 
They have the following forms 

( , ) / ( )( ) / ,N N
i i i ii i i i iC J a rq a u w a            (3) 

where ( ,  ,  )iw i     are external disturbances.  
 From (2), we can see that the model can be 
divided into three subsystems: the pitch subsystem 
( )i  , the roll subsystem ( )i  , and the yaw 
subsystem ( )i  . The coupling between each angle is 
considered as equivalent disturbances.  
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 Assumption 1: The uncertain parameters  are 
bounded. The nominal parameters  ( ,  ,  )N

i ia     are 

positive and satisfy that N N
i i ia a a  .  

 Assumption 2: The external disturbances are 
bounded.  
 Assumption 3: The reference signals and the 
derivatives ( )  ( ,  ,  ;  0,  1,  2)k

i i kr      are bounded.  

3 Robust Optimal Controller Design 

The designed controller includes two parts: a nominal 
optimal controller and a robust compensator and thereby 
the control inputs  ( ,  ,  )iu i     have the forms as 

, ,  ,  ,NO RC
i i iu u u i           (4) 

where NO
iu  is the nominal optimal control input and RC

iu  
is the robust compensating input.  
 An optimal LQR controller is designed for the 
nominal part of the error model (2), which is rewritten 
below 

, ,  .,  i i i i ie B u ie A             (5) 

The cost functions  ( ,  ,  )iJ i     to be minimized 
are 

2

0

1
( ) ( ) ( ( )) ,

2
T NO

i i i i i iJ e t Q e t u t dt

     

where  ( ,  ,  )iQ i     are 3 3  weighting 
matrices which are symmetric and positive-definite, and 
constants  ( ,  ,  )i i     are positive. by solving the 
following Riccati equations, one can obtain the 
positive-definite matrices  ( ,  ,  )iP i     

1  ,  ,  0, .T T
i i i i i i i i i iA P P A PB B P Q i        

Then, one can obtain the state-feedback gains as 
1 ,  ,  ,  .T

i i i iK iB P      
The optimal control inputs can be obtained as 

 ,  ,  .,NO
i i iu K e i              (6) 

 Actually, for each subsystem considered here, 
the designed nominal linear time-invariant feedback 
controller only depends on its own state feedback. 
Therefore, a decoupled nominal control is achieved for 
each nominal subsystem.   
 Moreover, the robust compensator is introduced 
to produce a compensating signal to restrain the influence 
of uncertainties. They are designed based on the robust 
filters as 

( )
( )(

, ,  ,  ,
)

li si
i

li si

f f
F s

s f s
i

f
  

 
  

where s  is the Laplace operator and 
lif  and 

sif  are 
positive constants. The robust filters have the follwoing 
property (see, [Zhong, 2002] and [Liu et al., 2013]): if the 
robust compensator parameters 

lif  and 

 ( ,  ,  )si if     are sufficiently large and 
lif  is much 

larger than 
sif , the gains of the filters would approximate 

to 1.  
 The robust compensating inputs can be designed 
as follows 

 ,  ,( ) ( ) ( , .)  RC
i i iu s F s q is           (7) 

They can be realized as follows by introducing two new  

 
Fig. 3.  The block diagram of the closed-loop control system 
with three subsystems: the pitch subsystem ( )i  , the roll 

subsystem ( )i  , and the yaw subsystem ( )i  .  
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,
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i si i si i i i
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RC N
i li si i i i

z f z f e a u

z f z f f e z

u f f e iz a   

   
    
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
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 In this paper, second order robust filters are 
applied instead of first order robust fiters. Therefore, the 
robust compensating inputs  ( ,  ,  )RC

iu i     can be 
designed without the angular velocities, which might 
contain much noise in pratical applications. Actually, if 
the three angular velocities are reliable and obtainable,  
first order filters, which depend on the angular velocities, 
can be used instead.  
 It should be noted that the designed robust 
compensators are also linear time-invariant and decoupled. 
Although there exist coupling between the three Euler 
angles, the robust compensator of each channel only 
involves its own state of each subsystem.  
 The configuration of the robust optimal 
closed-loop control system can be depicted as shown in 
Fig. 3.  

4 Robust Properties Analysis 

In this section, the attitude tracking errors of the three 
Euler angles are proved to converge into a given 
neighborhood of the origin ultimately for a given initial 
condition.  
 Define 

, ,  ,  .Hi i i iA K iA B      

Let  
T

q q q q      ,  9 1

TT T Te e e e e  
     , and 

TRC RC RC RCu u u u     . Then, we can obtain by using 

(5)-(7) that 

( ),RC
He A e B u q             (9) 

where 

   ,  ,  ,  ,  ,  .H H HHA diag A A A B diag B B B        

 The robust properties of the closed-loop control 
system can be summarised as follows 
 Theorem 1: If the assumptions described in the 
second section hold, for the given positive constant   
and the given initial state, we can obtain positive robust 
compensator constants 

lif  and  ( ,  ,  )si if    , which 

have sufficiently large values and satisfy that 
lif  is 

sufficiently larger than sif , and a positive constant *T , 
such that the attitude tracking error is bounded and 
satisfies that *( ) ,e t t T   .  
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Fig. 4.  Responses with the LQR control method for the 
nominal model.  
 
Theorem 1 can be proven based on the small gain theory.  
 It should be pointed out that the robust 
compenstor paramters 

lif  and  ( ,  ,  )si if     can be 
tuned on-line monotonously, that is, set them with some 
initial values satisfying that  ( ,  ,  )li i si if f     , 

where 
i  is a large positive constant and is selected 

according to practical situations. Then, run the 
closed-loop control system for some specified missions. If 
the tracking performance is not satisfactory, we can set 

lif  and  ( ,  ,  )si if     to larger values satisfying 

 ( ,  ,  )li i si if f     , until the desired tracking 
performance of the closed-loop system can be achieved.  

5 Simulation Results 

The nominal parameters used in this section are 
2.9630Na  , 1.8286Na  , and 0.3626Na  .  

 First, we simulate the LQR controller with a 
nominal model without considering uncertainties and 
disturbances. Let (100,  10,  1)i diagQ   and =1i  

( ,  ,  )i    . Simulation results with the LQR control 
method are presented in Fig. 4. We can see that the 
nominal controller parameters are selected appropriately 
and thus the closed-loop system by the nominal optimal 
controller achieves good tracking performance.  
 Then, we consider the effects of the parametric 
uncertainties and external disturbances. The parameter 
perturbations are assumed up to 80% of the nominal 
values. The external disturbances are given as follows 

( ) 2sin10 ,

( ) 10cos10 ,

( ) 20sin10 .

w t t

w t t

w t t












 

 
Fig. 5.  Responses with the LQR control method under the 
effects of disturbances.  
 

 
Fig. 6.  Responses with the robust control method under the 
effects of disturbances.  
 
The responses with the LQR control approach and with 
the design robust optimal control method are presented in 
Fig. 5 and Fig. 6. The tracking errors are compared in Fig. 
7. We can see that the proposed robust control method 
achieves slightly better tracking performance.  
 Lastly we, set the parameters of the robust 
compensators to be larger values as: 1000lif   and 

200 ( ,  ,  )si if    . Corresponding responses and
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Fig. 7.  Comparisons of tracking errors under the effects of 
uncertainties.  
 

 
Fig. 8.  Responses with larger robust compensator parameters 
under the effects of uncertainties.  
  
tracking errors are depicted in Fig. 8 and Fig. 9. 
Compared to the first and second test, we can see that the 
tracking performance is greatly improved, since the 
tracking errors are much small. Actually, the tracking 
performance of the closed-loop control system can be 
improved if lif  and sif  are selected with larger values.  

 
Fig. 9.  Comparisons of tracking errors under the effects of 
uncertainties.   
 

6 Real-time Experimental Results 

The hexarotor used in this section is developed based on 
Arducopter UAVs [Arduino, 2005]. An onboard avionic 
electronic system is used here to obtain the attitude and 
position information and implement the control 
algorithms. It consists of an inertial measurement unit 
module, a global positioning system module, a 
magnetometer, a sonar sensor and a barometer. The 
updating rate of attitude loop is 50 Hz. The robust 
controller parameters are selected as: 

800, 1,(  0.00 1)3 j diagQ   ( ,  )j   , 

800,(   20)1,diaQ g  , =1000i , 5lif  , and 

( , )1 ,  si if     for better tracking performance.  
 For the hovering conditions, experimental results 
are presented in Fig. 10. We can see that all of three 
tracking errors of the attitude angles are less than 0.1 deg, 
which means that the closed-loop control system achieves 
good tracking performance. The control inputs are 
depicted in Fig. 11.  

7   Conclusions 

A robust optimal controller was proposed to achieve the 
attitude control of a multirotor. It includes an nominal 
optimal controller for the nominal system to obtain 
desired tracking performance and a robust compensator to 
restrain the influence of various uncertainties. Simulation 
and experimental results on the hexarotor demonstrated 
the effectiveness of the designed robust controller.  
 Currently, we have only tested our control 
method on the attitude control of the hexatoror. Currently 
we are applying the method for trajectory control under 
severe outdoor wind disturbances.  
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Fig. 10.  Experimental responses in the hovering experiment.  
 

 
Fig. 11.  Control inputs in the hovering experiment.  
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