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Abstract— In this paper, we investigate the effect of non-
ideal sensor measurements on the performance of a nonlinear
attitude estimator. Bounded deterministic disturbances are
considered in both vector measurements and angular veloc-
ity reading. We derive conditions under which the practical
stability of estimator is guaranteed and present an upper-
bound for the steady state attitude estimation error. We also
consider the problem of minimizing the ultimate bound of
estimation error by proper choice of constant observer gains
according to the properties of vector measurements. A key
contribution of the paper is to propose a set of Linear Matrix
Inequalities which result in the near optimal observer gains in
a sense that they minimize the ultimate bound of estimation
error. Meanwhile a case study, some interesting results of the
optimization procedure are also discussed which provide a
greater insight into the problem.

I. INTRODUCTION

The orientation of a rigid body with respect to a known

reference frame is usually called its attitude. Attitude es-

timation is known to be a classical problem with a long

history still holding a forefront position as the subject of

intensive research [6]. The focus on developing low cost

sensors for commercial navigation systems has lead to a

strong interest in employing advanced observers to reduce

the effect of measurement noise on the performance of

such systems. Kalman filtering techniques [13] are probably

the most popular methods of attitude estimation and they

have been applied successfully for many years. Nevertheless,

Kalman Filters are difficult to be applied robustly to some

applications involving low quality sensors. Inherent non-

linearity of the attitude dynamics and non-Gaussian sensor

noise can potentially lead to poor behavior of such filters in

certain practical situations. On the other hand, more sophis-

ticated stochastic filtering techniques, such as particle filters

and unscented filters [5], place too much computational

load on the low cost processing systems associated with

the commercial applications. Consequently, several nonlinear

attitude observers have been proposed in recent literature to

tackle those issues. One interesting approach for deriving

nonlinear attitude observers is to represent the attitude as

an element of a Lie group (such as the special orthogonal

group SO(3)) rather than considering Euclidean formulation

of attitude (such as Euler angles representation). Using this

approach, complexity of the nonlinear attitude dynamics is

encoded to the structure of the Lie group itself rather than the
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dynamics equations of motion. In fact, recent publications

provide significant guidelines for the design of nonlinear

attitude observers by pointing out the topological issues that

hinder global stabilization on non-Euclidean spaces such as

SO(3) [1], [3], [17]. Following those guidelines, continuous-

time nonlinear estimators on SO(3) were designed in [14],

[18] which ensured almost globally asymptotic estimation

of attitude and gyro bias. In these references, the observers

were derived assuming that perfect attitude was available by

batch preprocessing of vector readings. A number of methods

were developed which directly utilized the sensor reading

in construction of attitude estimator which potentially can

lead to a better error characterization of the estimated atti-

tude. For example, [4], [15], [19], [23] used gyro together

with two or more vector measurements and asymptotically

estimated the attitude and gyro bias in an almost global

sense. Stability properties of that observer was investigated

in [10], [16], [20] assuming availability of only one vector

measurement but considering that the associated reference

vector is time-varying in Inertial frame. Although in this

condition convergence rate of the observer depends on the

time-varying properties of the reference vector (which can be

small in certain situations), [11], [20] proved that asymptotic

attitude tracking is still possible by proper coupling of the

observer with a nonlinear controller. In fact, observability

analysis of attitude dynamics on SO(3) manifold was care-

fully addressed in [21] and it was shown that when only

a single vector measurement is available, the corresponding

reference vector indeed requires to be time-varying in order

to guarantee the observability. Interestingly, similar result

was achieved in [2] for an estimator whose states evolved

on R
9 instead of SO(3).

The present work is devoted to carefully investigate the

effect of non-ideal sensor measurements on the performance

of a nonlinear attitude estimator. The attitude estimator which

is formulated in the matrix Lie group representation of

SO(3) was previously proposed in [15], [19], [23]. The effect

of non-ideal angular velocity reading was investigated in

[22] where an ultimate bound for the estimation error was

presented. In this paper, we extend the approach presented

in [22] to cover the non-ideal vector measurements as well.

Specifically, we only consider boundedness assumption on

the measurement noise and derive an ultimate bound of the

attitude estimation error as a function of those bounds and

the gain parameters of the observer. Then, we consider the

problem of minimizing the effect of measurement noise on

the steady state estimation error by proper tuning of observer
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gains. A key contribution of the paper is to convert the

optimization problem into a set of Linear Matrix Inequalities

(LMIs) which can be employed as a systematic approach

for near optimal gain tuning when large number of vector

measurements are available. The presented method is of

interest in practical cases since only the reference vectors and

upper bounds of measurement non-ideality need to be known

in order to calculate the near optimal observer gains. As a

case study, the optimization problem is numerically solved in

a simple case which leads to some interesting observations.

II. DEFINITIONS AN NOTATIONS

We denote the trace, the smallest and the largest singular
value of the matrix A by tr(A), σ(A) and σ(A), respectively.
Also for any a ∈ R

n, ‖a‖ denotes the euclidian norm of the
vector a. The identity matrix is denoted by I . The skew
operator S(.) maps any vector a = [a1 a2 a3]

⊤ ∈ R
3 to its

corresponding skew-symmetric matrix by

S(a) =





0 −a3 a2

a3 0 −a1

−a2 a1 0



 .

The unskew operator is defined such that S−1 (S(a)) = a.

For any a, b ∈ R
3, R ∈ SO(3), B ∈ R

3×3 and any skew-

symmetric matrix K ∈ R
3×3, the following properties hold:

Property 1: RS(a)R⊤ = S(Ra).

Property 2: tr(S(a)B) = −a⊤S−1(B −B⊤).

Property 3: RS−1(K) = S−1(RKR⊤).

Property 4: S(a)S(b) = ba⊤ − a⊤bI.

Property 5: S−1(ab⊤ − ba⊤) = b× a.

The set of special orthogonal matrices is defined by SO(n) =
{R ∈ R

3×3 : R⊤R = I, det(R) = 1}. Any element R̃ of

SO(3) can be identified by an angle of rotation θ ∈ R , 0 ≤
θ ≤ π and an axis of rotation λ ∈ R

3, ‖λ‖ = 1. Given

the pair (θ, λ), the corresponding rotation matrix R̃ can be

obtained using Rodrigues’ formula

R̃ = rot(θ, λ) = I + sin θS(λ) + (1 − cos θ)S2(λ). (1)

The distance of R̃ ∈ SO(3) to the identity matrix is denoted

by ‖R̃−I‖F and defined by Frobenius norm as ‖R̃−I‖2F =
tr((I − R̃)⊤(I − R̃)) = 2tr(I − R̃) = 4(1 − cos θ) where θ

is defined by (1).

III. PROBLEM FORMULATION

Let R ∈ SO(3) denotes the rotation from body-fixed

frame of a rigid body to the inertial frame, also known as

the attitude matrix. Let ω denotes the angular velocity of the

body-fixed frame with respect to the inertial frame expressed

in the body frame. The rigid-body kinematics is given by

Ṙ = RS(ω). (2)

The rigid body angular velocity can be measured by a 3-axis

rate gyro. We assume that the gyro measurement, ωn ∈ R
3,

is disturbed by a measurement noise such that

ωn = ω + nω, (3)

where nω ∈ R
3 is the gyro measurement noise bounded by

‖nω‖ ≤ nω. A vector measurement vn ∈ R
3 can provide

partial measurement of attitude by

vn = vb + nv, (4)

vb = R⊤vr, (5)

where nv ∈ R
3 denotes the measurement noise and vr ∈ R

3

is a reference vector associated to vb. For instance, in the

case of using a 3-axis magnetometer to obtain a vector

measurement, vb and vn are respectively the actual and

measured earth’s magnetic field vector at the position of rigid

body and are expressed in body frame. In this case, vr is the

constant vector of the earth’s magnetic field at the position

of rigid body which is expressed in inertial frame. In this

paper, we assume that the reference vectors associated to

vector measurements are constant with respect to time and

they are known a priori.

The attitude estimation problem is to design an observer

which utilizes the vector measurements and angular velocity

reading to estimate the attitude matrix of rigid body. Suppose

that m ≥ 2 vector measurements, vb1, vb2, ..., vbm and their

related reference vectors, vr1, vr2, ..., vrm are available and

each vbi is related to its corresponding vri by (5). Under

these conditions, the following attitude estimator on SO(3)
was proposed in [15], [19], [23].

˙̂
R = R̂S(ω̂), (6a)

ω̂ = ω − γω, (6b)

γω = R̂⊤S−1(R̂VbΛV
⊤
r − VrΛV

⊤
b R̂⊤), (6c)

where R̂ is the estimated attitude matrix and Λ ∈ R
m×m is

a constant positive definite gain matrix. Also, Vr ∈ R
3×m

and Vb ∈ R
3×m are respectively defined by

Vr =
[

vr1 vr2 ... vrm
]

, (7)

Vb =
[

vb1 vb2 ... vbm
]

. (8)

To investigate the convergence of observer, the following

attitude estimation error matrix is considered.

R̃ = R̂R⊤. (9)

It is obvious that R̂ = R if and only if R̃ = I . It is

known that SO(3) is not homeomorphic to any Euclidean

vector space. This implies that the region of attraction of

any equilibrium point dose not cover whole SO(3) space

[1], [3], [12]. Due to this inherent topological limitation, the

notion of almost global stability [1], [3] is used to summarize

the properties of observer (6).

Proposition 1: ([15], [19], [23]) Consider the observer

(6) for the attitude kinematics (2). Suppose that two or

more vector measurements are available and at least two

reference vectors are non-collinear. The error R̃ is almost

globally asymptotic and locally exponentially stable around

the identity matrix. That is, for any R̃(t0) ∈ RA we have

‖R̃(t)− I‖F ≤ ‖R̃(t0)− I‖F e−αR(t−t0), (10)
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where αR = 0.5(1 + cos θ(t0))σ(P ), P = tr(Λr)I − Λr,

Λr = VrΛV
⊤
r and the region of attraction is given by

RA = SO(3)\{R̃ ∈ SO(3) : tr(I − R̃) = 4}

= {R̃ = rot(θ, λ) : λ ∈ S
2
, θ 6= π},

where θ and λ are defined by (1). �

In practical situations, the output of sensors is polluted by

measurement noise. Hence, in this paper, we are interested

in investigating practical stability of observer (6) in presence

of measurement noise. Another interesting question which is

tackled here is to tune the constant observer gains according

to the sensor properties such that it optimizes the steady state

behavior of the attitude estimator.

Remark 1: In practical situations, the outputs of gyro

or attitude sensors may be corrupted by unknown biases.

It is common to assume that these biases are constant in

order to adaptively compensate those biases in the attitude

estimation algorithm. For instance, [15], [19], [23] couple

a suitable bias estimator to the observer (6) such that it

adaptively estimates a constant gyro bias. Also, [8] proposes

a method for adaptive commensuration of effects of constant

gyro bias as well as bias of vector measurements. Here, we

only consider the steady state behavior of attitude estimator.

Hence, we focus on the basic observer (6) and we do not

consider the coupled adaptation algorithms proposed in the

above mentioned references. �

IV. PRACTICAL STABILITY OF ATTITUDE ESTIMATOR

Stability of the attitude observer (6) in presence of

bounded rate gyro noise has been investigated in [22]. We

consider vector measurement noise in addition to the angular

velocity noise and extend the results of [22] to obtain

sufficient conditions for practical stability of the observer.

Denote vni, i = 1, . . . ,m as the measurement of vbi, i =
1, . . . ,m and assume each vni is disturbed by a measurement

noise ni ∈ R
3 according to (4) and the measurement noise

is bounded by ‖ni‖ < ni. Define Vn = [vn1 vn2 ... vnm] ∈
R

3×m which represents the measured outputs of system.

Assume that the angular velocity measurement is disturbed

by measurement noise according to (3). Under the above

mentioned assumptions, the estimator still takes the similar

form as (6a), but we should replace Vb and ω by Vn and ωn

respectively. So, the estimator is formulated as

˙̂
R = R̂S(ω̂), (11a)

ω̂ = ωn − γn, (11b)

γn = R̂⊤S−1(R̂VnΛV
⊤
r − VrΛV

⊤
n R̂⊤). (11c)

Here we suppose a special case that Λ is diagonal, i.e.

Λ = diag(k1, k2, ..., km) where ki, i = 1, . . . ,m are

positive scalars. Under this condition, the following theorem

generalizes practical stability of the observer discussed in

[22, Theorem 10].

Theorem 1: Suppose that the upper bounds of angular

velocity noise and vector measurement noises satisfy

1

σ(P )
(

m
∑

i=1

ki‖vri‖ni + nω) < 1, (12)

where P = tr(Λr)I − Λr and Λr = VrΛV
⊤
r . Define

sin θmin :=
1

σ(P )
(

m
∑

i=1

ki‖vri‖ni + nω) (13)

and θmax := π − θmin. For any initial condition satisfying

‖I − R̃(t0)‖
2
F < 4

σ(P )

σ(P )
(1− cos θmax), (14)

there exists a finite T ∈ R such that

‖I − R̃(t)‖2F < 4
σ(P )

σ(P )
(1 − cos θmin) (15)

for all t ≥ T + t0. �

Proof of Theorem 1 is given in the appendix.

V. NEAR OPTIMAL TUNING OF OBSERVER GAINS

By Theorem 1, we presented an upper bound for the steady

state estimation error in the presence of measurement noise.

This section is devoted to present a method to suitably tune

the observer gain, Λ, such that minimizes the upper bound

of estimation error. This suitable observer gain is called

near optimal gain. First, in section V-A, we use a simple

trick to convert the minimization procedure to a simpler

optimization problem. Next, in section V-B, we reformulate

the simplified optimization problem as a convex optimization

problem which can be solved using a set of Linear Matrix

Inequalities (LMIs). Then, we preset some interesting results

of the optimization procedure in section VI.

A. optimization problem

Multiplying the sides of (14) by (15) and considering

cos θmax = − cos θmin yields

‖I − R̃(t0)‖
2
F ‖I − R̃(t)‖2F < 16 sin2 θmin. (16)

Moving sin θmin from (13) to (16) implies

‖I − R̃(t)‖F <
4

σ(P )‖I − R̃(t0)‖F
(

m
∑

i=1

ki‖vri‖ni + nω).

(17)

Since vr1, vr2, n1, n2 and nω are known and also ‖I −
R̃(t0)‖F is constant, our optimization problem is simplified

to

min
ki>0, i=1, ..., m

{

1

σ(P )
(

m
∑

i=1

ki‖vri‖ni + nω)

}

, (18)

which can be solved by commercial software packages

designed to resolve nonlinear optimization problems, such

as fmincon function of MATLABr.

B. tuning the observer gains using LMIs

Although minimization problem (18) can be solved using

fmincon function, converting it into a set of Linear Matrix

Inequalities (LMIs) is very useful since there are very

efficient tools and software packages to numerically resolve

LMIs as a kind of convex optimization problems. This is

specifically important when a large number of vector mea-

surements is available or when the reference vectors slowly
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vary with time and optimal gains need to be recalculated

from time to time. It is worth mentioning that the dimension

of the search space of optimization problem (18) is equal to

the number of available vector measurements, m. Hence, as

m increases, the complexity of (18) increases proportionally.

Assume that there exists a positive scalar, σ, such that

σI < P. (19)

Obviously, this inequality is held by choosing σ = σ(P ), but

we intentionally consider a more general case in order to be

able to convert our problem into LMI. Using inequality (19)

and following the proof of Theorem 1, the minimization (18)

can be rewritten as

min
ki>0, i=1, ..., m

{

1

σ
(

m
∑

i=1

ki‖vri‖ni + nω)

}

. (20)

Now, suppose there exists a positive scalar ξ such that

1

σ
(

m
∑

i=1

ki‖vri‖ni + nω) < ξ. (21)

The problem (20) is equivalent to minimizing ξ in (21).

Define the new variables kσi := ki

σ
(i = 1, ...,m) and

σinv = σ−1. We have

m
∑

i=1

kσi‖vri‖ni + σinvnω < ξ (22)

On the other hand, recalling P =
tr(Vrdiag(k1, k2, ..., km)V ⊤

r )I − Vrdiag(k1, k2, ..., km)V ⊤
r ,

the inequality (19) can also be rewritten in the following

form with respect to the new variables kσi, (i = 1, ...,m)

tr(Vrdiag(kσ1, ..., kσm)V
⊤
r )I − Vrdiag(kσ1, ..., kσm)V

⊤
r >I.

(23)

The inequalities (22) and (23) are standard LMIs with respect

to the variables kσi (i = 1, ...,m), σinv, and ξ. Conse-

quently, the minimization problem (18) can be reformulated

as the following set of LMIs.

min(ξ) :
kσi (i=1,...,m), σinv, ξ






























kσi > 0 (i = 1, ...,m),
σinv > 0,

ξ > 0,
tr(Vrdiag(kσ1, ..., kσm)V

⊤
r )I − Vrdiag(kσ1, ..., kσm)V

⊤
r >I,

m
∑

i=1

kσi‖vri‖ni + σinvnω < ξ.

VI. A NUMERICAL EXAMPLE AND SOME INTERESTING

OBSERVATIONS

In this section, we assume no gyro noise (i.e. nω = 0) and

we try to numerically calculate the near optimal gains for a

range of vector measurement noise bounds in order to discuss

some interesting results of the optimization procedure. Let us

assume that two vector measurements are available (i.e. m =
2) and define nr1 := n1

‖vr1‖
, nr2 := n2

‖vr2‖
, kr1 := k1‖vr1‖

2,

kr2 := k2‖vr2‖
2, Krat := kr1

kr2

and Nrat := nr1

nr2

. The

physical interpretation of nr1 is the normalized measurement

noise in the first vector measurement , i.e. nr1 represents

the percentage of measurement noise which exists in vn1.

Similarly, nr2 is the normalized measurement noise in the

second vector measurement. Also, kr1 and kr2 represent

the normalized gains for the vector measurements in which

the amplitude of corresponding reference vectors are also

observed. Actually, in order to truly compare the gains

associated with the first and second vector measurements,

we should compare kr1 and kr2. Hence, Krat is used in

comparison between the observer gains related to first and

second vectors. Using the above definitions, one can show

that σ(P ) = 1
2kr2(Krat + 1−

√

K2
rat − 2η12Krat + 1) where

η12 = 1− 2(
v⊤r1vr2

‖vr1‖‖vr2‖
)2.

Note that η12 depends only on the difference angle between

the directions of vr1 and vr2 and it is bounded by −1 ≤
η12 ≤ 1. For example η12 = 1 implies that vr1 and vr2
are perpendicular, whereas η12 = −1 implies that vr1 and

vr2 are either the same or in opposite directions. Using

the mentioned notations, we can simplify the optimization

problem (18) to

min
Krat>0

{

Krat +N−1
rat

Krat + 1−
√

K2
rat − 2η12Krat + 1

}

. (24)

Note that in this case the 2-dimensional optimization problem

(18) is reduced to the 1-dimensional optimization problem

(24). Hence, only the gain ratio, Krat, affects the optimization

procedure which means that k1 and k2 have no importance

by themselves but their ratio determines the optimality. After

computing Krat from (24), we should choose k2 = k1‖vr1‖
2

Krat‖vr2‖2

to minimize the effect of measurement noise. We can use the

extra degree of freedom to chose a suitable value for k1 in

order to achieve a desired convergence rate for the observer.

Using the same ratiocinations as it was presented in section

V-B, one can convert (24) into the following set of LMIs.

min(ξ) :
kσ1,kσ2,ξ






















kσ1 > 0,
kσ2 > 0,
ξ > 0,

tr(Vrdiag(kσ1, kσ2)V
⊤
r )I − Vrdiag(kσ1, kσ2)V

⊤
r > I,

kσ1‖vr1‖n1 + kσ2‖vr2‖n2 < ξ.

Hence, the optimization problem can be formulated without

using the variable σinv. This recalls the fact that we have

also reduced the dimension of the optimization problem in

(24). It is worth mentioning that although σinv is omitted in

above LMIs, we can yet calculate Krat using Krat :=
kσ1

kσ2

.

Once again, the optimization procedure determines the ratio

of k1 to k2 but the amount of k1 and k2 does not affect the

optimization by themselves.

The optimization problem (24) is solved for −1 < η12 < 1
and 0.01 < Nrat < 1 and the optimal solution K∗

rat is illus-

trated in Fig. 1. The following observations are immediately

recognized from Fig. 1:
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Fig. 1. Near optimal gain ratio (K∗

rat) versus various amount of noise ratio
(Nrat) and direction angle between reference vectors (η12)

1) For a fixed η12, Krat decreases when Nrat increases.

That is to say, the larger is the amount of noise in vn1 with

respect to vn2, the less gain should be chosen for the first

vector measurement with respect to the second measurement.

2) Independent of η12, we have K∗
rat → 1 as Nrat → 1. That

is, in order to achieve minimum estimation error when there

are equal normalized measurement noises in the vectors, we

should choose the same normalized gains for both vectors

independent of the direction of reference vectors.

3) Independent of Nrat, we have K∗
rat → 1 as η12 → 1.

That is, in order to achieve minimum estimation error when

reference vectors are perpendicular, we should choose the

same normalized gains for both vectors independent of the

amount of measurement noises. This is an interesting result,

since perpendicular vectors offer measurements in com-

pletely independent directions and hence their gain should

be chosen equally, independent of their measurement noises.

4) K∗
rat → +∞ as η12 → −1 and Nrat → 0. It

means that when there is much smaller noise in the first

vector measurement comparing to the second vector, and

the difference between the direction of reference vectors are

small, then we should choose a much higher gain for the

first vector measurement than the second one.

VII. CONCLUSION

This paper investigates the effect of measurement noise on

the performance of a nonlinear attitude estimator. Supposing

both non-ideal vector measurements and non-ideal gyro out-

put are available, an ultimate bound of the attitude estimation

error is derived as a function of observer gains, reference

vectors, and upper bounds of measurement noises. Moreover,

the problem of tuning the observer gains to minimize the

upper bound of steady state estimation error is formulated as

a convex optimization problem which can be solved using a

set of LMIs. Some interesting results of the optimization pro-

cedure is discussed with an illustrative numerical example.

Although only the noise in the body frame is considered in

this paper, the results presented here can be extended without

significant modifications to support bounded noise/disturbnce

in the inertial frame as well. As a future work, we will focus

on obtaining a tighter upper bound for the estimation error

and optimizing the steady state behavior of the observer

accordingly. Illustrating the efficiency of the optimization

procedure in practical scenarios is considered as another

future work. Additionally, investigating the practical stability

of the attitude observer when it is coupled with a bias

estimators to compensate for gyro bias can be addressed in

future.

APPENDIX

proof of Theorem 1

The proof is an extension of the proof of [22, Theorem

10] and is based on using the derivation of boundedness

properties for nonlinear systems [9, Theorem 4.18]. Differ-

entiating (9) with respect to time yields the error dynamics
˙̃
R=

˙̂
RR⊤+R̂Ṙ⊤= R̂S(ω̂)R⊤−R̂S(ω)R⊤= R̂S(ω̂ − ω)R⊤.

Using Property 1, the attitude error dynamics is obtained as

˙̃
R = R̃S(R(ω̂ − ω)). (25)

Consider the Lyapunov candidate W = tr((I− R̃)Λr) where

Λr = VrΛV
⊤
r . Since Λ is positive definite and rank(Vr) ≥

2, it can be verified that W is a positive definite function

[7]. Differentiating W with respect to time, we have Ẇ =

−tr( ˙̃RΛr). Using (25) yields Ẇ = −tr(R̃S(R(ω̂ − ω))Λr).
Next we try to rewrite Ẇ in terms of γω. To this end, we

use Property 1 to obtain Ẇ = −tr(S(R̂(ω̂−ω))R̃Λr). Using

Property 2 and noting Vb = R⊤Vr we have

Ẇ = S−⊤(R̃Λr − ΛrR̃
⊤)R̂(ω̂ − ω),

= S−⊤(R̂R⊤VrΛV
⊤
r − VrΛV

⊤
r RR̂⊤)R̂(ω̂ − ω),

= S−⊤(R̂VbΛV
⊤
r − VrΛV

⊤
b R̂⊤)R̂(ω̂ − ω).

Hence, by (6c), Ẇ is simplified to Ẇ = γ⊤
ω (ω̂ − ω).

Replacing for ω̂ from (11b), we yield

Ẇ = γ⊤
ω (nω − γn). (26)

On the other hand, invoking the algebraic manipulations

derived in Appendix A, we have γn = γω + γd where

γd = −
m
∑

i=1

ki(R̂
⊤vri)× ni. (27)

Replacing γn in (26), we obtain

Ẇ =−γ⊤
ω γω+γ⊤

ω γd+γ⊤
ω nω≤−‖γω‖

(

‖γω‖−‖γd‖−‖nω‖
)

.

(28)

Using (27), and noting ‖R̂⊤vri‖ = ‖vri‖, we have

‖γd‖ ≤
m
∑

i=1

ki‖vri‖ni. (29)

Also, considering the angle-axis representation R̃ = rot(θ, λ)
and using the same ratiocinations adopted in [11, Lemma 2],

it can be shown that γω = R⊤Q⊤Pλ where Q = sin θI +
(1−cos θ)S(λ). Recalling 0 ≤ θ ≤ π and ‖λ‖ = 1, we have

‖γω‖ = ‖R⊤Q⊤Pλ‖ ≥ σ(Q)σ(P ) ≥ σ(P ) sin θ. (30)
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Employing (29) and (30), we can simplify (28) to

Ẇ ≤ −‖γω‖(‖γd‖+ ‖nω‖)
( sin θ

sin θmin

− 1
)

,

where sin θmin is given by (13). Finally, considering condition

(12), we obtain Ẇ < 0 for all θ ∈ [θmin, θmax]. Similar to

[22], we define rmin := ‖I − R̃min‖
2
F , R̃min = rot(θmin, λ)

and rmax := ‖I − R̃max‖
2
F , R̃max = rot(θmax, λ). Since ‖I −

R̃‖2F = 4(1 − cos θ) is monotonically increasing on θ ∈
(0, π), we conclude that all ‖I − R̃‖2F ∈ [rmin, rmax] imply

Ẇ < 0, which characterizes a compact set in SO(3) where

the Lyapunov function is decreasing.

On the other hand, we can rewrite W as W = 1
4‖I −

R̃‖2Fλ
⊤Pλ [7], [11], [22], [23]. Hence, the Lyapunov func-

tion satisfies α1(‖I − R̃‖2F ) ≤ W ≤ α2(‖I − R̃‖2F ) where

α1(x) =
1
4σ(P )x, α2(x) =

1
4σ(P )x. Now, defining the sets

Ωt,rmin
= {R̃ ∈ SO(3) : W ≤ α2(rmin)}, Ωt,rmax

= {R̃ ∈
SO(3) : W ≤ α1(rmax)}, and Ct,rmin,rmax

= Ωt,rmax
\Ωt,rmin

;

any point R̃ ∈ Ct,rmin,rmax
satisfies ‖I − R̃‖2F ∈ [rmin, rmax],

as shown by using

W ≤ α1(rmax) ⇒ α1(‖I − R̃‖2F ) ≤ α1(rmax)

⇒ ‖I − R̃‖2F ≤ rmax.

W ≥ α2(rmin) ⇒ α2(‖I − R̃‖2F ) ≥ α2(rmin)

⇒ ‖I − R̃‖2F ≥ rmin.

So, we conclude that for any R̃ ∈ Ct,rmin,rmax
we have Ẇ <

0. Consequently, any solution starting in Ct,rmin,rmax
reaches

Ωt,rmin
in a finite time, T +t0, and it remains in Ωt,rmin

for all

t > T + t0 since Ẇ < 0 in the corresponding boundary. The

condition (14) yields R̃(t0) ∈ Ωt,rmax
, and any R̃(t) ∈ Ωt,rmin

yields (15) which completes the proof of Theorem 1. �

Appendix A: ([22], [23]) By virtue of VnΛV
⊤
r =

∑m

i=1 kivniv
⊤
ri, we can rewrite γn as

γn = S−1(VnΛV
⊤
r R̂− R̂⊤VrΛV

⊤
n )

=

m
∑

i=1

kiS
−1(vniv

⊤
riR̂− R̂⊤vriv

⊤
ni).

In light of Property 5, we obtain γn =
∑m

i=1 ki(R̂
⊤vri)× vni. Similarly, one can rewrites γω

as γω =
∑m

i=1 ki(R̂
⊤vri)× vbi. Noting that vni = vbi + ni,

we have γn = γω + γd as given by (27). �
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