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ABSTRACT 

Considering jointly damage sensitive features (DSFs) of signals recorded by multiple sensors, 

applying advanced transformations to these DSFs and assessing systematically their 

contribution to damage detectability and localisation can significantly enhance the 

performance of structural health monitoring systems. This philosophy is explored here for 

partial autocorrelation coefficients (PACCs) of acceleration responses. They are interrogated 

with the help of the linear discriminant analysis based on the Fukunaga-Koontz 

transformation using datasets of the healthy and selected reference damage states. Then, a 

simple but efficient fast forward selection procedure is applied to rank the DSF components 

with respect to statistical distance measures specialised for either damage detection or 

localisation. For the damage detection task, the optimal feature subsets are identified based 

on the statistical hypothesis testing. For damage localisation, a hierarchical neuro-fuzzy tool 

is developed that uses the DSF ranking to establish its own optimal architecture. The 

proposed approaches are evaluated experimentally on data from non-destructively simulated 

damage in a laboratory scale wind turbine blade. The results support our claim of being able 

to enhance damage detectability and localisation performance by transforming and optimally 

selecting DSFs. It is demonstrated that the optimally selected PACCs from multiple sensors 

or their Fukunaga-Koontz transformed versions can not only improve the detectability of 

damage via statistical hypothesis testing but also increase the accuracy of damage localisation 

when used as inputs into a hierarchical neuro-fuzzy network. Furthermore, the computational 

effort of employing these advanced soft computing models for damage localisation can be 

significantly reduced by using transformed DSFs. 

 

Keywords: Damage detection, Damage localisation, Fukunaga-Koontz transformation, 

Neuro-fuzzy networks, Optimal feature selection, Statistical hypothesis testing, Wind 

turbines
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LIST OF ACRONYMS 

ANFIS Adaptive neuro-fuzzy inference system 

ANN Artificial neural network 

AUC Area under curve 

DSF Damage sensitive feature 

FF Fast forward 

FKT Fukunaga-Koontz transformation 

HANFIS Hierarchical adaptive neuro-fuzzy inference systems 

ICA Independent component analysis 

LDA Linear discriminant analysis 

LDA-FKT Linear discriminant analysis-based Fukunaga-Koontz transformation 

LE Leading edge 

PACC Partial autocorrelation coefficient 

PACF Partial autocorrelation function 

PCA Principal component analysis 

SDD Structural damage detection 

SDL Structural damage localization 

SHM Structural health monitoring 

T Tip (of wind turbine blade) 

TE Trailing edge 

WT Wind turbine 

WTB Wind turbine blade 
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1. INTRODUCTION 

The development of reliable, efficient and cost effective techniques for detecting and 

localising damage in structures continues to receive considerable attention across the 

aerospace, mechanical, structural, civil, energy, marine, electronic, electrical and other 

engineering disciplines. The driving factor is public and economic demand for reducing the 

life-cycle costs of existing and new structures and systems while guarantying their safe and 

reliable operations. Structural health monitoring (SHM) is an important technology for 

achieving these aims by providing information about the condition and performance of 

structures extracted from in-situ measurements [1]. Technologies originally developed for 

non-destructive testing, such as the X-radioscopy [2], thermal imaging [3] and eddy current 

methods [4], are often sensitive to changing in-situ environmental conditions and face 

challenges for continuous data collection in full-scale applications. Fibre optics strain 

measurements [5], acoustic emission [6] and active vibration techniques [7] have been tried 

by the SHM community for applications in large structures in harsh environments. 

Nevertheless, unless damage locations can be predetermined (as the so-called ‘hot spots’), the 

essentially localised nature of those measurements will necessitate using dense sensor arrays, 

which entails high instrumentation and data analysis costs. 

Passive vibration techniques for SHM utilize responses from ambient excitations. 

Environmental processes, such as wind, earthquakes or waves, and the operations itself, e.g. 

traffic on bridges or rotations of machinery, can excite global responses of large structures. 

Such vibrations are affected by structural damage, which typically takes the form of a change 

in mass, stiffness or energy dissipation mechanisms. They encompass the entire structure due 

to long wavelengths and low damping, thus, differences in the structural state can be 

observed with a small number of sensors. The downside is that some traditional vibration 

based signal features, e.g. the natural frequencies, may not offer high enough sensitivity to 

damage, or may suffer from excessive noise (e.g. mode shapes or their spatial derivatives) [8-

10]. To overcome this and expand the range of usable damage sensitive features (DSFs) that 

can be extracted from vibration response signals, parametric time series model coefficients 

[11-15] and non-parametric time series representations in the frequency domain [16], time-

frequency domain [17] or time domain [18] have been studied.  

In addition to structural damage detection (SDD) [19], efficient structural damage 

localisation (SDL) is desired for delivering increased benefits in real-life SHM applications. 

SDL methods can be divided into local and global approaches. The local methods indicate 
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damage locations by assessing the changes in signals of sensors placed at these locations. 

Kumar et al. [20] detected and located damage in a steel bridge using power spectral densities 

from different sensors. Various spectral functions were compared by Beskhyroun et al. [21] 

for SDL in experiments on a steel bridge. Similar to the previous approach, variations in 

DSFs from different sensors indicated damage location. Zheng and Mita [22] applied the 

cepstral and Itakura distances between autoregressive coefficients estimated from current and 

healthy state signals. Damage locations in numerical and experimental five-storey structures 

were identified by examining the distances for different sensors. In further studies, second 

order derivatives of fractal distances [23], distances between predictions of reconstructed 

attractor models [24] or deviations in symbolic time series DSFs from wavelet transformed 

signals [25] were proposed for SDL. Nevertheless, the SDL resolution of these approaches is 

limited by the number of sensors deployed and may therefore be poor on large and complex 

structures, and improvements could only be envisaged through significant investment in 

sensing hardware. 

The global techniques may allow higher SDL resolutions by utilizing additional 

information about the physical properties of the monitored structure, its numerical model or 

known DSF characteristics for specific damage scenarios. Manson and Barthorpe [26] 

identified damages in different locations of an aircraft wing structure using DSFs composed 

of the damage-location-specific spectral lines of a frequency response function. Stochastic 

load vectors can be estimated from vibrational responses reflecting localised changes in 

structural flexibilities [27]. Using a numerical model of the healthy state structure, pseudo 

stresses can be computed and statistically tested for identifying damage locations [28]. 

Updating of numerical models with respect to experimentally determined characteristics, 

such as modal parameters, allows obtaining detailed damage information [29,30]. 

Nevertheless, selecting suitable characteristics often requires monitoring and controlling the 

process by the user or involves high computational demands during operation. Furthermore, 

the updating of numerical models often entails solving challenging ill-conditioned or 

deceptive inverse problems [31,32]. 

The application of supervised soft computing techniques, characterised by acceptable 

requirements for computational resources and user interventions, presents an alternative for 

assessing the state of a structure. Worden et al. [33] prepared a comprehensive overview of 

soft computing techniques for mechanical systems with SHM applications also covered. Zhou 

et al. [34] applied the so-called random forest technique for damage classification in a four-
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storey steel frame benchmark structure and an experimental eight-storey steel shear frame 

structure, where DSFs were extracted with the help of wavelet packet decomposition of 

response accelerations. A support vector regression model was numerically trained for SDL 

in a small beam by Satpal et al. [35] with the first bending mode shape adopted as DSF. 

Using this model, damage was located experimentally with the help of a scanning laser 

Doppler vibrometer for estimating the mode shape. Offline post-damage classification of 

acousto-ultrasonic measurements in a pipework was performed by Tibaduiza et al. [36] by 

means of self-organizing maps. Osornio-Rios et al. [37] proposed the use of artificial neural 

networks (ANNs) for damage identification in combination with DSFs defined as amplitudes 

of eigenanalysis-based acceleration response spectra at selected natural frequencies. The 

method was applied to experiments on a five-bay truss-type structure under a sine sweep 

excitation. A review of the use of ANNs with DSFs based on frequency response functions in 

SHM was prepared by Hakim and Abdul Razak [38], where high DSF dimensionalities were 

identified as disadvantageous due to potential convergence problems and computational 

demands for optimizing the ANN parameters.  

The challenges presented by the computational demands are common in soft 

computing networks but they can be alleviated by applying different dimensionality reduction 

techniques. The most straightforward way is to select only a subset of DSFs for further 

processing. The fast forward (FF) selection facilitated reduction of data for transmission in 

wireless sensor networks by consecutively adding wavelet transformation coefficients from 

Lamb wave signals to multivariate DSFs to maximize damage detection rates [39]. Zugasti et 

al. [40] applied a sequential FF selection for determining a subset of acceleration signals of a 

laboratory tower structure with the highest mutual information. From a comparison with 

principal component analysis (PCA) for feature extraction, the authors found that a 

combination of FF selection and PCA was beneficial for SDD. PCA allows identifying a 

linear orthogonal transformation which maximizes the variation in a dataset in the first few 

dimensions [41]. This property is commonly employed for removal of operational and 

environmental effects [42,43], dimensionality reduction [44], and extraction of features with 

improved sensitivities to damage [45]. Independent component analysis (ICA) is a more 

advanced linear technique, which tries to obtain statistically independent latent variables by 

accounting for higher order statistics. Hernandez-Garcia and Masri [46] compared PCA, ICA 

and modified ICA, where transformed variables were additionally required to be orthogonal, 
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for sensor fault identification in vibration-based SHM systems, however, they did not observe 

a significant difference in performance. 

Non-linear transformations can be effective when non-linear dependencies are present 

in the data. Torres Arredondo et al. [47] demonstrated an application of the hierarchical non-

linear PCA using an ANNs for SDD in a composite plate and a pipe work under temperature 

variations. Kernel PCA is another non-linear extension, where input data is non-linearly 

transformed to higher dimensional spaces with the help of non-linear kernel functions. The 

ratio between Mahalanobis distances of kernel PCA eigenvalues was proposed as damage 

index by Liu and Chattopadhyay [48] for SDD in a sandwich composite wing. Further 

dimensionality reduction techniques applied in SHM include local linear embedding [49] and 

feature assimilation [50]. However, the reviewed approaches did not systematically optimise 

the trade-off between dimensionality reduction and damage sensitivity of the resulting 

transformed DSFs. 

The cornerstone of the approaches proposed in this paper is that performing 

advanced SHM tasks, such as SDD and SDL with global vibration methods, requires 

employing transformed DSFs which offer simultaneously an enhanced damage presence 

and/or location sensitivity as well as improved computational efficiency. Using features that 

are noisy or have poor sensitivity to damage presence or location can diminish the ability to 

distinguish between different structural states, especially for early damages where differences 

in DSFs are small. The present paper discusses transformations and selections of multivariate 

DSFs that aim at enhancing the distinguishability between damage states or locations while 

DSF dimensionalities are concurrently reduced. It cannot generally be guaranteed that DSFs 

and/or algorithms that perform optimally at the task of SDD will be equally accomplished 

when it comes to SDL, and vice versa. The transformation and selection of DSFs are 

therefore specialised in this research to allow the creation of dedicated statistical tests and 

neuro-fuzzy models for accurate SDD and SDL, respectively. The identification of such 

enhanced DSFs requires availability of data from the healthy state as well as selected damage 

states, thus the proposed methodologies for SDD and SDL can be understood as supervised. 

Nevertheless, different approaches can be utilized for obtaining the data, such as experiments 

or numerical simulations of the system in selected structural states and representative 

operational conditions, where practical considerations will often determine the choice. 

Two approaches can be employed for generating training data, namely physical full-

scale experiments and numerical physics-based simulations. Physical experiments are most 
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suitable for creating databases of the healthy structure in realistic environmental and 

operational conditions. This can be done as part of post-construction inspections or using data 

from an SHM system installed during the initial post-construction period where it can be 

assumed that the structure is still in the healthy condition. It is fortunate that most wind 

turbines (WTs) will experience a wide range of operating and environmental conditions 

within relatively short time allowing for quick creation of adequate healthy datasets. For 

damage training datasets, numerical simulations will need to be relied on as they allow 

studying various damage scenarios by modifying healthy WT models with damages in 

different locations and with varying severities. Physics-based models can be further enhanced 

and calibrated with the already available SHM data from the healthy state, and environmental 

and operational conditions can also be included. The simulation of representative excitations 

will be crucial to assure the applicability to real structures. However, advanced models and 

tools are available, e.g. using transient dynamic simulations in finite element solvers, and 

they may only need fine tuning for specific conditions, which could again be done with 

available experimental data of the healthy WT. Thus, a combination of experiments and 

simulations will allow generating training data for the creation of SDD and SDL tools. 

The linear discriminant analysis based on the Fukunaga-Koontz transformation 

(LDA-FKT) is introduced in this paper into the world of SHM. The original Fukunaga-

Koontz transformation (FKT) is an extension of PCA developed initially for increasing the 

separability between two classes [51]. The FKT analyses jointly data from both classes and 

finds the best low-rank linear approximation of a quadratic classifier for these classes [52]. 

Solving a two-class problem is sufficient for SDD understood as distinguishing between the 

healthy and a damage structure without investigating which of the possible damage states 

occurred. Nevertheless, being able to distinguish between two classes only is often not 

sufficient for SDL because several structural states may occur and need to be considered for 

optimal performance of an SHM method. Therefore, the LDA-FKT is employed in this study. 

It allows handling multi-class problems by using between-class and within-class scatter 

matrices rather than variance-covariance matrices as was the case for the original FKT [53]. 

The scatter matrices can be computed using DSF samples from distinct structural states and 

the resulting transformation used to discriminate between these states. 

However, a structural state with a given damage location can also have varying 

damage extents. Accordingly, the DSFs may not only vary with the location but also with the 

extent of damage. While we have opted for the simple statistical hypothesis testing for SDD, 
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a further step was required to make the SDL process insensitive to the damage extent. (While 

it is possible, of course, to set off on a course to develop a scheme that also quantifies damage 

extent, this is outwith the scope of our present study.) Herein, adaptive neuro-fuzzy inference 

systems (ANFISes) are proposed for this task. An ANFIS is a Takagi-Sugeno fuzzy inference 

system, which can be represented as an ANN with a specific five-layer structure [54]. Its 

parameters can be optimized with the help of ANN training methods. Fuzzy inference 

systems create nonlinear mappings from inputs to outputs via fuzzy if-then rules. The 

structure of an ANFIS is prescribed by these rules, which are related to cluster analysis [55]. 

This allows identifying an appropriate structure in a systematic way, which is an advantage 

over other artificial or soft computing networks. Lei et al. [56] diagnosed faults in rotating 

machinery using multiple ANFISes, but each one was restricted to only four inputs of 

manually pre-selected DSFs. This was done to reduce the computational burden arising from 

grid-partitioning of the input space. To alleviate the so-called curse of dimensionality of 

neuro-fuzzy systems, using only relevant features as inputs and/or modifying the ANFIS 

structure has also been proposed [57]. 

A hierarchical ANFIS (HANFIS) modelling scheme is developed in this paper, which 

can account for differently distributed damage sensitivities in multivariate DSFs. First, the 

DSFs are ranked according to their ability to maximize an inter-class statistical distance using 

the FF approach. Then, the ranking is utilised while building the HANFIS by incrementally 

adding hierarchical levels with inputs of decreasing sensitivity to damage location. The 

optimal number of inputs is determined by presenting validation datasets to each model. This 

follows our central guiding principle that using only inputs with the highest sensitivities can 

lead to optimal performance, while over-fitting is prevented and computational efforts are 

reduced due to the lower number of inputs. The methodology proposed in this paper uses 

partial autocorrelation coefficients (PACCs) estimated from experimental acceleration signals 

as initial DSFs. PACCs are non-parametric time series representations with a close 

relationship to autocorrelation functions and parametric time series models [58]. PACCs from 

different sensors are studied separately and are then combined to explore the potential of 

multiple sensor DSF fusion for increased accuracy. For evaluating the proposed 

methodology, its performance in SDD using a statistical hypothesis test, and in SDL using 

HANFISes, is compared employing either the ranked initial DSFs or their LDA-FKT scores.  

This methodology is studied using data from laboratory experiments with a small-

scale wind turbine blade (WTB) made of a glass-fibre reinforced composite material. Wind-
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like excitations are applied with the help of a domestic pedestal fan. Damage is introduced 

non-destructively by attaching small masses at selected locations on the WTB’s surface, 

where different masses simulate distinct damage extents. A WTB is selected for the method 

demonstration because vibration-based SHM in wind energy infrastructures is expected to be 

more critical, promising and beneficial compared to other applications. This is so because of 

the recent international commitments for achieving carbon neutrality by the end of this 

century [59]. The resulting increasing demands for wind energy lead to erections of ever 

larger WTs in locations, such as offshore, where winds are stronger and more predictable. 

However, these new developments in harsh environments are adversely affected by 

increasing operation and maintenance expenditures, which can make up to 20% of the total 

cost of energy production [60]. Consequently, the expected revenues and energy production 

targets are challenged. Adopting effective SHM techniques in WTBs may help to alleviate 

this undesirable situation. 

The paper is structured as follows. The first section presents the general methodology 

we adopt for SDD and SDL and the corresponding theoretical background. The key aspects 

of the method working are explained using a theoretical illustrative example employing 

bivariate DSF for easy visualisation. In the following section, the experimental configuration 

and dynamic experiments with the small scale WTB are described. Then, the performance of 

the developed SDD and SDL procedures is investigated using experimental data, beginning 

with the estimation of initial DSFs, i.e. PACCs, then extraction of the LDA-FKT scores, 

selection of the optimal DSF subset for SDD, and finally comparison of the performance of 

the two DSF types for SDD. The identification and training of hierarchical neuro-fuzzy 

models for SDL using the selected and ranked initial and transformed DSFs is presented next, 

where the different hierarchical neuro-fuzzy models and DSF types are compared for their 

damage localisation accuracy. Finally, a summary and conclusions round up the paper. 

2. METHODOLOGY AND THEORY 

The steps of the proposed methodology for vibration-based SDD and SDL are shown in 

Fig. 1. It comprises two phases: an offline baseline or training phase and an online 

operational phase where damage is detected and localized. In the offline phase, the training of 

the algorithms is performed using acceleration datasets acquired in selected structural states. 

Since supervised algorithms perform best on scenarios similar to those on which they have 

been trained, the selection of training damage scenarios should be based on optimising the 
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performance for the desired target SHM tasks. One practical way to select important 

scenarios is by considering the likelihood of damage occurrence and its consequences for the 

structural integrity, i.e. risk. To improve generalization capabilities of the method and its 

robustness, not only data from several locations is used but varying damage extents are 

considered as well (note our objectives are restricted to SDD and SDL, and so varying 

additionally damage extents is a potential threat to the SDD and SDL performance). Then, the 

dynamic response signals are pre-processed by filtering and resampling to reduce noise, 

dividing them into segments of a common length, and finally normalizing the segments by 

removing their estimated means and dividing by standard deviations to eliminate potential 

variations due to operational and environmental effects. In the next step, PACCs for each 

structural state considered are estimated up to the preselected numbers of lags. 

The baseline phase then forks into two branches to train dedicated algorithms 

specialised for either SDD or SDL, respectively. In the SDD branch, all the available datasets 

(i.e. from the healthy and damaged states) are used to transform DSFs by means of the LDA-

FKT. Then, the FF selection algorithm is applied to the original PACCs and the resulting 

LDA-FKT scores using a statistical measure to describe their sensitivity to damage presence. 

This approach allows identifying the best DSF type and its optimal subset for binary 

statistical hypothesis testing to be applied for SDD (i.e. distinguishing between the healthy or 

damaged state) in the operational stage. Additionally, the statistical characteristics of these 

optimal DSFs for the healthy state, i.e. the mean vector and the variance-covariance matrix, 

are estimated from the training dataset and are also used in the operational phase. 

The second branch aims at obtaining an optimal classifier for SDL, which will only be 

used in the operational phase when damage has been detected. Therefore, only datasets from 

damage states are used for training. Using these DSF samples, the LDA-FKT is performed 

and the resulting scores are ranked for their SDL performance with the help of a statistical 

measure for the multiclass problem. Similar ranking is performed for the original PACCs. 

The ranking information is used for creating HANFIS models for each DSF type with 

increasing numbers of inputs beginning with the most damage location sensitive features. An 

optimal HANFIS is identified by evaluating the error for cross-validation datasets. This 

completes the training of the algorithms, where the proposed offline procedure is beneficial 

because it allows utilizing advanced computational resources. Note that neither the DSF type 

nor its optimal subset need be the same for both SDD and SDL; indeed, it will be 
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demonstrated later they are different for the theoretical illustrative example and WTB 

experimental example considered in this study. 

In contrast to the baseline phase, the subsequent online operational phase entails only 

low computational effort. After pre-processing of signals of the structure in its current state, 

PACCs are estimated. If it is indicated as beneficial in the training phase, the PACCs are 

transformed into the selected LDA-FKT scores for SDD. Then, either the selected optimal 

PACCs or LDA-FKT scores are used for SDD by means of statistical hypothesis testing. If 

damage presence is indicated and the baseline phase established that PACCs should be 

transformed into LDA-FKT scores for SDL, this is done with the help of another LDA-FKT 

matrix built specifically for the SDL task. The highest ranked PACCs or LDA-FKT scores 

are then fed into the trained HANFIS to predict the location of the previously identified 

damage. 

The following sections describe the theoretical tools used in the methodology: i) 

signal pre-processing and estimation of PACCs for the definition of initial DSFs, ii) the 

LDA-FKT, iii) statistical hypothesis testing and the FF algorithm for ranking of univariate 

DSF components with respect to their sensitivity to damage presence and localisation, and iv) 

the hierarchical neuro-fuzzy modelling. 

2.1. Partial autocorrelation-based damage sensitive features 

Measured vibration response time histories can be divided into n segments with a common 

number of samples, nsamp. By removing the estimated means and dividing by the estimated 

standard deviations of each segment, zero-mean, unit-variance and normally distributed time 

series segments, zi[t] (i=1, 2, …, n; t=1, 2, …, nsamp), can be obtained. A parsimonious 

representation of the signals is desired for efficient decision making about the current 

structural state. The partial autocorrelation function (PACF), αi[τ], is a non-parametric time 

series representation. It is the conditional correlation, Corr((…)|(…)), between the time series 

zi[t] and its own version shifted by τ periods, zi[t-τ], defined as [61]: 

 [ ] Corr( [ ], [ ] | [ 1], [ 2], , [ 1])   = − − − − +i i i i i iz t z t z t z t z t   (1) 

Thus, the effects of the intermediate variables, zi[t-1], zi[t-2], …, zi[t-τ+1], are removed. 

 Sample PACCs, �̂�𝑖[𝜏], can efficiently be computed by the following recursion [58]: 

 
1 1

, , 1 , , 1

1 1

ˆ ˆ ˆ ˆ ˆ ˆ[ ] [ ] [ ] 1 [ ]i i i p i i p i

p p

r a r p a r p
 

    
− −

− −

= =

   
= − − −   
   

    (2) 
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where �̂�𝑖,𝑝,𝑘 is the estimated k-th coefficient of an autoregressive model of order p and �̂�𝑖[𝜏] is 

the sample autocorrelation coefficient at lag τ of the i-th time series segment. The close 

relationship between PACFs and autoregressive processes, as emphasised by the above 

formula, is commonly used for identifying autoregressive model orders to represent 

appropriately the underlying dynamics of such a process [62]. For lags higher than the 

required order, the PACF is theoretically zero and the PACCs follow approximately a zero-

mean Gaussian distribution with a standard deviation calculated as [63]: 

 ˆ [ ] 1 for 1
i sampn p  =  +   (3) 

The estimated standard deviation enables selecting the significant PACCs as initial DSFs 

using elementary statistical tests [64]. 

Nevertheless, more information about the probability density functions of the PACCs 

is desired for performing statistic-based DSF ranking. A difficulty arises here because 

statistical distributions of PACCs are bounded between -1 and +1 and do not have obvious 

theoretical expressions. Therefore, Fisher’s z-transformation is often applied for obtaining 

normally distributed z-scores, �̂�𝑖
𝑧[𝜏], from PACCs [65]: 

 ( ) ( ) ( )1ˆ ˆ ˆ ˆ[ ] tanh [ ] ln 1 [ ] 1 [ ] 2z

i i i i       −= = + −     (4) 

A multivariate DSF vector, 𝐯𝑖
PAC, can then be composed of m such z-scores as: 

 ( )ˆ ˆ ˆ[1] [2] [ ] ~ ,
T

PAC z z z

i i i i m   =  v μ ΣN   (5) 

where superscript T denotes transpose. Due to the Fisher z-transformation, 𝐯𝑖
PAC  follow a 

multivariate Gaussian probability distribution, (𝛍, 𝚺), with a mean vector μ and variance-

covariance matrix Σ. A DSF matrix, VPAC, can be constructed using DSF vectors from n time 

series segments as follows: 

 1 2V v v vPAC PAC PAC PAC

n
 =     (6) 

2.2. Linear discriminant analysis based on the Fukunaga-Koontz transformation 

In contrast to the well-known PCA or Karhunen-Loéve expansion, which aim at obtaining 

optimal approximations for reconstructing datasets from scores with reduced dimensionality, 

the FKT was developed for extracting low dimensional scores with improved classification 

capabilities in comparison to the initial features [51]. Huo [52] demonstrated theoretically 

that the FKT is the optimal linear approximation of a quadratic classifier for the two-class 
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problem. However, for the applications in SHM, where a structure can be in one of several 

different states varying in, e.g., damage location and severity, the two-class formulation is 

insufficient. To circumvent this restriction, the use of LDA-FKT is proposed in this study. 

Multi-class LDA, also known as the Fisher discriminant analysis, tries to identify a linear 

transformation matrix, W, which maximizes a function, JF(W), of the ratio between the class 

separation and the class overlap defined as [66]: 

 ( ) ( )
1

( ) traceW W S W W S W
T T

F w bJ
− =

  
  (7) 

The distance between C classes is quantified with the help of the between-class scatter 

matrix, Sb, defined as: 

 ( )( )
1

ˆ ˆ ˆ ˆ
=

= − −
C

T

b i i T i T

i

nS μ μ μ μ   (8) 

where ni and �̂�𝑖 are the number of DSF samples and the estimated DSF mean vector of the i-

th class, respectively. The mean, �̂�𝑇, of the total dataset containing nT DSF samples can be 

estimated as: 

 
1

1
ˆ ˆ

=

= 
C

T i i

iT

n
n

μ μ   (9) 

The within-class scatter matrix, Sw, for our chosen DSFs is defined as: 

 ( )( ), ,

1 1

ˆ ˆS v μ v μ
jnC

T
PAC PAC

w i j i i j i

j i= =

= − −   (10) 

where the second index, j, indicates class belonging.  A solution maximising the Fisher 

criterion of Eq. (7) can be found by solving the following generalized eigendecomposition 

problem [67]: 

 
1

S S w ww b − =   (11) 

where λ is an eigenvalue and w is the corresponding eigenvector, respectively. The 

transformation matrix W can then be built using the eigenvectors of the C-1 non-zero 

eigenvalues. However, this approach has two limitations. Firstly, it requires the within-class 

scatter matrix Sw to be invertible, which may not necessarily be the case for time series-based 

DSFs. Secondly, the restriction on the number of extractable eigenvectors can adversely 

affect the distinguishability between classes if only a small number of classes is available for 
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estimating the transformation matrix and the initial DSFs are at the same time high 

dimensional and with only low to moderate damage sensitivities. 

The LDA-FKT, as a combination of the LDA and the FKT, does not suffer from the 

aforementioned limitations of the individual techniques and can be performed efficiently 

[53]. First, the total scatter matrix, ST=Sb+Sw, can be factorized using eigendecomposition as 

follows: 

  ⊥
⊥

  
=   

   

T

T T

D 0 U
S U U

0 0 U
  (12) 

where 0 denotes null matrices of appropriate dimensions, and matrix U contains the 

eigenvectors associated with the non-zero eigenvalues of ST stored in the diagonal matrix 

D=diag{λ1, λ2, …, λr}. The null space spanned by the eigenvectors contained in matrix 𝐔⊥ 

corresponding to the zero-valued eigenvalues, does not have any class-discriminatory 

information [68], thus it can be discarded. In the next step, a whiting transformation, P, 

defined as: 

 1 2−=P UD   (13) 

is applied to the scatter matrices as follows: 

 ,  T T

b b w w= =S P S P S P S P   (14) 

The transformed matrices are related to each other as follows: 

 + =b wS S I   (15) 

where I is an identity matrix of an appropriate dimension. Accordingly, the two matrices 

share the same eigenspace and can be simultaneously diagonalised [53]: 

 , T T

b b w w= =S QΛ Q S QΛ Q   (16) 

where Q is the matrix of common eigenvectors. By substituting Eq. (16) into Eq. (15) and 

eliminating the eigenvector matrices, the following relationship can be obtained: 

 + =b wΛ Λ I   (17) 

where the r-dimensional eigenvalue matrices of the whitened between-class and within-class 

scatter matrices are Λb=diag{λb,1, λb,2, …, λb,r} and Λw=diag{λw,1, λw,2, …, λw,r}, respectively. 

Since the whitened scatter matrices are positive semi-definite and assuming that the 
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eigenvalues of the between-class scatter matrix, λb,i, are arranged in descending order, the 

eigenvalues of the within-class scatter matrix, λw,i, obey the following: 

 ,1 , ,2 , 1 , ,11 1 1 1 0w b r w b r w r b     − = −  = −   = −    (18) 

The eigenvectors corresponding to the largest eigenvalues of �̃�𝑏 are the most important for 

separating the classes, while they give the smallest intra-class variability. The combined 

transformation matrix, T, defined as follows: 

  1 2= = rT PQ t t t   (19) 

can be used to transform the initial DSFs to the LDA-FKT scores, 𝐯𝑖
𝐹𝐾, as follows: 

 1 2 i

FK T PAC FK FK FK

n
 = =  V T V v v v   (20) 

where  𝐕𝐹𝐾  is the LDA-FKT score matrix. The LDA-FKT transformation vectors, ti, are 

generally non-orthogonal to each other, and the resulting scores are not necessarily 

statistically independent. This is because for DSFs from different structural states their 

variance-covariance matrices can generally have different principal directions. 

2.3. Statistical hypothesis testing and damage sensitive feature ranking 

In the proposed framework, statistical hypothesis testing is used for deciding quickly if a 

structure is healthy or damaged. A statistical model of the z-transformed PACCs as well as 

the LDA-FKT scores obtained from these initial DSFs can be described by multivariate 

Gaussian distributions, (𝛍, 𝚺), with true means, μ, and variance-covariance matrices, Σ, 

respectively. Under an assumption that damage manifests itself as a shift in the mean of a 

DSF vector, the following statistical hypotheses can be defined: 

 
0

1

: (healthy)

: (damaged)

=



c h

c h

H

H

μ μ

μ μ
  (21) 

The null hypothesis, H0, represents the healthy state characterised by the equality of the 

multivariate means from the current state, μc, and the reference healthy state, μh. The 

alternative hypothesis, H1, refers to a damaged structure.  

The T 2 (m,a,b) statistic is the standardized statistical distance between two estimated 

means, �̂�𝑎 and �̂�𝑏, of dimension m, and is defined as [69]: 

 ( ) ( ) ( )2 ˆˆ ˆ ˆ ˆ( , , ) μ μ Σ μ μ
T

a b b a pl b a a bT m a b n n n n= − − +   (22) 



17 
 

where �̂�𝑝𝑙 is the estimated pooled variance-covariance matrix defined as follows: 

 ( )ˆ ˆ ˆ( 1) ( 1) 2Σ Σ Σpl a a b b a bn n n n = − + − + −
 

  (23) 

The matrices �̂�𝑎  and �̂�𝑏  are unbiased estimators of the corresponding true variance-

covariance matrices obtained by using na or nb numbers of samples, respectively. The 

T 2 (m,a,b) statistic follows Hotelling’s distribution, 𝑇𝑚,𝑛𝑎+𝑛𝑏−2
2 , with m and na+nb-2 degrees 

of freedom. With the help of the 𝑇𝑚,𝑛𝑎+𝑛𝑏−2
2  inverse cumulative distribution function, 

𝐹𝑇𝑚,𝑛𝑎+𝑛𝑏−2
2

−1 (1 − 𝛼), the above hypotheses can be tested as follows: 

 
2

, 2

2 1

0

0

( , , ) (1 )  is accepted

 is rejected
m n nh c

T
T m h c F H

HElse


+ −

− − 


  (24) 

where α is the selected level of significance, and the generic state indicators a and b are 

replaced by specific references to the healthy and current state, h and c, respectively. 

Dividing the T 2 (m,a,b) statistics by the corresponding inverse cumulative distribution 

function value 𝐹𝑇𝑚,𝑛𝑎+𝑛𝑏−2
2

−1 (1 − 𝛼) at a selected level of significance, α, defines the following 

relative statistical distance: 

 
2

, 2

2 2 1( , , ) ( , , ) (1 )
m n na b

rel T
T m a b T m a b F 

+ −

−= −   (25) 

where 𝑇𝑟𝑒𝑙
2 (𝑚, 𝑎, 𝑏) ≥ 1  indicates damage detection. Increasing the dimensionality of the 

DSF, m, by adding new components will increase the T 2 (m,a,b) distance, however, there will 

also be an increase in the value of the detection threshold defined by 𝐹𝑇𝑚,𝑛𝑎+𝑛𝑏−2
2

−1 (1 − 𝛼), 

because it increases with the number of statistical degree of freedom, m. Thus, the optimal 

selection of DSFs can be taken as that which maximises the relative distance 𝑇𝑟𝑒𝑙
2 (𝑚, 𝑎, 𝑏). 

Nevertheless, for ranking of DSFs in a multi-class setting rather than a two-class one, 

further modifications are necessary. For SDD, the minimum of the relative distances between 

the reference healthy DSFs and DSFs from CD distinct reference damage states is defined as 

the objective function for optimal DSF selection as follows: 

  2 2 2 2( ) min ( , ,1), ( , , 2), , ( , , )=SDD rel rel rel DT m T m h T m h T m h C   (26) 

In this case, every distance is calculated from the healthy state data and then the minimum 

taken, because the goal is to ensure all the damage states are separated as much as possible 
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from the healthy state. This can be achieved by finding a DSF selection of size m that 

maximises 2 ( )SDDT m . 

For maximising the separability of multiple classes for SDL, the following extension 

of 𝑇𝑟𝑒𝑙
2 (𝑚, 𝑎, 𝑏) is proposed to select the optimal DSF subset: 

 

1
2 2

1 1

( ) ( , , )
D DC C

SDL rel

a b a
a h b h

T m T m a b
−

= = +
 

=     (27) 

Note that one class (i.e. the healthy state) is excluded from calculating 
2 ( )SDLT m  as we 

assume SDD will have been conducted earlier. 

In the FF ranking process [69], these variables that improve an objective function are 

consecutively selected to compose an optimal subset of DSFs for a statistical analysis. This 

method is characterized by its moderate computational requirements, ease of implementation 

and short processing times. Therefore, it is herein applied for ranking the univariate DSFs 

with respect to either 𝑇𝑆𝐷𝐷
2 (𝑚)  or 𝑇𝑆𝐷𝐿

2 (𝑚)  as the objective functions for SDD or SDL, 

respectively. In the first FF iteration, all the individual components are evaluated against the 

objective function and the one with the highest value is selected. It is the most sensitive DSF 

component and receives the highest rank. Then, all the remaining components are added in 

turn to the first selected component and the one corresponding to the largest bivariate 

distance is retained with rank two. The procedure continues until all the components have 

been included in the DSF vector. The optimal selection and size of the DSF vector is the one 

that maximises the objective function. It should be noted that the FF ranking only guarantees 

finding the global maximum if all DSFs are statistically independent, i.e. the variance-

covariance matrix is diagonal. However, for small to moderate correlations amongst the DSF 

the outcome is typically not strongly affected and computational efficiency gains outweigh 

the risk of arriving at a suboptimal solution.   

2.4. Hierarchical neuro-fuzzy modelling 

The characteristics of DSFs generally depend not only on the existence of damage but also on 

its location and extent. Thus, the use of an advanced classification method is required to 

avoid misclassifications caused by damage scenarios that are potentially different and not 

used in the training process. The ANFISes are Takagi-Sugeno fuzzy inference systems with 

theoretical universal approximation power [55], which enables them to represent any non-
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linear function arbitrarily well. Thus, they can be used to perform SDL by non-linearly 

mapping DSFs, as inputs, to damage locations, as outputs, even if distinct DSF characteristics 

are related to the same location because of, e.g., varying damage severities. Nevertheless, for 

high dimensional DSFs there are many inputs, and creating and training of an ANFIS can 

become computationally prohibitive due to the so called ‘curse of dimensionality’ 

experienced by soft computing networks. It can also be expected that including features that 

are noisy or only weakly altered by damage (i.e. its presence and location in this case) will 

adversely affect the accuracy of predictions as well as the model complexity. 

To address these challenges, a system with a hierarchical architecture comprising several 

ANFISes and referred to as HANFIS is developed as illustrated in Fig. 2. Each square 

represents a single ANFIS with two inputs and one output (explained itself later in Fig. 3). 

The HANFIS inputs are the ranked univariate DSFs, vi, where index i refers here to the rank. 

(Both previously introduced DSF types, i.e. the PACF z-scores and the LDA-FKT scores, are 

studied, thus the generic notation vi is used by neglecting the superscript.) By using DSF 

components as inputs in the order they are ranked, their variable sensitivities to damage can 

dictate the model structure, i.e. the number of ANFISes to be used. The first hierarchical level 

ANFIS uses the two most sensitive DSFs as inputs. It is trained against the desired outputs, 

i.e. the correct damage locations. It is assumed that this is the best possible model with two 

inputs, but it may not necessarily be the overall best model because including more DSF 

components can improve the SDL accuracy if they are sufficiently sensitive to damage 

locations. However, simply increasing the number of inputs into a single ANFIS quickly 

becomes computationally prohibitive. Therefore, the proposed hierarchical structure grows 

by adding another ANFIS that uses as inputs one new ranked DSF component and the 

predicted output of the previous HANFIS. In this way, the predicted outputs from the lower 

hierarchical level ANFISes are propagated until an optimal hierarchical level is reached. The 

corresponding HANFIS uses inputs up to the optimal ranked univariate DSF, vopt. Identifying 

this optimal hierarchical level may require using many, possibly all the available inputs up to 

the m-th DSF component, vm, but since training of each ANFIS is done separately the overall 

computational effort increases only linearly with the number of hierarchical levels. This 

desirable behaviour extends easily the applicability of the proposed model structure to high 

dimensional DSFs. The root mean square (RMS) error of the h-th ANFIS, εh, can be 

calculated for n samples of the target outputs, yi, and the predicted outputs, �̂�ℎ,𝑖, as: 
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 ( )
2

,

1

ˆ
n

h i h i

i

y y
=

= −   (28) 

Evaluating this error for HANFISes with different hierarchical levels enables identifying the 

optimal level, opt. However, using only a single dataset for HANFIS architecture 

optimisation may easily lead to overfitting. Furthermore, overly large models might be 

produced. Insights into the approximation and estimation errors obtained from k-fold cross-

validation can be used for more robust model identification [70]. For this type of cross-

validation, a dataset is divided into k subsets of randomly selected samples without 

replacement. Then, k models are trained using only k-1 sample subsets. The retained unseen 

samples enable to calculate the validation errors of the separate models. Therefore, a model 

selection criterion, h, is defined for this task as: 

 ˆ ˆ
   = +

h hh   (29) 

where �̂�𝜀ℎ
 and �̂�𝜀ℎ

 are the estimates of the mean and standard deviation of the error from the 

cross-validation estimates. The minimum of this expression is selected as the optimal 

hierarchical level. Then, following the recommended practice [66], the final modelling of the 

identified HANFIS is performed using all available data. 

The individual ANFISes have the same structure, which is shown for the h-th ANFIS 

in Fig. 3 as an example. Here, square blocks represent nodes with adaptive parameters, while 

circles indicate fixed nodes without adjustable parameters. It resembles an ANN with two 

inputs, one output and five layers. In the first layer, the membership grades are evaluated for 

the two inputs using q membership functions, 𝑀1,𝑖
ℎ  and 𝑀2,𝑖

ℎ  (i=1, 2, …, q), respectively. They 

typically are non-linear functions, such as Gaussian or sigmoid functions, and their 

parameters are the so-called premise parameters of the fuzzy inference system. The 

membership functions are adaptive nodes because their parameters are modified during 

training. The nodes in the second layer, denoted by 
i , are fixed and calculate firing 

strengths, 𝑤𝑖
ℎ, by multiplying the incoming signals with each other. The firing strengths are 

normalized by dividing them by  ∑ 𝑤𝑖
𝑞𝑞

𝑖=1  to �̅�𝑖
ℎ in the next layer nodes denoted as Ni. The 

forth layer, whose nodes are denoted as  𝐹𝑖
ℎ, evaluates the q fuzzy if-then rules given as: 

 1 1, 1 2, 1 1Rule : if  is  and  is , then h h h h h h

h i h i i i h i h ii y M v M f p y q v r− + − += + +   (30) 
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where 𝑝𝑖
ℎ , 𝑞𝑖

ℎ  and 𝑟𝑖
ℎ  the so-called consequent parameters describing linear output 

membership functions. The corresponding nodes are thus adaptive. Finally, the overall 

output, yh, is computed in a single fixed node  in layer five as a weighted sum of all the 

incoming signals. The ANFIS structure allows using the well-established ANN training 

procedures for optimizing its parameters. A hybrid learning strategy is applied in this 

research, which combines the forward and back-propagation learning [54]. In the forward 

pass, the linear consequent parameters are estimated with the help of a least-squares 

procedure. Then, the error signals are back-propagated to the membership functions, where a 

gradient-descent approach is applied for optimizing the non-linear premise parameters. The 

error for a given training dataset is iteratively reduced by performing several epochs of 

forward and backward passes. To avoid overfitting of the individual ANFISes, a hold-out 

cross-validation is applied, where a separate checking dataset is used for calculating the 

checking error. The epoch with the minimum checking error gives the optimal parameters. 

The number of membership functions and rules, q, depends on the properties of the 

inputs. Due to the close relationship of this type of fuzzy inference systems with cluster 

analysis [55], unsupervised subtractive clustering can be used for determining an appropriate 

ANFIS structure for each hierarchical level. Although other clustering techniques can be 

employed, e.g. k-means, fuzzy c-means or Gaussian mixture models, subtractive clustering is 

simple and efficient. Cluster centres are identified iteratively using a density measure 

estimated for each input sample, which is modified after each iteration by removing the effect 

of the identified clusters. 

3. BIVARIATE PROBLEM ILLUSTRATION 

This section discusses the selection of the original and LDA-FKT transformed DSFs for 

enhanced SDD and SDL. The discussion employs a generic m-variate original DSF, v, which 

is assumed to follow in a certain structural state, st, a Gaussian distribution, (𝛍𝑠𝑡, 𝚺𝑠𝑡), with 

the true mean vector, μst, and variance-covariance matrix, Σst, respectively. The LDA-FKT 

version of the feature is denoted by FK
v  . For the sake of simplicity but without loss of 

generality, it is assumed that the statistical uncertainty of the DSF true mean vector and the 

variance-covariance matrix estimates for the healthy state, st=h, are negligible. Thus, 

statistical hypothesis testing for single DSF vector samples in the current state, v𝑐𝑢𝑟𝑟, can be 

done with the help of the squared Mahalanobis distance, D2(m), defined as [69]: 

 
2 1 2( ) ( ) ( )T

curr h h curr h mD m −= − −v μ Σ v μ X   (31) 
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which permits using a simpler 𝑚
 2  distribution with m DOFs rather than the more general 

Hotelling’s distribution, 𝑇𝑚,𝑛𝑎+𝑛𝑏−2
2 . The 𝑚

 2  inverse cumulative distribution function, 

𝐹
𝑚

 2
−1(1 − 𝛼), can be used to define a statistical threshold at a selected level of significance, α.  

To be able to visualize the problem, a bivariate DSF vector is considered in the 

following discussions, i.e. m=2 from now on. The difference between the current state DSF 

vector, vcurr, and the true mean in the healthy state, μh, is given as: 

 
,1 ,1 1

,2 ,2 2

curr h

curr h

v v

v v





−    
 = =   −   

v   (32) 

For simplicity, it is further assumed that the standard deviations of both initial DSF 

components are equal to one. Thus, the variance covariance matrix in the healthy state is: 

 
12

12

1

1
h





 
=  
 

Σ   (33) 

where ρ12 is the correlation coefficient. Accordingly, the statistical test using the squared 

Mahalanobis distance D2(m) reduces to: 

 2
2

2 2
2 11 2 12 1 2

2

12

2
(2) (1 )

1

v v v v
D F






− + −  
=  −

− X
  (34) 

and uses the bivariate distribution 2
 2. 

In what follows, two cases are discussed to highlight that, depending on the problem 

at hand, either the original or transformed feature selections may be optimal for SDD and 

SDL. 

3.1. Case 1 

Case 1 was conceived to demonstrate that using the LDA-FKT scores may be optimal for 

both SDD and SDL, albeit the best scores that should be selected for each task may be 

different.  

In addition to the healthy state, three hypothetical damage states, namely A, B and C, 

are considered. The DSF true mean vectors for these damage states are assumed as follows: 

 
,1 ,1 ,1

A B C

,2 ,2 ,2

3.8 5.3 0.7
, , 

3.8 2.9 6.1

h h h

h h h

  

  

− − − −     
= = =     

− − − − −     
μ μ μ   (35) 
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Equation (34) allows defining an elliptical acceptance region of the null hypothesis (Eq. (21)

). This is shown in Fig. 4a for a selected illustrative correlation coefficient ρ12=0.3 and 

significance level =5%. To make the discussion more tractable, it is assumed that the DSF 

variance-covariance matrices in the damage states are identical to the healthy state one shown 

in Eq. (33). Their DSF distributions have therefore the same shape, but occur in different 

locations as shown in Fig. 4a. It should be noted that circular DSF distributions are a special 

case for uncorrelated initial DSFs, i.e. when ρ12=0.  

In addition to the elliptical acceptance region of the null hypothesis applicable when 

using bivariate DSFs, acceptance regions are constructed for the case when only either 

original DSF v1 or DSF v2 is used. They appear as vertical and horizontal bands bounded by 

±√𝐹
1

 2
−1(1 − 𝛼) considering the univariate distribution 1

 2.  

For the LDA-FKT scores, 1

FKv  and 2

FKv , to be used for SDD, the true mean vectors of 

all four classes should be used to compute the between-class scatter matrix, Sb, using Eq. (8), 

and the within-class scatter matrix, Sw, using Eq. (10). To further simplify the problem, we 

assume that the numbers of samples available from each of the four structural states 

introduced thus far are the same and large. The LDA-FKT transformation matrix, T, (Eq. (19)

) is obtained as: 

  1 2

0.82 0.46

0.58 0.89

− 
= =  

 
T t t   (36) 

where the matrix columns (i.e. transformation vectors, t1 and t2) are normalized for 

convenience to unit length. It can easily be verified that they are not orthogonal. The 

coordinate system axes defined by the two vectors are also shown in Fig. 4a. The initial DSFs 

can then be transformed to their LDA-FKT scores, 1

FKv  and 2

FKv , with the help of Eq. (20). 

Furthermore, acceptance bands are constructed for 1

FKv  and 2

FKv  using the statistical 

threshold ±√𝐹
1

 2
−1(1 − 𝛼) . These bands appear as inclined (and perpendicular to the 

respective transformation vectors) and their widths are not identical, i.e. the acceptance band 

for 1

FKv  is wider than that for 2

FKv . 

Examining Fig. 4a, for statistical hypothesis testing using selected univariate DSFs for 

SDD, where we only want to be able to check if the current data is statistically different from 
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those of the healthy state but are not concerned about which particular damage state they 

come from, the following observations can be made. If the LDA-FKT scores 
2

FKv  are used, 

then data coming from any of the three damage states A, B and C can easily be separated 

from the healthy state. Only a small number of false positive damage detection errors is 

expected and even a smaller number of false negative errors. In contrast, projecting the initial 

DSFs to form  
1

FKv  allows for easy detection of data from damage state C as different from 

the healthy state, while data from damage state B can only be partially differentiated from the 

healthy state, and data from damage state A will mostly be undistinguishable from the 

healthy state. For SDD based on selected initial DSF components, it can be observed that 

using v1 offers a similarly confused performance to using 
1

FKv , only this time data from 

damage state B can easily be separated from the healthy state, data from damage state A only 

partially, and data from damage state C is mostly undistinguishable. Using v2 only, 

differentiation of data from damage state C from the healthy state data is clear, but data from 

damage states A and B can only be partially correctly identified as coming from a damaged 

structure. 

Note that for bivariate hypothesis testing the same ellipse defines the acceptance 

region for both the original and the transformed features. Using bivariate hypothesis testing 

for SDD, i.e. considering jointly both original features or both their LDA-FKT projections 

enables easy separation of damage states B and C from the healthy one, but the ellipse for 

damage state A shows a degree of overlap with the healthy state one. This overlap will give 

rise to a modest number of false positive or false negative damage detection errors. Whether 

the performance of the proposed SDD algorithm with 2

FKv or a bivariate DSF can be 

considered better will depend on the user’s tolerance for two types of errors. Overall, 

however, for this SDD example the LDA-FKT score 2

FKv  outperformed all other univariate 

DSFs and was shown to be competitive against both bivariate DSFs, demonstrating that in 

this case it can be optimal to both transform DSFs and retain only a selected transformed 

feature.  

In the SDL problem, having determined that the structure is damaged, we now ignore 

the healthy state and focus on detecting which specific damage state occurred.  The figure to 

discuss this situation is Fig. 4b. Here the LDA-FKT transformation matrix, T, (Eq. (19)) 

obtained using only the DSF distributions of the three damage states is 
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  1 2

0.80 0.51

0.60 0.86

− 
= =  

 
T t t   (37) 

Differentiating successfully between the various considered damage states requires 

that their statistical distances, measured along the axis in question for univariate features or 

from the origin of the coordinate system for bivariate ones, be sufficiently different. Figure 

4b demonstrates that this can be most successfully done using the LDA-FKT score 
1

FKv : the 

statistical distance measured along this axis is the largest for damage state C, followed by 

damage state B and then damage state A. It can be seen that there is a degree of overlap 

between the three damage state DSF distributions in that direction, and so SDL will not be 

without misclassifications. This, however, is the property of the assumed data, and other 

datasets with more distant means and/or less scatter would lead to improved SDL outcomes. 

To contrast this optimal, albeit imperfect, performance with less successful choices of DSF, 

we can see that using 2

FKv  only results in rather similar distances for all three damage states; 

using either v1 or v2 only will give insufficiently different distances between damage states A 

and B; and bivariate DSFs cannot separate damage state C from B. The simple SDL example 

shows again that the winning strategy is to both transform and retain only a selected 

transformed feature, but this feature may be different than the previous one chosen for SDD. 

For application of HANFISes for SDL, the use of initial DSFs would require four 

Gaussian membership functions in the input layer, i.e. two for each DSF component. 

Additionally, two rules and consecutively two linear output membership functions would be 

needed to distinguish all three damage states. An LDA-FKT HANFIS requires only three 

Gaussian membership functions in the input layer, one rule and one linear output membership 

function. This fact extends the benefits of LDA-FKT for SDL for the use with neuro-fuzzy 

models, where parsimonious model structures with small numbers of inputs are desirable for 

limiting computational efforts. 

3.2. Case 2 

Case 2 was selected in contrast to Case 1 to highlight there may be situations where using the 

LDA-FKT scores may be suboptimal for at least one of SDD and SDL and the original 

features may be preferred. The case is illustrated in Figure 5a and b for SDD and SDL, 

respectively. 

Here, the assumed DSF true mean vectors for damage states A, B and C are as 

follows: 
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,1 ,1 ,1
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,2 ,2 ,2

4.6 4.6 4.7
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0.6 6.0 5.7

h h h

h h h

  

  

− − − −     
= = =     

− − −     
μ μ μ   (38) 

 Performing a similar analysis for SDD as in Case 1 reveals that for Case 2 the optimal 

DSF is the original feature v1, i.e. it does not pay off to transform features but their judicious 

selection is still desirable. For SDL, on the other hand it is 
1

FKv that outperforms all remaining 

univariate or bivariate options. Case 2 further confirms that DSF transformation and selection 

need to be tailored to the specific task and patterns present in the data. 

It should be born in mind that the presented two cases are simple, illustrative and 

represent only particular situations. Real applications will generally be more challenging 

because DSF vectors will have significantly higher dimensions, the structural states may be 

far less clearly separated and the variance-covariance structures may change with damage. 

Nevertheless, the two cases illustrate the potential benefits of selecting carefully from 

amongst the initial and LDA-FKT modified DSFs for enhanced SDD and SDL performance. 

They also clearly demonstrate the need for a systematic assessment of DSFs for specific 

SHM tasks, as proposed and later examined in this study on experimental data using the FF 

method in combination with specialised objective functions. 

4. EXPERIMENTS 

Physical experiments are essential for demonstrating and verifying the proposed concepts. 

Therefore, laboratory experiments with a small WTB were performed. This section describes 

first the specimen and the experimental configuration. Then, the estimation of the PACF from 

vibrational responses is presented in preparation for hypothesis testing and LDA-FKT neuro-

fuzzy modelling and the evaluation of the SDD/SDL algorithms. 

4.1. Experimental configuration 

The specimen for the dynamic experiments is a 2.36 m long WTB of a residential-size WT 

with 5 m rotor diameter and a rated power output of 5 kW. Its cross-section has a constant 

width of 150 mm and is defined by the aerofoil profile E387 with a curved low-pressure side 

and flat high-pressure side, as shown in Fig. 6. The solid WTB section is made by pultrusion 

of a glass-fibre reinforced epoxy composite. The total mass was measured as 7,111 g and the 

mass density estimated as 2.30 g/cm3. The WTB was set up vertically for the experiments to 

save laboratory space, with the root clamped to a massive steel base sitting on a thick 

concrete floor (see Fig. 7). 
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In a preliminary study, the WTB’s dynamic characteristics were identified by 

experimental modal analysis from accelerance frequency response functions from 

experiments with an instrumented hammer. The high flexibility of the WTB is demonstrated 

by the low first natural frequency of 1.75 Hz. This is an important property for real 

applications, where large, highly flexible WTBs can be excited by low frequency wind 

pressure fluctuations. Wind-like excitation is simulated in this study using a household 

pedestal fan with a rotor diameter of 40.6 cm and a height of 62 cm measured from the WTB 

root. The fan was positioned at about 1 m from the WTB leading edge with an orientation 

corresponding to a zero-degree angle of attack. Its operation power can be selected in three 

levels up to a maximum of 40 W, where the second level is used in this study. The use of a 

fan enables to apply continuous, non-contact excitation. This type of experimental setup 

allows simulating a realistic scenario of a parked WT with a feathered WTB in upright 

position under wind-like excitation. 

For demonstrating the performance of SDD and SDL algorithms without permanently 

altering the specimen, changes were introduced non-destructively by attaching small masses 

between 10 g and 100 g in increments of 10 g at selected locations on the WTB. These 

locations were chosen based on inspection reports and WTB damage studies [71-74]. Three 

damage hotspots were indicated: the WTB tip (T), the leading edge (LE) at 66% of the blade 

length from the root, and the trailing edge (TE) at 33% of the blade length from the root. For 

supervised global SDL methods, a pragmatic approach is to focus on potential damage 

locations with high prevalence rates and the risk they pose to structural integrity. This allows 

reducing efforts and costs for training of algorithms, while adequate levels of safety and 

reliability can be assured. Nevertheless, to assess the generalization capabilities of the 

proposed methods, the effect of variations in the extent and location of damages was 

investigated by means of additional damage scenarios. A summary of the studied damage 

states used for training and testing is given in Table 1, while locations are indicated in Fig. 7. 

The additional scenarios are indicated in Table 1 as TE/LE±5cm and refer to locations 5 cm 

higher or lower, respectively, than the main TE and LE locations.  

Response accelerations were measured using four miniature piezoelectric 

accelerometers model Metra KS94B-100 with sensitivities of approximately 100 mV/g and 

frequency ranges of 0.5 Hz to 28 kHz. They were attached with adhesive wax to the high-

pressure side of the WTB at the locations marked as S1-4 in Fig. 7. Accelerations were 

digitized with a National Instruments NI-9234 data acquisition card connected to a National 
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Instruments cDAQ-9174 chassis. Signals were processed with the National Instruments 

software LabView installed on a laptop computer. 

4.2. Partial autocorrelation function identification 

Acceleration responses were acquired for 30 min with a constant sampling rate of 2,048 Hz. 

A typical response of the healthy WTB at sensor S1 is shown in Fig. 8, where fluctuations 

generally slightly exceed 0.05 g. To reduce the amount of high-frequency measurement 

noise, data pre-processing started with low-pass filtering using an eighth order Chebyshev 

type I filter with a cut-off frequency of 409.6 Hz and resampling at 512 Hz. 

For creating a database of DSFs, each signal was divided into 400 segments of 5 s 

length with an overlap of approximately 10%. These segments were normalised by removing 

their estimated means and dividing by their estimated standard deviations to remove possible 

variations caused by fluctuations of the excitation. Then, PACFs were estimated from these 

time series segments. Statistical testing of the PACC estimates for increasing lags allows 

selecting significant PACCs for the definition of a multivariate DSF [64]. This was done for 

the data from a healthy state measurement for all four sensors S1-4 and PACCs with lags 

from one to 60 were identified as significant at the 95% confidence level. 

5. STRUCTURAL DAMAGE DETECTION VIA STATISTICAL HYPOTHESIS 

TESTING 

This section explains first the transformation of the initial DSFs. Secondly, the optimal DSF 

subsets for SDD are selected with the help of the FF procedure and are then used for SDD in 

previously unseen data coming from damage scenarios that were either used or not used in 

training. This is not only applied to DSFs from separate sensors but also for a combination of 

DSFs from all the sensors to investigate potential benefits of fusing DSFs from several 

sensors and processing them jointly. 

5.1. Feature transformation and optimal subset selection for SDD 

The original DSFs (PACCs) from the healthy and six damage datasets, listed in Table 1 as 

training datasets (two extents of either 20 g or 50 g at one of the three locations TE, LE or T, 

respectively), were transformed with the help of the LDA-FKT established using 400 samples 

of each class. From the between-class and within-class scatter matrices of these DSFs, the 

whiting transformation matrix, P, (Eq. (13)) was estimated. The eigendecomposition of the 

combined variance-covariance matrices (Eq. (11)) revealed that most of the eigenvalues are 
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close to zero. As discussed in Section 2.2, the common null space of these matrices does not 

contain discriminatory information and can be discarded. Therefore, only the twelve largest 

eigenvalues and eigenvectors were used to compose P for all the sets of initial features. The 

common eigenvector matrices, Q, (Eq. (16)) were then calculated by eigendecomposition of 

the whitened scatter matrices, where using the within-class scatter matrices lead to more 

stable results than the between-class scatter matrices because their ranks are not limited to the 

number of classes. By combining P and Q matrices, the actual LDA-FKT matrix, T, (Eq. (19)

) was obtained and used for transforming the initial DSFs to scores, v
FK , (Eq. (20)). 

In the next step, the FF procedure was applied to both the LDA-FKT scores and to the 

PACC-based initial DSFs for performance comparison of the two feature types using the 

same datasets. For SDD, the FF algorithm used 𝑇𝑆𝐷𝐷
2 (𝑚) (Eq. (26)) as the objective function 

at 5% significance. The results for both DSF types are shown in Fig. 9. Beginning the 

discussion with the initial DSFs, it can be seen that using jointly the PACCs estimated from 

all the sensors outperformed the DSFs of individual sensors with the optimal performance 

achieved for 39 ranked PACCs and 𝑇𝑆𝐷𝐷
2 (𝑚) of 137.50. For separate sensors, the best results 

for sensors S1-4 were respectively 34.59, 33.55, 42.35 and 60.67. Comparing these 

observations sensor-by-sensor and for all the sensors with the results for the LDA-FKT 

scores shows that the initial DSFs performed better in all the cases. However, sensor S3 gave 

a 𝑇𝑆𝐷𝐷
2 (𝑚) of 41.64, the overall highest objective function for the LDA-FKT scores, whereas 

sensors S1, S2 and S4 yielded 29.29, 20.39 and 28.37, respectively. Furthermore, using all 

the sensors led to the worst performance with a relative distance of only 19.74. Nevertheless, 

in all the cases considered the relative distances were larger than one, thus every setting 

enabled detection of all the studied damage scenarios. 

5.2. Statistical structural damage detection 

Using the optimally selected DSF subsets, SDD was performed, with the training healthy 

dataset reused for estimating the reference DSF statistic. Then, single samples from 

previously unseen healthy and damage state data of 400 samples for each class were used for 

calculating the T2(m,a,b) statistic (Eq. (22)). The performance for binary SDD classification 

(i.e. healthy or damaged) can be evaluated by means of the receiver operating characteristic 

(ROC) curves. In these curves, true positive rates from correctly classified damage states are 

plotted against false positive rates resulting from misclassified healthy state data for varying 

statistical thresholds instead of a single threshold [75]. An example of a ROC curve is shown 
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in Fig. 10 for the selected PACCs and LDA-FKT scores obtained from all the sensors. A 

perfect classifier would have a bilinear ROC starting at a true positive rate and false positive 

rate of one for very small detection thresholds, going through true positive rate of one and 

false positive rate of zero, and terminating at a true positive rate and false positive rate of zero 

for large detection thresholds. This ideal performance can be visualized by considering 

classifications obtained with detection thresholds sweeping between zero and a large value 

for two well-separated clusters with very small inter-cluster spreads and corresponding to two 

different states. On the other hand, the ROC curve will be a straight diagonal line for a 

random classifier with 50% chance of obtaining a correct result. 

The area under the receiver operating characteristic curve (AUC) can be used as a 

summary scalar measure of the classifier performance, where AUC=1.0 and AUC=0.5 

correspond to a perfect and a random classifier, respectively. All the AUC values obtained 

are listed in Table 2 separately for the six damage scenarios previously used and 26 not used 

in training, where 400 samples were used for each scenario. For both cases the AUC values 

are identical (to two significant digits), suggesting that the proposed supervised training 

procedures can be applied with a comparable effect to damage scenarios not used in training. 

Furthermore, the classifier performance appears to depend on the sensor location, where 

sensor S2 yielded for both DSF types the worst results. For the selected PACCs, S4 was the 

best performing single sensor (AUC=0.91), followed by S1 and S3. However, using the 

PACCs selected from all the sensors gave the overall best result of an almost perfect 

classification (AUC=0.95). Using the selected LDA-FKT scores gave AUC=0.86 for sensors 

S3, S4 and the combined all sensor data as the best value for this DSF type. As can be seen, 

PACCs outperformed the LDA-FKT scores as DSFs for SDD when S1, S4 and all the sensors 

were used, whereas the LDA-FKT scores gave higher results for sensors S2 and S3. By 

comparing the results for separate and combined sensors, it can be seen that the latter 

approach provided better performance. 

In addition to the AUCs, Fig. 11 presents all the individual detection results for the 

selected PACCs and LDA-FKT scores obtained from all the sensors. The results are 

presented in terms of the relative statistical distance, 𝑇𝑟𝑒𝑙
2 , (Eq. (25)) because it allows 

comparing DSF vectors with different dimensionalities. For this distance, the detection 

threshold equal unity, thus values below the threshold indicate the healthy state and values 

above the threshold a damaged state, respectively. It can be seen that for the healthy state 

measurements the distance of both DSF types generally fall below the detection threshold, 

which indicates a small false alarm rate. For the different damage states, a strong dependency 
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between the damage locations and extents and the values of the relative distance can be 

observed for both DSF types (note logarithmic scale used). Thus, damages at the trailing edge 

and the tip have higher damage detectabilities than the leading-edge damages. Furthermore, 

light damages, i.e. simulated by attaching 10 g and 20 g masses, are difficult to detect, while 

strong damages can be detected with perfect accuracy. However, differences can also be 

observed between the two DSFs. The selected PACCs lead to higher relative statistic values 

then the selected LDA-FKT scores. Furthermore, the former allow detecting small damages 

with higher accuracy, e.g. the 30 g to 60 g leading edge damages. This explains the obtained 

higher AUC values for PACCs from all the sensors in comparison to the LDA-FKT scores 

from all the sensors. 

The better performance when using the selected PACCs rather than the LDA-FKT 

scores can be explained by the fact that the LDA-FKT seeks to maximize the discriminability 

between DSF samples from different classes projected orthogonally onto a few directions. All 

the classes are treated as equally important. The obtained directions of projection are most 

strongly determined by the maximum differences in the DSF vector means in the between-

class scatter matrix. Thus, the largest distances between the classes of different damage types 

can dominate the resulting transformation, while the distances to the healthy state DSFs 

might have a smaller chance to influence the transformation. Furthermore, the number of 

selectable components is significantly reduced. On the other hand, the selection of initial 

DSFs does not suffer in the same way, thus the SDD results are better for the selected 

PACCs. Note that which of the two, PACS or LDA-FKT scores, will perform better can only 

be evaluated via an actual application of the method to the data at hand. 

6. STRUCTURAL DAMAGE LOCALISATION VIA NEURO-FUZZY 

CLASSIFICATION 

After structural damage has been detected, the second stage of the proposed methodology is 

concerned with damage localisation. Separating these two tasks enables to develop and train 

specialised algorithms in the hope of improved performance, and a neuro-fuzzy approach is 

explored for SDL in this study. It is again based on the premise that including only those DSF 

components that can best differentiate between damage states will deliver a computationally 

efficient and accurate solution. This section presents first the transformation and ranking of 

DSFs for SDL. Then, the proposed hierarchical neuro-fuzzy modelling scheme is 

demonstrated. Finally, SDL results for previously unseen datasets from damage scenarios 

both used and not used in training are discussed. 
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6.1. Feature transformation and ranking for SDL 

In contrast to SDD, only DSFs from the six different damage states are used for estimating 

the SDL LDA-FKT matrices using 400 samples of each state (i.e. the healthy state data are 

excluded). This is because in our two-stage methodology, damage existence would have been 

declared by the previously described SDD algorithm before commencing SDL. As 

previously, by discarding the common null space of the combined scatter matrices, the ten 

largest eigenvalues and corresponding eigenvectors were selected for calculating the whiting 

transformation matrices. Then, the actual LDA-FKT matrices were computed for the DSFs 

from separate sensors and their fusion. 

The capabilities of univariate DSFs to distinguish between the different damage states 

are not the same. Therefore, an FF ranking was performed with the aim to maximize the 

objective function 𝑇𝑆𝐷𝐿
2 (𝑚) (Eq. (27)) for increasing numbers of individual DSFs. The results 

for the initial and LDA-FKT-transformed DSFs are shown in Fig. 12. For both DSF types, it 

can be observed that the DSFs from separate sensors show a similar behaviour with the 

highest 𝑇𝑆𝐷𝐿
2 (𝑚) values obtained for low feature dimensions. Nonetheless, using DSFs from 

all the sensors together outperformed individual sensors for both PACCs and LDA-FKT 

scores, where the latter gave the overall highest objective function values. The development 

of HANFIS for SDL discussed in the subsequent section will take advantage of the DSF 

component ranking. 

6.2. Hierarchical neuro-fuzzy modelling 

The proposed hierarchical neuro-fuzzy superstructure can take advantage of the previously 

established DSF component ranking. To identify the optimal hierarchical levels and select the 

corresponding optimal DSF subsets, neuro-fuzzy models of increasing hierarchical levels 

were trained for predicting damage locations, as distances from the blade root, using the 

available damage state training datasets. All models used Gaussian membership functions. 

Their numbers were identified in a data-driven manner with the help of subtractive clustering, 

as discussed in Section 2.4. A 5-fold cross-validation was undertaken where the separate 

individual ANFIS trainings used a hold-out cross-validation for identifying the optimal epoch 

numbers. Figure 13 shows the values of the model selection criterion h (Eq. (29)). For the 

PACC-based models, after a significant decrease the results stayed constant or increased 

again for higher hierarchical levels. Instances of probable convergence to local minima can 

also be seen as outlying values of the model selection criterion. The chosen optimal 
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hierarchical levels are summarized in Table 3. The PACC HANFIS for sensor S2 required the 

lowest number of hierarchical levels but still gave results as good as sensor S3 or all the 

sensors. The worst performance was given by sensor S1 followed by sensor S4. Contrary, the 

modal selection criteria for the LDA-FKT HANFISes change with increasing orders only 

slightly with an exception of sensor S3, where after a small decrease the objective function 

increases significantly (Fig. 11). The models for sensor S2 and all the sensors gave the lowest 

selection criterion values, which were also the overall best. The models for sensor S1 and S4 

yielded the highest selection criterion values, but they were at the same time still as good as 

the best results of the initial DSFs. It can be seen from Table 3 that the LDA-FKT-based 

models required markedly much less hierarchical levels and parameters than the PACC-based 

ones, thus they are attractive because of lower complexity and less computational effort. 

After identification of the appropriate hierarchical levels, the final modelling of all the 

HANFISes was performed using all the available DSF samples. 

6.3. Neuro-fuzzy structural damage localisation 

Four hundred DSFs were extracted from previously unseen datasets of each of the six damage 

scenarios used and 26 scenarios not used in training and presented to the identified 

HANFISes for validation of their SDL performance. The results for the different DSF types 

and sensors are summarized in Table 4 in terms of RMS errors. Comparing the PACC-based 

models for the damage scenarios used in training shows that utilising jointly DSFs from all 

the sensors gave the lowest errors, followed by sensor S3 and S2. Higher errors were 

obtained for sensors S1 and S4. Nevertheless, for the large number of damage scenarios not 

used in training, the best sensor was S2. The HANFISes of sensor S1 and all the sensors 

could also predict damage locations relatively well, while the models for sensors S3 and S4 

had higher errors compared to the other models. The errors for the HANFISes of LDA-FKT 

scores from datasets used in training were smaller compared to those of the corresponding 

PACC models. For DSFs from all the sensors and sensor S2, the LDA-FKT scores gave the 

overall best performance. These two HANFISes also led to the overall smallest errors for the 

damage scenarios not used in training, this time with sensor S2 coming on top. 

Finally, Fig. 14 shows the error rates separately for all the tested damage scenarios. It 

can be seen that the variation of the indicated damage locations and extents for the damage 

scenarios used in training affect the performance of the different HANFISes similarly. For the 

varied TE locations, the attached masses of 50 g were more precisely localized than the 20 g 
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masses. The opposite behaviour can be observed for the varied LE damage locations. 

Investigating the model accuracies for the damage locations used in training but with 

significantly varied damage extents reveals that all the models were confused when localizing 

the 10 g and 20 g attached to the TE or 90 g and 100 g on the LE. For the remaining case of 

mass at the TE, the performances were generally better with best results obtained for the 

LDA-FKT scores of sensor S2 and all the sensors. Nevertheless, the overall worst errors were 

found for the S3 HANFIS using the LDA-FKT scores. The PACC-based HANFIS performed 

for these damages similarly to the HANFIS of sensor S1 as the best model. The smallest 

errors for the LE damages between 10 g and 80 g were given by the LDA-FKT-based 

HANFIS of sensor S2 and all the sensors, followed by the PACC-based HANFIS of sensor 

S2. Significant differences in the localisation accuracy can be seen for the damage at the tip, 

where all the models had smaller errors for the 50 g mass than for the 20 g mass. Here, the 

best performance can be found for the LDA-FKT-based models of sensor S2 and all the 

sensors as well as the PACC-based HANFIS for sensor S2. 

A general conclusion is that the LDA-FKT scores gave better SDL results which were 

also achieved with significantly less complex and smaller HANFISes. This can be explained 

by the fact that for SDL it is beneficial to maximize the discriminability between all the 

classes, in contrast to SDD where the PACCs gave better results. Furthermore, all damage 

locations can be considered as equally important. Although, the objective function for 

ranking DSFs was modified for SDL, the PACC HANFISes could not achieve the SDL 

performance levels of the LDA-FKT HANFISes. Thus, using more DSFs with lower 

sensitivity can be seen to affect adversely neuro-fuzzy models with respect to not only 

accuracy but also model complexity. 

7. CONCLUSIONS 

In this paper, the effects of fusing DSFs based on PACCs of acceleration signals from 

different sensors, transforming them with the help of the LDA-FKT and selecting the optimal 

DSF subsets were investigated for statistical SDD and neuro-fuzzy SDL. For both SHM 

tasks, the DSFs were ranked using multivariate statistical distance measures with respect to 

their ability to detect damage presence or distinguish between different damage locations. 

SDD was then conducted using the optimal DSFs subsets identified via ranking and 

employing statistical hypothesis testing. The more complex task of SDL was performed using 

hierarchical neuro-fuzzy systems, where the DSF ranking information facilitated 
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incorporating the DSF selection problem into the HANFIS modelling process. These 

procedures were applied to the initial and transformed DSFs of accelerations from separate 

sensors as well as fused DSFs from all four sensors installed on a laboratory-scale WTB. The 

WTB was excited without contact using a simple pedestal fan for generating a wind-like 

airstream, while damage was simulated non-destructively by attaching different masses at 

three selected locations. 

It was found that the optimal selections of the fused initial DSFs enabled to detect 

almost perfectly damage in scenarios both used and not used in training with AUCs of up to 

0.95, whereas significant differences were observed when using DSFs from individual 

sensors with AUCs ranging between 0.59 and 0.91 for PACCs. These differences were 

smaller for transformed DSFs with AUCs between 0.69 and 0.86, but the overall performance 

was not as good as for the selected PACCs (AUC=0.95). In contrast, applying the LDA-FKT 

to PACCs enabled to improve significantly the accuracy of damage localisation with the 

overall best results of 18.9 cm and 24.8 cm RMS errors for damage scenarios used and not 

used in training, respectively. In comparison, the best PACC HANFISes produced 30.2 cm 

and 39.8 cm RMS errors for the datasets used and not used in training, respectively. 

Furthermore, the neuro-fuzzy model complexities could be considerably reduced by using the 

LDA-FKT scores, e.g. the best LDA-FKT HANFIS required less than 10% of the number of 

parameters of the best PACC HANFIS. The performance obtained for the models based on 

the transformed fused DSFs was also very good as the overall second best. Therefore, it can 

be observed that fusing SHM data from several sensors at the feature level can be beneficial 

for both statistical hypothesis testing SDD and neuro-fuzzy SDL. It allows reducing 

computational efforts and at the same time increases the robustness of the SHM methods, as 

demonstrated by the assessment conducted on the damage scenarios not used in training. 

Future studies will explore in more depth the effects of DSF fusion and different 

linear or even non-linear DSF transformations on the statistical hypothesis testing and neuro-

fuzzy structural damage decision making, where detecting additionally damage severity and 

the influences of varying environmental and operational conditions will be considered. 
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Figure 1 Methodology for SDD and SDL 
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Figure 2 HANFIS architecture (each square indicates an individual ANFIS shown in Fig. 3) 
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Figure 3 Architecture of the h-th individual ANFIS (full HANFIS architecture is shown in 

Fig. 2)  
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a)  

b)  

Figure 4 Case 1 of bivariate problem illustration: a) SDD, and b) SDL 
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a)  

b)  

Figure 5 Case 2 of bivariate problem illustration: a) SDD, and b) SDL 
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Figure 6 Experimental wind turbine blade cross-section 
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Figure 7 Experimental configuration 
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Figure 8 Example of acceleration time series of the healthy WTB at sensor S1 
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a)  

b)  

Figure 9 Objective function for SDD, 𝑇𝑆𝐷𝐷
2 (m) (Eq. (26)), for individual sensors S1-S4 and 

all the sensors, and increasing numbers of ranked DSFs: a) PACCs, and b) LDA-FKT scores 

  



Hoell and Omenzetter 
52 

 

 

Figure 10 Receiver operating characteristic curve for selected PACCs and LDA-FKT scores 

from all the sensors obtained for previously unseen data from scenarios used in training 
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Figure 11 Relative statistical distances, 𝑇𝑟𝑒𝑙
2 , (Eq. (25)) for single samples of selected PACCs 

and LDA-FKT scores from all the sensors obtained for previously unseen healthy and 

damage scenario datasets used (bold frames) and not used in training (no frames) 
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a)  

b)  

Figure 12 Objective function for SDL, 𝑇𝑆𝐷𝐿
2 (m) (Eq. (27)), for individual sensors S1-S4 and 

all the sensors, and increasing numbers of ranked DSFs: a) PACCs, and b) LDA-FKT scores 
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a)  

b)  

Figure 13 Model selection criterion h (Eq. (29)) for individual sensors S1-S4 and all the 

sensors, and increasing numbers of hierarchical levels: a) PACF HANFIS, and b) LDA-FKT 

HANFIS 
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Figure 14 Root mean square error of HANFIS models for previously unseen damage scenario 

datasets used (bold frames) and not used in training (no frames) (colours change with log 

scale; TE-5cm, TE, TE+5cm, LE-5cm, LE, LE+5cm and T refer to damage locations 

indicated in Fig. 7) 
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Table 1 

Damage scenarios 

Position Name* Distance 

from root 

[cm] 

Mass [g] 

Training Testing 

Trailing 

edge 

(TE) 

TE-5cm 67.3 - 20, 50 

TE 72.3 20, 50 10–100** 

TE+5cm 77.3 - 20, 50 

Leading 

edge 

(LE) 

LE-5cm 160.2 - 2, 5 

LE 165.2 20, 50 10–100** 

LE+5cm 170.2 - 20, 50 

Tip (T) T 233.0 20, 50 20, 50 

* TE-5cm, TE, TE+5cm, LE-5cm, LE, L+5cm and T refer to damage locations 

indicated in Fig. 7 
** 10 g increments  
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Table 2 

AUCs for SDD for previously unseen data used and not used in training 

DSF Sensor AUC 

  Data used in training Data not used in training 

PACF 

S1 0.84 0.84 

S2 0.59 0.59 

S3 0.75 0.75 

S4 0.91 0.91 

All 0.95 0.95 

LDA-FKT 

S1 0.78 0.78 

S2 0.69 0.69 

S3 0.86 0.86 

S4 0.86 0.86 

All 0.86 0.86 
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Table 3 

HANFIS level selection for SDL and corresponding numbers of model parameters 

DSF Sensor 
Level Total number of 

parameters 

PACF 

S1 13 1,302 

S2 9 819 

S3 25 2,093 

S4 23 1,932 

All 17 1,561 

LDA-FKT 

S1 3 371 

S2 1 63 

S3 3 231 

S4 2 119 

All 3 210 
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Table 4 

Root mean square errors for SDL for previously unseen data used and not used in training 

DSF Sensor RMS error [cm] 

  Data used in training  Data not used in training 

PACF 

S1 40.9 43.3 

S2 30.2 39.8 

S3 30.0 52.7 

S4 43.2 52.4 

All 29.0 44.3 

LDA-FKT 

S1 36.9 50.7 

S2 18.9 24.8 

S3 35.9 101.5 

S4 28.4 39.4 

All 15.7 28.6 

 


