
A NEATWay to do Network Programming
Karl-Johan Grinnemo

Anna Brunstrom
Karlstad University

Zdravko Bozakov
Dell EMC Research Europe

Thomas Dreibholz
Simula Research Laboratory

Gorry Fairhurst
University of Aberdeen

Per Hurtig
Karlstad University

Naeem Khademi
University of Oslo

ABSTRACT
There is a growing concern that the Internet transport layer has
become ossi�ed in the face of emerging novel applications, and
that further evolution has become very di�cult. The NEAT sys-
tem introduces a novel and evolvable transport API that decouples
applications from the underlying transport layer and network ser-
vices. This paper provides an overview of the NEAT API from a
programmer’s perspective and exempli�es its use through a simple
client application.

KEYWORDS
NEAT, API, event-based, transport service, transport selection

1 INTRODUCTION
The Internet is often seen as having a common network layer and
two widely deployed transport protocols, TCP [4] and UDP [3],
with other transports, such as SCTP [5], struggling to �nd broad
deployment. The NEAT system [1] challenges the view of an ossi-
�ed transport layer by providing an API that is oblivious to speci�c
transport protocols and instead focuses on requested transport ser-
vices. Applications provide the NEAT system with tra�c require-
ments, pre-speci�ed policies, and measured network conditions.
Based on this information, NEAT establishes and con�gures appro-
priate connections. Through its design, NEAT enables new network
and transport functions and protocols to be added incrementally
and transparently.

Figure 1 illustrates the NEAT system. Applications access NEAT
via a user API. The API o�ers transport services similar to those
o�ered by the socket API, but in an event-driven fashion. The API
interfaces the NEAT User Module, which consitutes the main part of
the system. The NEAT User Module is designed to be portable across
di�erent operating systems and network stacks. One of its primary
responsibilities is to select the most appropriate transport solution
for a requested transport service. At the core of this selection pro-
cess is the Policy Manager (PM): The PM combines application
requirements with available transport protocols, transport-protocol
parameters, and feasible transport endpoints, i.e., IP addresses and
port numbers. The PM uses this information to create a list of can-
didate transport solutions, sorted in order of appropriateness, to
use for a requested transport service.

The PM obtains informationfrom two sources: the Policy Infor-
mation Base (PIB) and the Characteristics Information Base (CIB).
The PIB is a repository that contains a collection of policies, where
each policy consists of a set of rules linking a set of matching
requirements to a set of preferred or mandatory transport charac-
teristics. In contrast, the CIB is a repository storing information

UDP

IPv4/IPv6

Application

NEAT User API

TCP SCTP New	
Transport

TCP SCTP New	
Transport

NEAT User Module Policy	Manager
CIBPIB

Figure 1: The architecture of the NEAT system.

about available interfaces, supported protocols towards accessed
destination endpoints, network properties and current/previous
connections between endpoints.

This paper gives a “programmer’s view” of the NEAT system.
Section 2 introduces the NEAT User API through a client application
example. The paper concludes in Section 3 with a brief summary
and some �nal remarks on ongoing and future work on the NEAT
system.

2 THE NEAT API
The NEAT API is a callback-based, asynchronous, and non-blocking
network API that is intended to complement and many times re-
place existing network APIs by being simpler and more �exible. t
is implemented using libuv [2], which provides asynchronous I/O
across multiple platforms.

The most important concept in the NEAT API is that of a �ow.
A �ow is similar to a socket connection in the BSD API in that
it provides a bidirectional link between two applications. Also, in
the same way as a socket connection, a �ow is tied to a transport-
layer protocol. However, in contrast to a socket, the tie between
a �ow and a transport protocol is fairly loose. In fact, a �ow may
be created even without specifying a transport protocol. A �ow in
NEAT always belongs to a context. The context serves as a common
environment for multiple related �ows within an application, and
comprises one libuv event loop and one DNS-resolution context.

Table 1 lists the major NEAT API functions. The neat_init_ctx
function initializes a context, and neat_new_flow creates a new
�ow within a speci�ed context. An application creates a �ow for
each connection it wants to open, and sets the requirements im-
posed on that �ow through the function neat_set_property. It
closes a �ow by calling the function neat_close, and frees the con-
text by invoking neat_free_ctx. The neat_open and neat_accept

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aberdeen University Research Archive

https://core.ac.uk/display/156637135?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ANRW’17, July 2017, Prague, Czech Republic K-J. Grinnemo et al.

Table 1: The primary NEAT API functions

Function Description
neat_init_ctx Creates a new context.
neat_new_flow Creates a new �ow.
neat_set_operations Sets callbacks for a �ow.
neat_set_property Sets the properties of a �ow.
neat_open Opens a �ow and connects to

a transport endpoint.
neat_accept Listens to incoming �ow requests.
neat_start_event_loop Starts the NEAT event loop.
neat_stop_event_loop Stops the NEAT event loop.
neat_write Writes data to a �ow.
neat_read Reads data from a �ow.
neat_close Closes a �ow and deallocates

associated data.
neat_free_ctx Deallocates a context.

functions roughly correspond to the socket API functions connect
and listen: The neat_open function creates and opens up a �ow
towards a speci�ed transport endpoint, which can be either a DNS
name or an IP address and port number, and the neat_accept func-
tion listens for incoming �ow requests on a given port. In the same
way, the neat_write and neat_read function calls correspond
with the read and write socket function calls.

As mentioned, the NEAT API promotes an event-driven pro-
gramming style, i.e., an application subscribes to events from the
NEAT API. Callbacks in the NEAT API is registered on a per-�ow ba-
sis. The most important callbacks are on_connected, on_readable
and on_writable. The on_connected callback is executed once a
�ow has connected to a remote endpoint. The on_writable and
on_readable callbacks are executed once data may be written to
or read from a �ow without blocking. Other important callbacks
are on_all_written and on_error. on_all_written is invoked
when all data sent by a previous call to neat_write has been writ-
ten out on a �ow. This callback is often used by applications to
change state, e.g., a client application might go from sending a
request to a server to listen for the reply. The on_error callback,
as the name suggests, is called whenever an error occurs during
the processing of a �ow.

Listing 1 provides a code excerpt of a client implemented in
NEAT. In the main function, the program starts by initializing a
context and a �ow within that context. Next, �ow requirements or
desired �ow properties, expressed in JSON syntax, are registered.
Recall from Section 1 that NEAT combines desired �ow proper-
ties, policies, and information stored in the CIB when selecting
an appropriate transport solution. In this example, our client tells
NEAT that it wants to establish a �ow that is capable of low-latency
communication. NEAT will try to satisfy this by having the PM com-
pose a list of transport con�gurations, able to provide low-latency
communication.

Following the �ow properties, callbacks are registered. In this par-
ticular case, only one callback is registered, on_connected, which
is called as soon as neat_open has initiated a �ow between itself
and a local server listening on port 5000. Note that the registration
of callbacks is not something done once and then forgotten, but

something that is continuously revised during the progress of the
program. In our example, this is shown in the on_connected call-
back, in which callbacks for on_writable and on_all_written
are registered.

Listing 1: Simple NEAT client.
#include <neat.h>
...
static char *properties =
"{\" low_latency \": {\" value \": true ,\" precedence \": 1}}";

static neat_error_code
on_connected(struct neat_flow_operations *ops) {

ops ->on_writable = on_writable;
ops ->on_all_written = on_all_written;
neat_set_operations(ops ->ctx , ops ->flow , ops);
return NEAT_OK;

}

static neat_error_code
on_writable(struct neat_flow_operations *ops) {...}

static neat_error_code
on_all_written(struct neat_flow_operations *ops) {...}

int
main(int argc , char *argv []) {

...
ctx = neat_init_ctx ();
flow = neat_new_flow(ctx);

neat_set_property(ctx , flow , properties);
memset (&ops , 0, sizeof(ops));
ops.on_connected = on_connected;
neat_set_operations(ctx , flow , &ops);

if (neat_open(ctx , flow , "127.0.0.1", 5000, NULL , 0)) {
fprintf(stderr , "neat_open failed\n");
return EXIT_FAILURE;

}

neat_start_event_loop(ctx , NEAT_RUN_DEFAULT);

neat_free_ctx(ctx);

return EXIT_SUCCESS;
}

Once callbacks have been registered and a �ow request has been
issued, the NEAT event loop is initiated by calling
neat_start_event_loop; the NEAT_RUN_DEFAULT parameter in the
neat_start_event_loop function call tells NEAT to run in the
event loop as long as there are open �ows and/or outstanding
events. Our client program ends by freeing its context and the ad-
hering �ows, both of which are taken care of by the neat_free_ctx
function call.

3 CONCLUSIONS
The NEAT system o�ers an simple-to-use yet powerful API for net-
work applications that decouples them from the actual transport
protocol being used. It di�ers from most other network APIs in that
it explicitly enables applications to communicate their service re-
quirements to the transport system in a generic, transport-protocol
independent way. This paper o�ers a "programmer’s perspective"
on the NEAT and in so doing gives a brief overview over the NEAT
User API and demonstrates its use through a simple client applica-
tion. The NEAT system is at the time of writing a system in �ux.
Ongoing work on features such as multi-path scheduling, less-than-
best e�ort and coupled congestion control, and integration of NEAT
with SDN drives a continuous extension of the capabilities of the
NEAT User API.



A NEAT Way to do Network Programming ANRW’17, July 2017, Prague, Czech Republic

ACKNOWLEDGMENTS
This work has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement
No. 644334 (NEAT). The views expressed are solely those of the
author(s).

REFERENCES
[1] N. Khademi, D. Ros, M. Welzl, Z. Bozakov, A. Brunstrom, G. Fairhurst, K.-J. Grin-

nemo, D. Hayes, P. Hurtig, T. Jones, S. Mangiante, M. TuÌĹxen, and F. Weinrank.
2017. NEAT: A Platform- and Protocol-Independent Internet Transport API.
IEEE Communications Magazine (March 2017). Accepted for publication.

[2] libuv team. 2017. libuv — Cross-platform Asynchronous I/O. (2017). https:
//libuv.org/ Accessed on April 12, 2017.

[3] J. Postel. 1980. User Datagram Protocol. RFC 768 (INTERNET STANDARD).
(Aug. 1980). http://www.ietf.org/rfc/rfc768.txt

[4] J. Postel. 1981. Transmission Control Protocol. RFC 793 (INTERNET STANDARD).
(Sept. 1981). http://www.ietf.org/rfc/rfc793.txt Updated by RFCs 1122, 3168, 6093,
6528.

[5] R. Stewart. 2007. Stream Control Transmission Protocol. RFC 4960 (Proposed
Standard). (Sept. 2007). http://www.ietf.org/rfc/rfc4960.txt Updated by RFCs
6096, 6335, 7053.

https://libuv.org/
https://libuv.org/
http://www.ietf.org/rfc/rfc768.txt
http://www.ietf.org/rfc/rfc793.txt
http://www.ietf.org/rfc/rfc4960.txt

	Abstract
	1 Introduction
	2 The NEAT API
	3 Conclusions
	Acknowledgments
	References

