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Abstract 8 

The Vrancea region, located at the southeastern edge of the Carpathians arc bend, is a 9 

region of intense seismicity, whose major earthquakes produce hazard in southeastern 10 

Europe. Despite the consequent focus of the geophysical and geological community on 11 

providing accurate structural and dynamical models of Vrancea, these are still subject to 12 

numerous controversies and debates. In the present study, we use intermediate-depth 13 

seismicity recorded by the broadband stations of the Romanian Seismic Network between 14 

2009 and 2011 to measure S-wave peak delay times and late-time coda quality factors. After 15 

mapping these two quantities in space, a cluster analysis provides a quantitative structural 16 

interpretation of the region in terms of different attenuation mechanisms affecting the seismic 17 

wave field, i.e. seismic scattering and seismic absorption. The results show that scattering is 18 

higher west and northwest of Vrancea, while absorption dominates in the Focsani Basin, 19 

located in the forearc region. In general, we obtain higher absorption in stable regions, with 20 

patterns emphasized at high-frequency affected by the presence of hydrocarbons and 21 

natural gas reservoirs in the upper crustal layers. Regions characterized by active seismicity 22 

and structural heterogeneity show higher scattering, spatially correlated with the highest 23 

velocity contrasts and the lowest density. The high-frequency scattering/absorption contrasts 24 

obtained using the cluster analysis depict a southwest-to-northeast lithospheric contrast, 25 

following the epicentral trend of Vrancea earthquakes, and characteristic of either 26 

lithospheric subduction or delamination. Low-frequency cluster analysis results, sampling 27 

deeper Earth layers, mark a unique high-absorption trend perpendicular to the epicentral 28 

trend, feasibly linked to Neogene volcanism, and induced by the back-arc mantle upwelling. 29 

Its most recent expression is Ciomadul volcano, located at the northwestern limit of the 30 

absorption trend. 31 
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1. INTRODUCTION 37 

The Vrancea region, located at the southeastern edge of the Carpathians arc bend in 38 

Romania (Figure 1a), represents one of the most seismically-active areas in Europe. 39 

Crustal- and intermediate-depth earthquakes overlay within the area. The intermediate-depth 40 

earthquakes are located in a small lithospheric volume going down in the mantle and cause 41 

important seismic hazard over large distances. Up to 4 - 5 events per century with 42 

magnitudes up to 7.9 (according to the Romplus catalog, Oncescu et al. 1999) are 43 

generated here. The earthquakes occurred in the shallower crust are characterized by 44 

moderate magnitudes (below 6) and spread over an extended area.  45 

The competing effects of absorption, scattering, and geometrical spreading in 3-D structures 46 

cause the loss of seismic wave energy while travelling through the Earth. The study and 2D 47 

mapping of (1) anelastic absorption, related to temperature, chemical composition, melt or 48 

fluid content and (2) scattering of seismic waves on heterogeneities affecting different 49 

frequency ranges is an ideal complement to velocity tomography measurements, improving 50 

hazard assessment for regions exposed to strong ground motion. Nevertheless, the complex 51 

pattern of seismic radiation generated by an earthquake generally corrupts both the 52 

estimation of total seismic attenuation and the separation of specific attenuation 53 

mechanisms using direct waves (Del Pezzo et al. 2011). Subcrustal earthquakes in the 54 

Vrancea region near the Carpathians Arc in Romania (Figure 1) exhibit such complex 55 

ground motion patterns, with significant differences between the areas inside and outside of 56 

the Carpathians Arc. These differences are mainly attributed to attenuation properties (Popa 57 

et al. 2005; Russo et al. 2005; Oth et al. 2008) and the region is thus an ideal setting to 58 

apply methodologies that separate and map different attenuation mechanisms, in particular 59 

seismic scattering from seismic absorption (Takahashi et al. 2007; Calvet et al. 2013a). 60 

Oancea et al. (1991) were the first to measure Q values of the order of 700-800 for the 61 

region of maximum seismicity using Vrancea intermediate-depth earthquakes and coda 62 

wave analysis. Spatial variations of the attenuation patterns have been obtained by the 63 

comparison of waveforms produced by small- and moderate-magnitude Vrancea subcrustal 64 

earthquakes (Popa et al. 2003; 2005). Seismic amplitudes decrease by a factor of 10 to 100 65 

for events occurring at the back-side part with respect to those occurring at the fore-side 66 

part. Sudhaus et al. (2005) used teleseismic waveforms from a seismic refraction experiment 67 

(VRANCEA99) to study seismic attenuation, and found relatively high-attenuation anomalies 68 

in the Carpathian Mountains as well as in the sedimentary basins. Russo et al. (2005) 69 

estimated S-wave quality factors for intermediate-depth earthquakes; their results show low 70 

attenuation east and north of Vrancea (Figure 1) and high attenuation in both the epicentral 71 

area and the Transylvanian Basin. Similar results were obtained by Ivan (2007) from 72 
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teleseismic recordings of P and pP waves, while Radulian et al. (2006) show that attenuation 73 

is strongly frequency-dependent especially toward NW of Vrancea, at least with respect to 74 

SE. Oth et al. (2008) analysed the attenuation characteristics of S-wave spectra and found 75 

that attenuation is roughly homogeneous in the low frequency range (<4–5 Hz) for any 76 

propagation path, while at higher frequencies the attenuation in the Carpathian Mountains 77 

arc is over ten times stronger than that in the foreland area. The authors attribute this 78 

difference to the intrusion of hot asthenosphere beneath the Carpathians back-arc region. 79 

An overview of these studies is given in Table 1 and shown schematically in Figure 1b. 80 

While all these studies focus on seismic attenuation in the region, they do not distinguish 81 

between two different attenuation mechanisms, namely scattering attenuation and 82 

absorption. 83 

 84 

Table 1. An overview of the attenuation effects for Vrancea subcrustal earthquakes within 85 

Romania according to various studies 86 

Study low-attenuation high-attenuation 

Oancea et al. (1991) High Qc  (700- 800)within 
the Carpathians bend  

- 

Sudhaus et al. (2005)  Revealed in the Carpathian Mountains as well 
as in the sedimentary basins 

Russo et al. (2005) Pointed out high Qs (low 
attenuation) in Platform 
regions and stable 
Precambrian craton areas 

In tectonically active regions – especially 
where asthenosphere lies at shallow levels 

Popa et al. (2003; 
2005) 

Shown in the foreland 
platform 

Affects mostly high frequencies; the 
amplitudes are reduced by a factor of 20 in 
the Transylvanian Basin and the Eastern 
Carpathians 

Radulian et al. (2006) Low attenuation in the 
extra-Carpathians areas 

Strong attenuation at high frequencies 
explains the low damage to structures in the 
intra-arc region 

Ivan (2007) The volume is limited to 
the East by the 26°30′ 
meridian 

Has been observed for stations located in the 
northwestern part of the Vrancea seismogenic 
volume; no clear spatial correlation exists 
between attenuation values and shallow 
geological settings 

Oth et al. (2008) Was shown in the 
foreland, variability 
strongly increases with 
increasing frequency 

Characterizes the Vrancea area; and  the inner 
sideof the mountain arc in the Transylvanian 
Basin  

 87 

The goal of the present study is to measure and map these two mechanisms in the Vrancea 88 

region and adjacent areas, i.e., to interpret them in terms of crustal and mantle structures 89 

and tectonic processes. We apply a set of techniques, namely peak delay time and coda 90 

quality factor mapping and 2D K-means cluster analysis, which have been widely used to 91 
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image the heterogeneous crust in regions such as Japan (Sato, 1989; Obara and Sato, 92 

1995; Petukhin and Gusev, 2003; Saito et al. 2002, 2005; Takahashi et al. 2007, 2009; 93 

Tripathi et al. 2010), the Pyrenean range (Calvet et al. 2013a), and local volcanoes (De 94 

Siena et al. 2011; Prudencio et al. 2013; De Siena et al. 2016). After presenting both the 95 

data used in our analysis and the limitations of the methods in terms of effective sensitivity of 96 

seismic waves to Earth structures, we discuss the results focusing on the novel insight they 97 

provide on the main seismo-tectonics and geological structures in the region.  98 

 99 

2. SEISMOTECTONIC OVERVIEW 100 

The SE Carpathian arc formation is related to the Alpine orogeny as a result of the collision 101 

of the Tisza-Dacia microplate in the West, the stable cratonic East European Platform in the 102 

East (Sandulescu, 1984, 1988) and Moesian Platform in the south east.  Many studies 103 

showed that the Carpathian unit collided with the W-SW part of Moesia in Mid-Cretaceous 104 

times, rotated subsequently around its corner and since the Paleogene moved towards their 105 

present position (Săndulescu, 1988; Schmid et al. 1998; Hippolyte et al. 1999; Maţenco and 106 

Schmid, 1999). During the Tertiary, an oceanic or thinned continental lithosphere was 107 

subducted below the East-Carpathians (e.g. Săndulescu, 1988; Wortel and Spakman, 2000). 108 

The active shortening process stopped during the late Oligocene–Early Miocene periods 109 

(about 20 MA) when all the oceanic-type basins were closed (Ellouz and Roca, 1994; Linzer 110 

et al. 1998). Different studies explained the time difference between the end of the 111 

shortening process and lithospheric subduction and the beginning of the volcanic activity in 112 

the Eastern Transylvanian Basin characterized by calc-alkaline and alkali basaltic eruptions 113 

of magmas (Szakacs, 1993; Seghedi and Szakacs, 1994; Downes et al. 1995; Seghedi et al. 114 

1998) by various geodynamic processes like roll-back, detachment and/or break-off of the 115 

subducted lithospheric slab (Csontos, 1995; Mason et al. 1998; Seghedi et al. 1998; Linzer 116 

et al. 1998), or delamination of the lower part of the lithospheric mantle from the lower plate 117 

(Gîrbacea, 1997; Gîrbacea and Frisch, 1998; Chalot-Prat and Gîrbacea, 2000).  118 

In this setting the Vrancea region, located at the limit of the SE Carpathian arc (Figure 1) is a 119 

region with notable crustal- and intermediate-depth seismicity with magnitudes up to 7.9, 120 

which can be used to illuminate the entire area. Earthquakes are generally located beneath 121 

the external thin-skinned thrust belt of the SE Carpathians at depths down to 220 km 122 

(Oncescu and Bonjer, 1997; Bala et al. 2003). Martin et al. (2005) have shown that the SE 123 

Carpathians area has a complex lithospheric structure because of its young and intense 124 

tectonic evolution. At least three distinct lithospheric blocks are in contact and responsible 125 

for the seismicity in Vrancea (Figure 1): (1) toward NE the East European Platform, (2) the 126 
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Transylvanian Basin, located on the Tisza–Dacia block toward NW, and the Moesian    al. 127 

1981; Raileanu et al. 1994; Raileanu and Diaconescu, 1998; Radulian et al. 2000). 128 

 129 

 130 

Figure 1 Simplified tectonic map of Romania (a) and sketch representing the attenuation 131 
mechanism (b) for the study area according to researches given in Table 1. 132 
 133 
 134 
3. DATA 135 

Velocity waveforms of local earthquakes in the Vrancea region recorded by 3-component 136 

broadband stations belonging to Romanian Seismic Network (RSN) of the National Institute 137 

for Earth Physics (NIEP) were used in the present study. The hypocentral distance of the 138 

selected earthquakes is in the range of 100 to 250 km. The study region is characterised by 139 

good ray coverage due to the excellent aperture and station spacing of RSN, which has 140 

been constantly growing during the last decade (Neagoe and Ionescu, 2009, Popa et al. 141 

2015). A data set of 204 intermediate-depth earthquakes (depths between 50 and 168 km) 142 

occurring mostly between 2009 and 2011 with magnitudes ranging from 2.9 to 5.0, was 143 

selected for the analysis. The Romanian Data Centre (RONDC) of NIEP (Romplus 144 

catalogue, Oncescu et al. 1999, which is constantly updated) provided earthquake 145 

parameters as well as P- and S-wave travel times. The distribution of hypocentres, the 146 

seismic station coverage, and the ray density are shown in Figure 2. 147 
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 148 

 149 

Figure 2 Epicenters (colored dots show depth) and stations distribution (black triangles) 150 
used in this study (top-left); a zoom on the seismicity, located in a SSW-NNE-trending 151 
vertical volume (top-right); the seismic ray paths density (bottom).  152 
 153 
After the deconvolution of the instrument response, a fourth-order Butterworth bandpass 154 

filter was applied to each seismogram in forward and backward directions to obtain 155 

waveforms in 4 frequency bands (2-4 Hz, 4-8 Hz, 8-16 Hz and 12-24 Hz). Envelopes for 156 

each frequency band were then computed as the root-mean-square (RMS - a direct 157 

measurement of seismic intensity) of each horizontal velocity seismograms (Figure 3). 158 

Finally, we applied smoothing using a moving time window whose typical duration is twice 159 

the central period of each frequency band. 160 

 161 
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4. METHODS 162 

4.1 PEAK DELAY TIME (SCATTERING) MAPPING 163 
 164 
The peak delay time (Tpd) is defined as the time-difference between the S-wave onset and 165 

the maximum amplitude of the envelope, a well-known measurement of forward scattering 166 

(Takahashi et al. 2007, 2009; Tripathy et al. 2010; Calvet et al. 2013a). For each frequency 167 

band (central frequencies 3 Hz, 6 Hz, 12 Hz, and 18 Hz) the maximum was picked on the 168 

EW and NS components at each station in a time-window of 30 s duration, starting at the S-169 

wave onset. After averaging the two component measurements, we obtain 1540 Tpd 170 

measurements for each frequency band. Figure 3 shows the data processing for two station 171 

recordings of the same earthquake (25/02/2010, 15:51:28, Mw = 4.3, depth h = 110km).  172 

 173 

 174 

Figure 3 Examples of observed seismograms and their filtered envelopes at two stations: 175 
(left) PLOR situated around 140 km hypocentral distance and (right) ARR situated around 176 
250 km (west relative to Vrancea) hypocentral distance. Top to bottom: velocity 177 
seismograms recorded by NS-components, filtered between 1 and 50 Hz after the 178 
deconvolution of the recording system response, and root mean square (RMS) envelopes in 179 
the 2-4 Hz, 4-8 Hz, 8-16 Hz, and 12-24 Hz frequency bands. The amplitudes were 180 
normalized to the maximum amplitude of each trace. The arrival of the S-wave and 181 
measurements of Tpd are shown in each panel. 182 
 183 
 184 
Correction of travel distance and frequency dependence of peak delay times 185 
 186 
We follow the selection criteria for distance of Sato (1989) and Takahashi et al. (2007) and 187 

consider source-station hypocentral distances in the range of 100 to 250 km. This ensures 188 

that envelope broadening due to scattering does dominate over the source duration time 189 

(contrary to what happens at shorter distances), and that the travel distance dependence of 190 

the envelope broadening has the same characteristics along the entire hypocentral range 191 

(contrary to longer distances). The linear dependence of the logarithm of peak-delay times 192 

against hypocentral distances is shown in Figure 4 (red lines) and is characteristic for the 193 

selected frequency ranges at lithospheric scale (Takahashi et al. 2007; Tripathi et al. 2010). 194 
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The linear fit corresponds to the following equation and is used to correct for the hypocentral 195 

distance (R) dependence: 196 

 197 

 log10Tpd(f) = Ar(f) + Br (f) log10 R.      (1) 198 

 199 

Both the regression coefficients (Ar and Br) and the root mean square errors (RMSE) are 200 

given in Table 2.  201 

 202 

Table 2. Estimated coefficients from peak delay time distance corrections, obtained by least-203 
square regression for each frequency band. The right hand column shows the root mean 204 
square values (RMSE) 205 
 206 

Frequency (HZ) Ar Br RMSE 

2 - 4 Hz 0.9803 -0.1976 0.0875 

4 - 8 Hz 0.4018 -0.0327 0.1250 

8 - 16 Hz -0.0835 0.1490 0.1577 

12 - 24 Hz -0.5725 0.3526 0.1747 

 207 
 208 

Figure 4 reveals three important features of the regression trends with increasing frequency: 209 

(i) the slope of the regression trends increases, (ii) measurements are increasingly spread 210 

around the regression trend, and (iii) the slopes change from negative (3-6 Hz) to positive 211 

(12-18 Hz). Feature (i) is typical of upper-crustal measurements, especially at 3 Hz, while 212 

features (ii) and (iii) are different with respect to what is generally observed at lithospheric 213 

scale (Takahashi et al. 2007; Calvet et al. 2013a). 214 

Several studies (Popa et al. 2005; Oth et al. 2008) have previously highlighted that 215 

attenuation is frequency-dependent, with attenuation variability strongly increasing with 216 

increasing frequency. In particular, Oth et al. (2008) have shown that, at high frequencies (> 217 

4-5 Hz), there is approximately one order of magnitude difference in attenuation between the 218 

recordings in the Carpathians and the foreland areas, whereas, at lower frequencies, the 219 

attenuation characteristics in both regions are similar. Possible physical explanations for this 220 

frequency-dependent behaviour of attenuation involve the degree of coupling between the 221 

slab and the overlying crust (Sperner et al. 2005), strong temperature effects (Zadeh et al. 222 

2005), as well as scattering phenomena within the subducted lithosphere (Furumura and 223 

Kennett, 2005). We rely on the results of Saito et al. (2002), who showed that envelope 224 

broadening strongly increases with frequency if the content of short-wavelength (strong 225 

velocity fluctuations) in random media increases. This and the aforementioned results all 226 

agree with higher variation of high-frequency peak-delay measurements and indicate a 227 

dominance of small-scale heterogeneities in Vrancea and surrounding areas (feature ii). 228 
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It has been shown by several authors that coda-waves at 3 Hz comprise surface waves 229 

(Obermann et al. 2013; Popelliers et al. 2014; Galluzzo et al. 2015; De Siena et al. 2015). 230 

Nevertheless, while surface-wave components could affect Qc measurements, this is no 231 

feasible explanation for the lowering of the peak-delay times with hypocentral distance at low 232 

frequencies (feature iii, Figure 4): if we would pick surface waves instead of S-waves we 233 

would observe a time dispersion, i.e., peak-delays increasing with hypocentral distance. 234 

Takahashi et al. (2007), who analysed data in a similar depth range similar but with a more 235 

extended lateral coverage, did not observe noticeable changes in the behaviour of the linear 236 

hypocentral-correction fit among different frequency ranges. Calvet et al. (2013a) noticed 237 

changes of the slope of the regression line for different frequencies using seismicity located 238 

in the upper crustal layers with less extended network coverage. However, they did not 239 

measure a negative slope. Our preferred explanation for feature (iii) is thus related (a) to the 240 

particular geometry of the hypocenters in our dataset and (b) to the different sensitivity of 241 

peak-delay measurements to depth in different frequencies. Seismic events are clustered 242 

inside a relatively-small lithospheric volume with respect to the extension of the seismic 243 

network. At larger hypocentral distances, 3 Hz and 6 Hz waves progressively sample 244 

deeper, more-compact/lower-scattering Earth layers, thus consistently showing a decrease 245 

in peak-delay time with distance. 12 Hz and 18 Hz waves sample instead shallower and 246 

more inhomogeneous layers, presenting stronger scattering that increases peak-delay times 247 

at larger hypocentral distances. This difference in sensitivity is the main cause for the low-248 

frequency negative slopes in the peak-delay times. If our interpretation is correct, we can 249 

safely assume that (1) the linear dependence of peak delay times versus distance and (2) 250 

the increase of peak-delay slopes versus distance with increasing frequency (Figure 4) are 251 

sufficient to ensure the validity of the linear peak-delay time distance correction. 252 

 253 

 254 

 255 

 256 
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 257 
 258 

 259 
Figure 4 The logarithm of peak delay times (Tpd) against the logarithm of the hypocentral 260 
distance. Central frequency and distance range (R) are shown in each panel.  261 
 262 
 263 
Spatial distribution of peak delay times in the Vrancea region and adjacent areas 264 
 265 
The 2-D spatial distribution of peak delay times (Tpd) was obtained following the approach of 266 

Takahashi et al. (2007) and Calvet et al. (2013a). The hypocentral distance dependence was 267 

removed for each frequency range computing Tpd differences following the equation: 268 

 269 

Δlog10Tpd = log10 Tpd (f) – (Ar (f )+ Br(f )log10R),     (2) 270 
 271 
 272 
where Δlog10Tpd are the mapped measurements and represent, in our interpretation, the 273 

strength of the scattering due to heterogeneities along the source-station path. The study 274 

region has been divided into squares of 0.250 x 0.250. The average value of Δlog10Tpd from 275 

all rays crossing the square is allocated in space to the centre of the square and results are 276 

then interpolated. Figure 5 shows the Δlog10Tpd, maps in the four frequency bands. We took 277 

into account only squares crossed by a minimum of 4 rays. Red regions are characterized by 278 

low Δlog10Tpd values (low scattering), while blue regions are characterized by high Δlog10Tpd 279 

values (strong scattering). 280 

 281 
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 282 
 283 

 284 
 285 
Figure 5 Maps of logarithmic peak delay times differences for the selected frequency 286 
ranges. Red triangles represent seismic stations and black dots earthquake epicenters. Blue 287 
regions are characterized by strong scattering; red denotes areas of low scattering. 288 
 289 

From a smooth spatial distribution of scattering heterogeneity at low frequencies (3Hz) we 290 

pass to strongly variable scattering strengths for higher frequencies (18 Hz). Anomalies in 291 

the high-frequency range show spatial correlation with the S-waves seismic velocity patterns  292 

obtained by Ren et al. (2013) from ambient noise tomography at a depth of 4 km (Figure 6). 293 

These are also associated with the three major tectonic units, intersecting in the Vrancea 294 

region. 295 

 296 

Figure 6 Horizontal section of S -waves velocity at a depth of 4 km according to Ren et al. 297 

2013. 298 
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 299 

In particular, the highest peak-delay time differences are distributed W and NW relative to 300 

the Vrancea region, in the Transylvanian Basin, and are associated with the Carpathian 301 

Mountains roots, while the transition to the East European Platform to the Moesian Platform, 302 

east and northeast of Vrancea, produces low-/average-scattering anomalies (compare with 303 

Figure 1). 304 

 305 

4.2 CODA QUALITY FACTOR (ABSORPTION) MAPPING 306 

 307 

The quality factor (Q) is a non-dimensional parameter (Knopoff, 1964) measuring the 308 

decrease in amplitude of a seismic wave travelling through a heterogeneous medium, thus 309 

used to quantify different media characteristics. The inverse coda quality factor (Qc
-1, also 310 

called the coda attenuation factor) represents a direct measurement of seismic attenuation. 311 

According to Sato et al. (2012), Qc
-1 is a linear combination of the inverse intrinsic quality 312 

factor Qi
-1 (measuring intrinsic absorption) and the inverse scattering quality factor Qs

-1 313 

(measuring the energy scattered by the medium that can be recovered in seismic coda). 314 

Starting from Aki (1969), the Qc-1 dependence from scattering and absorption as well as its 315 

connection to to tectonic stress has been the focus of several studies  (e.g. Aki and Chouet 316 

1975; Sato, 1977; Rautian and Khalturin, 1978; Hermann, 1980; Oancea et al. 1989b, 1991; 317 

Calvet et al. 2013a, b). In the present study, the single backscattering approach proposed 318 

first by Aki and Chouet (1975) is applied. It measures the coda attenuation factor from the 319 

decay of the energy envelope as a function of time t, according to the following equation: 320 

 321 

A(f,t) = A0 (f)t
-α e–2πft/Qc,      (3) 322 

 323 

where A(f,t) represents the power spectral density, A0(f) is a source-dependent term, t is the 324 

lapse time from the earthquake origin time, f is the frequency, and α is the positive exponent 325 

(assumed equal to 1.5 following Calvet et al. 2013a). Qc
−1 for a single station component 326 

was computed by a least-squares linear fit of log(A(f,t)t1.5) versus t in the four frequency 327 

bands used to measure peak delay times. The average over the two components was then 328 

taken as the source-station Qc
−1. The envelope decay was measured (i) using a time window 329 

starting at the highest possible lapse-time from the origin of the earthquake, (ii) selecting 330 

those seismograms who had a signal-to-noise ratio higher than 1.5 and (iii) for which the 331 

correlation coefficient of the linear regression was greater than 0.5. We obtain 1540 332 

measurements for each frequency band. Figure 7 shows example-measurements for two 333 

different source-station pairs, using the same earthquake described in Figure 3. 334 
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According to Calvet et al. (2013a, 2013b), the highest achievable lapse-time is selected (70 335 

s), so that the Qc
−1 dependence on anisotropy and scattering attenuation is low, and the 336 

quantity can be considered a direct measurement of absorption. This assumption is not valid 337 

for shorter lapse times and higher levels of heterogeneity, where topography and different 338 

coherent effects might still affect the coda waves (Saito, 2010; Calvet et al. 2013a; De Siena 339 

et al., 2014). The signal-to-noise ratio after 90 s always drops below 1.5 for most source-340 

station recordings, thus the coda time window (tw) is set at 20 s.  341 

 342 

 343 

Figure 7 Examples of observed envelopes obtained from the NS components filtered 344 
between 2 and 4 Hz for station PLOR (left) situated at 140 km hypocentral distance and 345 
(right) for station ARR with a 250 km hypocentral distance. The two stations show different 346 
slopes for the envelope decay. 347 
 348 
Spatial distribution of Qc in the Vrancea region and adjacent areas. 349 
 350 
We adopt the same mapping strategy for both peak-delay times and coda quality factors, 351 

dividing the region into squares of 0.250 x 0.250, allocating the average over ray values of 352 

Qc
-1 to the centre of each square, and keeping only those crossed by at least 4 rays. The 353 

ray-dependent Qc
-1 values were finally divided by the average over the entire dataset (Qm

-1). 354 

In Figure 8, red regions are associated with low Qc values (high absorption) whereas blue 355 

colors correspond to high Qc values (low absorption).  356 

No clear correlation exists between the absorption maps and the three main tectonic units of 357 

the area. On the other hand, the absorption measurements are frequency dependent, with 358 

contrasts in absorption properties clearly enhanced at higher frequencies (Figure 8). At 3 Hz, 359 

we observe secondary high-absorption anomalies crossing Vrancea from west to southeast, 360 

while at higher frequencies we observe a south-to-northeast absorption contrast, located 361 

between the outer and inner Carpathians, dominates the maps. 362 
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 363 

 364 

Figure 8 Maps of inverse coda quality factor divided by the mean of all measurements 365 
(Qc/Qm) -1 for the selected frequency ranges. Red triangles represent seismic stations and 366 
black dots earthquake epicenters. Red colours show high absorption, blue colours low 367 
absorption. 368 
 369 
Although the exact frequency-dependent sensitivity of coda waves to depth is still debated 370 

(e.g. Aki and Chouet, 1975; Shearer and Earle, 2004), it has been theoretically and 371 

experimentally shown that 3 Hz coda measurements are consisting of surface waves, 372 

making them particularly sensitive to surface structures (Calvet et al 2013a, Obermann et al. 373 

2013; Mayor et al. 2014; Galluzzo et al. 2015; De Siena et al. 2016). Attenuation by 374 

absorption is more important in the upper crust than in the upper mantle (Sato et al. 2012). 375 

In a volcanic medium, the high heterogeneity and quick onset of the diffusion regime makes 376 

Qc particularly sensitive to shallow volcanic structures, as debris flows (Popelliers et al. 377 

2015; De Siena et al. 2016). In a lithospheric setting however, different frequency-dependent 378 

behaviours are suggested by other studies (Calvet et al. 2013a, De Siena et al. 2014), with 379 

Qc measurements sampling deeper structures at lower frequencies: the results of the 380 

mapping at Vrancea agrees with this last interpretation, as higher spatial correlation with 381 

superficial lithospheric structures is found at higher frequencies. 382 

 383 

4.3 CLUSTER ANALYSIS 384 

 385 

To separate scattering and absorption patterns quantitatively using the maps of Δlog10Tpd 386 

(Figure 5) and (Qc-/Qm)-1  (Figure 8) obtained in previous sections we have applied a non-387 
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hierarchical selection analysis known as K-means clustering (Hartigan, 1975) with Euclidean 388 

distance. Cluster analysis is a widely used method to separate data into groups depending 389 

on their physical characteristics. The main challenge this method presents is the estimation 390 

of an optimal number of clusters (K), each cluster comprising objects with similar 391 

characteristics. According to Cornish (2007), the main disadvantage of cluster analysis is 392 

that there is no mechanism to differentiate between relevant and irrelevant variables when 393 

choosing the number of clusters. Therefore, the choice of variables included in a cluster 394 

analysis must be underpinned by conceptual considerations. 395 

Our dataset comprises couples of peak-delay and (Qc-/Qm)-1 measurements, each couple 396 

corresponding to the centre of a square in space (De Siena et al., 2011). To compute the 397 

optimal number of clusters, we used the elbow method (Hartigan, 1975 – Figure 9 shows the 398 

curve obtained at 3 Hz) and the Bayesian Information criterion (BIC - Schwartz, 1978).  At all 399 

frequencies the number of clusters selected is two (see De Siena et al. 2011 for a similar 400 

analysis). A 2-mean cluster analysis was thus performed separately for all frequency ranges, 401 

with results (Figure 10) showing areas of either stronger absorption (orange) or stronger 402 

scattering (cyan). At all frequencies, absorption dominates south-east of Vrancea while 403 

scattering attenuation is stronger north and north-west of Vrancea. 404 

 405 

Figure 9 The percentage of variance reduction versus the number of clusters at 3 Hz. The 406 
number of cluster chosen is 2. 407 
 408 



16 
 

 409 

 410 

Figure 10 Maps showing results of cluster analysis obtained using the Δlog10Tpd and the 411 
inverse of (Qc/Qm)-1 spatial measurements. Black dots represent earthquake epicentres. 412 
Orange squares denote higher absorption while cyan squares represent higher scattering 413 
 414 
 415 
5. DISCUSSIONS  416 

 417 

The goals of the present study are (1) to investigate the two mechanisms producing seismic 418 

wave attenuation in the Vrancea region and adjacent areas and (2) to interpret the patterns 419 

in terms of seismotectonic structures. In this section, we take into account the 420 

interdisciplinary literature relative to the geophysical and geodynamical characteristics of the 421 

area, and discuss the limitations of the methodology. Scattering is dominant in the north, 422 

northwestern, and western parts of the maps, and is spatially correlated with the Southern 423 

Carpathian. Absorption dominates in the Focsani Basin, crosses the Moesian Platform, and 424 

reaches the Southern part of the Scythian Platform southeast of Vrancea (see Figures 1 and 425 

10). 426 

The strong frequency-dependence of scattering attenuation for waves generated in the 427 

Vrancea subcrustal domain (Figures 4 and 5) correlates well with the results of Popa et al. 428 

(2005), who first remarked a difference in total attenuation depending on frequency content, 429 

and Oth et al. (2008), who found that attenuation variability strongly increases with 430 

increasing frequency. The last authors showed that, at high frequencies (> 4-5 Hz), there is 431 
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approximately one order of magnitude difference in total attenuation between the mountain 432 

range and the foreland, whereas at lower frequencies the attenuation characteristics are 433 

rather similar. The similarity between the attenuation characteristics above described and 434 

the behaviour of peak delay times in frequency (Figure 4) and space (Figure 5) implies that 435 

scattering is the main attenuation mechanism in the area, at least at the investigated 436 

frequencies. Possible physical explanations for these results involve the degree of coupling 437 

between the subducting slab and the overlying crust (Sperner et al., 2005), scattering 438 

phenomena within a subducted (Furumura and Kennett, 2005) or delaminated (Koulakov et 439 

al., 2010) lithospheric fragment. Strong temperature effects (Ismail-Zadeh et al., 2005) 440 

should rather produce relevant patterns in the frequency-dependent absorption imaging. 441 

The high-scattering Southern Carpathians represent the region characterized by the highest 442 

velocity and density contrasts, coupled with strong time-dependent deformations (Schmid et 443 

al. 1998, Matenco and Bertotti, 2000, Cloetingh et al. 2005). According to Bocin et al. (2005), 444 

three main post-docking deformational stages were recognised in this region. During 445 

Palaeogene-Early Miocene times, the clockwise rotation of the Tisza–Dacia block (Balla, 446 

1986) has caused NNE–SSW to ENE–WSW shortening in the internal Moldavides napes of 447 

the East Carpathians (Matenco and Bertotti, 2000), large scale transtension/extension to 448 

core-complex formation in the South Carpathians (e.g., Schmid et al. 1998), and final 449 

collision of the Balkans with Moesian Platform southwards (e.g., Doglioni et al. 1996). 450 

Collision with the stable foreland has occurred during the Middle and Late Miocene 451 

(Badenian–Sarmatian), leading to large-scale deformation characterised by EW shortening 452 

in the East Carpathians (e.g., Sandulescu, 1988; Matenco and Bertotti, 2000) and 453 

transpression/shortening in the South Carpathians (Matenco et al. 1997). The collision with 454 

the foreland culminated during Late Miocene (Sarmatian) times. This region dominated by 455 

scattering also corresponds to the contact between the South Carpathians and the 456 

hinterland, the South Apuseni Mountains units, where potentially large scale thrusting and 457 

transcurrent motions occurred during the late Alpine evolution (Cloetingh et al., 2005). 458 

Another possible cause of high scattering is the presence of the TTZ (Tornquist-Teisseyre 459 

Zone) in this region. Bocin et al. (2013) suggest that TTZ is situated in Romania beneath the 460 

South-Eastern Carpathians, further to the Southeast than assumed by previous studies. As 461 

such, the TTZ incorporates the Vrancea zone earthquake epicentres. In the Carpathians, 462 

Weidle (2004) have also shown that approximately 75% of the observed attenuation of 463 

teleseismic P-waves is induced by scattering, predominantly from complex boundaries and 464 

heterogeneities in the crust. 465 

The area of highest geodynamical and seismotectonic complexity is thus the one marked by 466 

highest scattering attenuation. Regions that produce high scattering are located near the 467 

transition zone from low-velocities to high velocity ratios (Koulakov et al. 2010). This is in 468 
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agreement with Takahashi et al. (2007), who obtain similar results in the Japanese crust, 469 

specifically under Quaternary volcanoes. The analogy suggests that the dimension of the 470 

strong heterogeneities ranges from a few hundred metres to a few kilometres and scattering 471 

in the area (including Ciumadul volcano) is influenced by volcanism. 472 

At the lowest frequency (Figures 8 and 10, 3 Hz panel, in our assumption the frequency 473 

band sampling deepest Earth layers) absorption increases northwest and southeast of the 474 

epicentral area, crossing an area of average-to-strong scattering (Figure 5). This anomaly is 475 

spatially correlated with the location of the hypothesised asthenospheric upwelling beneath 476 

the Neogene volcanic arc (Figure 1), which migrated from NW to SE (Seghedi, 2005; 477 

Koulakov et al. 2010; Popa et al. 2011; Panaiotu et al. 2012). Comparing the NW and SE 478 

high-absorption features with the results of the tomography study of Koulakov et al. (2010), 479 

high absorption correlates with strong S-waves velocities perturbations at depths of 110-130 480 

km. The region characterized by high absorption (Figure 8) at higher frequencies (from 6 Hz 481 

to 18 Hz) starts from the front of the Carpathian bend (Focsani Basin) and extends to the 482 

South and South-Eastern Moesian Platform within the southwestern part of Scythian 483 

Platform (compare Figures 1 and 8).. The results in the Focsani Basin confirm that 484 

sedimentary basins represent a primary cause of high absorption (see e.g. Calvet et al, 485 

2013a for Pyrenees). Bocin et al (2005) model the Foscani Basin as containing up to 13 km 486 

of sediments, deposited in a foredeep type setting. This basin, according to Mocanu et al. 487 

(1996), is predominantly characterized by Neogene sedimentary rocks derived from the 488 

Carpathians, with significant contributions of detritus from the more external Moldavian and 489 

Moesian Platform. We also note that important crustal movements characterize areas of 490 

active subsidence (up to 3mm yr-1) in this region (Popescu and Dragoescu, 1987). The 491 

location of the high-absorption anomalies at higher frequencies (12 and 18 Hz) in such 492 

stable regions (platforms), however, suggests that high-frequency absorption effects are 493 

generated by even shallower structures. The anomalies are in fact spatially correlated with 494 

zones of hydrocarbons, natural gas, and oil accumulation (Radulescu et al. 1976; 495 

Stefanescu et al. 1988; Stanica and Stanica, 1998; Matenco and Bertotti, 2000; Tarapoanca 496 

et al. 2003; Leever et al. 2006). 497 

To better understand the meaning of the scattering/absorption contrasts at different 498 

frequencies (Figures 5 and 8), they are compared with the heat flow map displayed using the 499 

Global Heat Flow Database (http://www.heat flow.und.edu)  (Figure 11, left). High scattering 500 

(represented in blue in Figure 5) corresponds mostly to average/low heat-flow values, while 501 

high absorption anomalies correlate spatially with high heat flow values. The highest heat 502 

flow, corresponding to the location of the Ciomadul volcanic field, is at the northwestern limit 503 

of the southeast-west trending absorption anomaly at 3 Hz (Figure 8, 3 Hz). A second 504 

comparisons of our results with the Bouguer anomaly (Figure 11, right) shown using the grid 505 
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provided by Bureau Gravimetrique International (Bureau Gravimétrique International; 506 

http://bgi.omp.obs-mip.fr) reveals that the highest seismic scattering overlaps the lowest 507 

Bouguer anomalies (lower densities – compare with Figure 5), while the south and 508 

southeastern high-absorption structures correlate with positive Bouguer anomalies. 509 

 510 

 511 
Figure 11 Maps showing heat flow distribution (left) and Bouguer anomaly (right). The high 512 
heat flow corresponds to the location of Ciomadul volcano. 513 

 514 

The cluster analysis results (Figure 10) at low frequencies (3 Hz and 6 Hz) quantify and map 515 

the absorption and effects of deep seismic structures. High-scattering structures (cyan) 516 

characterize the regions southwest and northeast of Vrancea, spreading along the 517 

Carpathians, whose high topography possibly influences measurements. Orange anomalies 518 

(high absorption) are distributed along a trend that is almost perpendicular, and crosses, the 519 

epicentral trend (NW-SE). The limit of the high-absorption pattern spatially corresponds to 520 

the Ciomadul volcanic region, situated just NNW of the Vrancea region (Seghedi, 2005; 521 

Popa et al. 2011; Panaiotu et al. 2012). Such an high-absorption trend has been observed 522 

under the Cascadian volcanoes and related to the effect of a deep magmatic arc (De Siena 523 

et al., 2016). Cluster analysis results at low frequencies thus depict a unique high-absorption 524 

structure extending from southeast of Vrancea, at the location of the mantle upwelling 525 

modelled by several studies (e.g. Popa et al., 2011), to northwest of Vrancea,, feeding 526 

Ciomadul volcano (Koulakov et al., 2010). 527 

At high frequencies (Figure 10, 12 Hz and 18 Hz), the NNE-SSW scattering/absorption 528 

contrast follows the epicentral trend. This observation is similar in space and nature to that of 529 

Takahashi et al. (2007) for the subducting Japanese crust, at least for the peak delay time, 530 

and consistent with the presence of a NNE-SSW-oriented sinking lithospheric fragment into 531 

the asthenosphere (Radulian et al. 2006). In this framework, considering the investigated 532 

frequencies and Bouguer anomalies, the high scattering following the epicentral trend and 533 

extending to the west (Figure 10, 12 Hz and 18 Hz) is feasibly caused by either coupling 534 
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between a subducting slab and the overlying crust (Sperner et al., 2005) or small-scale 535 

scattering phenomena within the upper portion of a subducted (Furumura and Kennett, 536 

2005) or detached (Seghedi, 2005; Koulakov et al. 2010; Popa et al. 2011; Panaiotu et al. 537 

2012) lithospheric fragment, sinking into the asthenosphere. 538 

 539 

6. CONCLUSIONS 540 

 541 

We have mapped different seismic attenuation mechanisms in the Vrancea area and 542 

adjacent regions quantitatively using two integrated measurements, peak delay times and , 543 

late lapse-time coda quality factors (Qc), in four frequency bands. Using these techniques we 544 

were able to identify structures of different dimension and depth (different 545 

wavelength/frequency) responsible for seismic absorption and seismic scattering. The 546 

approach complements other geophysical and geodynamical results and provides a 547 

quantitative interpretation of deep Earth properties and tectonic structures. Peak-delay time 548 

values, interpreted as a measurement of scattering attenuation, show considerable 549 

variations at high frequencies, which suggests a strong effect of short-wavelength 550 

heterogeneities in the upper crust and strong differences in sampling at different 551 

frequencies. Once mapped, peak delay time differences grow (scattering increases) towards 552 

the Carpathians (north, northwest, and west of Vrancea) with the highest values in the 553 

southern Carpathians, the same region characterized by a minimum in Bouguer anomaly. 554 

Qc
-1 is interpreted as a measurement of absorption, with patterns showing lower frequency 555 

dependence, but still progressively sampling shallower regions with increasing frequencies. 556 

High absorption is prevalent in the fore-arc region (SE of Vrancea): besides the Focsani 557 

Basin, which shows the highest absorption, the area includes the southeastern side of the 558 

Moesian Platform, in strong spatial correlation with hydrocarbon and natural gas reservoirs 559 

consistently depicted by seismic exploration studies. 560 

Cluster analysis has been used to obtain a quantitative interpretation of the structures 561 

producing the scattering and absorption anomalies: the results are mainly influenced by 562 

deep tectonics structures. At high frequencies, we observe clear correlation of high 563 

scattering/absorption contrasts acting along the NW-SE trend crossing Vrancea, and feasibly 564 

produced by coupling or small-scale scattering phenomena produced at the top of either a 565 

subducting or detached slab sinking into the astenosphere. While at all frequencies the 566 

highest absorption still corresponds to the Focsani sedimentary basin. A unique low-567 

frequency high-absorption southeast-to-northwest trend marks areas of mantle upwelling, 568 

feeding deep Neogene volcanism and reaching the Ciomadul volcanic area, NNW of 569 

Vrancea. 570 
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Abstract 8 

The Vrancea region, located at the southeastern edge of the Carpathians arc bend, is a 9 

region of intense seismicity, whose major earthquakes produce hazard in southeastern 10 

Europe. Despite the consequent focus of the geophysical and geological community on 11 

providing accurate structural and dynamical models of Vrancea, these are still subject to 12 

numerous controversies and debates. In the present study, we use intermediate-depth 13 

seismicity recorded by the broadband stations of the Romanian Seismic Network between 14 

2009 and 2011 to measure S-wave peak delay times and late-time coda quality factors. After 15 

mapping these two quantities in space, a cluster analysis provides a quantitative structural 16 

interpretation of the region in terms of different attenuation mechanisms affecting the seismic 17 

wave field, i.e. seismic scattering and seismic absorption. The results show that scattering is 18 

higher west and northwest of Vrancea, while absorption dominates in the Focsani Basin, 19 

located in the forearc region. In general, we obtain higher absorption in stable regions, with 20 

patterns emphasized at high-frequency affected by the presence of hydrocarbons and 21 

natural gas reservoirs in the upper crustal layers. Regions characterized by active seismicity 22 

and structural heterogeneity show higher scattering, spatially correlated with the highest 23 

velocity contrasts and the lowest density. The high-frequency scattering/absorption contrasts 24 

obtained using the cluster analysis depict a southwest-to-northeast lithospheric contrast, 25 

following the epicentral trend of Vrancea earthquakes, and characteristic of either 26 

lithospheric subduction or delamination. Low-frequency cluster analysis results, sampling 27 

deeper Earth layers, mark a unique high-absorption trend perpendicular to the epicentral 28 

trend, feasibly linked to Neogene volcanism, and induced by the back-arc mantle upwelling. 29 

Its most recent expression is Ciomadul volcano, located at the northwestern limit of the 30 

absorption trend. 31 

Key words: Seismic attenuation, Vrancea region, intermediate depth earthquakes, peak 32 

delay times, coda quality factor, cluster analysis 33 
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1. INTRODUCTION 37 

The Vrancea region, located at the southeastern edge of the Carpathians arc bend in 38 

Romania (Figure 1a), represents one of the most seismically-active areas in Europe. 39 

Crustal- and intermediate-depth earthquakes overlay within the area. The intermediate-depth 40 

earthquakes are located in a small lithospheric volume going down in the mantle and cause 41 

important seismic hazard over large distances. Up to 4 - 5 events per century with 42 

magnitudes up to 7.9 (according to the Romplus catalog, Oncescu et al. 1999) are 43 

generated here. The earthquakes occurred in the shallower crust are characterized by 44 

moderate magnitudes (below 6) and spread over an extended area.  45 

The competing effects of absorption, scattering, and geometrical spreading in 3-D structures 46 

cause the loss of seismic wave energy while travelling through the Earth. The study and 2D 47 

mapping of (1) anelastic absorption, related to temperature, chemical composition, melt or 48 

fluid content and (2) scattering of seismic waves on heterogeneities affecting different 49 

frequency ranges is an ideal complement to velocity tomography measurements, improving 50 

hazard assessment for regions exposed to strong ground motion. Nevertheless, the complex 51 

pattern of seismic radiation generated by an earthquake generally corrupts both the 52 

estimation of total seismic attenuation and the separation of specific attenuation 53 

mechanisms using direct waves (Del Pezzo et al. 2011). Subcrustal earthquakes in the 54 

Vrancea region near the Carpathians Arc in Romania (Figure 1) exhibit such complex 55 

ground motion patterns, with significant differences between the areas inside and outside of 56 

the Carpathians Arc. These differences are mainly attributed to attenuation properties (Popa 57 

et al. 2005; Russo et al. 2005; Oth et al. 2008) and the region is thus an ideal setting to 58 

apply methodologies that separate and map different attenuation mechanisms, in particular 59 

seismic scattering from seismic absorption (Takahashi et al. 2007; Calvet et al. 2013a). 60 

Oancea et al. (1991) were the first to measure Q values of the order of 700-800 for the 61 

region of maximum seismicity using Vrancea intermediate-depth earthquakes and coda 62 

wave analysis. Spatial variations of the attenuation patterns have been obtained by the 63 

comparison of waveforms produced by small- and moderate-magnitude Vrancea subcrustal 64 

earthquakes (Popa et al. 2003; 2005). Seismic amplitudes decrease by a factor of 10 to 100 65 

for events occurring at the back-side part with respect to those occurring at the fore-side 66 

part. Sudhaus et al. (2005) used teleseismic waveforms from a seismic refraction experiment 67 

(VRANCEA99) to study seismic attenuation, and found relatively high-attenuation anomalies 68 

in the Carpathian Mountains as well as in the sedimentary basins. Russo et al. (2005) 69 

estimated S-wave quality factors for intermediate-depth earthquakes; their results show low 70 

attenuation east and north of Vrancea (Figure 1) and high attenuation in both the epicentral 71 

area and the Transylvanian Basin. Similar results were obtained by Ivan (2007) from 72 
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teleseismic recordings of P and pP waves, while Radulian et al. (2006) show that attenuation 73 

is strongly frequency-dependent especially toward NW of Vrancea, at least with respect to 74 

SE. Oth et al. (2008) analysed the attenuation characteristics of S-wave spectra and found 75 

that attenuation is roughly homogeneous in the low frequency range (<4–5 Hz) for any 76 

propagation path, while at higher frequencies the attenuation in the Carpathian Mountains 77 

arc is over ten times stronger than that in the foreland area. The authors attribute this 78 

difference to the intrusion of hot asthenosphere beneath the Carpathians back-arc region. 79 

An overview of these studies is given in Table 1 and shown schematically in Figure 1b. 80 

While all these studies focus on seismic attenuation in the region, they do not distinguish 81 

between two different attenuation mechanisms, namely scattering attenuation and 82 

absorption. 83 

 84 

Table 1. An overview of the attenuation effects for Vrancea subcrustal earthquakes within 85 

Romania according to various studies 86 

Study low-attenuation high-attenuation 

Oancea et al. (1991) High Qc  (700- 800)within 
the Carpathians bend  

- 

Sudhaus et al. (2005)  Revealed in the Carpathian Mountains as well 
as in the sedimentary basins 

Russo et al. (2005) Pointed out high Qs (low 
attenuation) in Platform 
regions and stable 
Precambrian craton areas 

In tectonically active regions – especially 
where asthenosphere lies at shallow levels 

Popa et al. (2003; 
2005) 

Shown in the foreland 
platform 

Affects mostly high frequencies; the 
amplitudes are reduced by a factor of 20 in 
the Transylvanian Basin and the Eastern 
Carpathians 

Radulian et al. (2006) Low attenuation in the 
extra-Carpathians areas 

Strong attenuation at high frequencies 
explains the low damage to structures in the 
intra-arc region 

Ivan (2007) The volume is limited to 
the East by the 26°30′ 
meridian 

Has been observed for stations located in the 
northwestern part of the Vrancea seismogenic 
volume; no clear spatial correlation exists 
between attenuation values and shallow 
geological settings 

Oth et al. (2008) Was shown in the 
foreland, variability 
strongly increases with 
increasing frequency 

Characterizes the Vrancea area; and  the inner 
sideof the mountain arc in the Transylvanian 
Basin  

 87 

The goal of the present study is to measure and map these two mechanisms in the Vrancea 88 

region and adjacent areas, i.e., to interpret them in terms of crustal and mantle structures 89 

and tectonic processes. We apply a set of techniques, namely peak delay time and coda 90 

quality factor mapping and 2D K-means cluster analysis, which have been widely used to 91 
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image the heterogeneous crust in regions such as Japan (Sato, 1989; Obara and Sato, 92 

1995; Petukhin and Gusev, 2003; Saito et al. 2002, 2005; Takahashi et al. 2007, 2009; 93 

Tripathi et al. 2010), the Pyrenean range (Calvet et al. 2013a), and local volcanoes (De 94 

Siena et al. 2011; Prudencio et al. 2013; De Siena et al. 2016). After presenting both the 95 

data used in our analysis and the limitations of the methods in terms of effective sensitivity of 96 

seismic waves to Earth structures, we discuss the results focusing on the novel insight they 97 

provide on the main seismo-tectonics and geological structures in the region.  98 

 99 

2. SEISMOTECTONIC OVERVIEW 100 

The SE Carpathian arc formation is related to the Alpine orogeny as a result of the collision 101 

of the Tisza-Dacia microplate in the West, the stable cratonic East European Platform in the 102 

East (Sandulescu, 1984, 1988) and Moesian Platform in the southeast.  Many studies 103 

showed that the Carpathian unit collided with the W-SW part of Moesia in Mid-Cretaceous 104 

times, rotated subsequently around its corner and since the Paleogene moved towards their 105 

present position (Săndulescu, 1988; Schmid et al. 1998; Hippolyte et al. 1999; Maţenco and 106 

Schmid, 1999). During the Tertiary, an oceanic or thinned continental lithosphere was 107 

subducted below the East-Carpathians (e.g. Săndulescu, 1988; Wortel and Spakman, 2000). 108 

The active shortening process stopped during the late Oligocene–Early Miocene periods 109 

(about 20 MA) when all the oceanic-type basins were closed (Ellouz and Roca, 1994; Linzer 110 

et al. 1998). Different studies explained the time difference between the end of the 111 

shortening process and lithospheric subduction and the beginning of the volcanic activity in 112 

the Eastern Transylvanian Basin characterized by calc-alkaline and alkali basaltic eruptions 113 

of magmas (Szakacs, 1993; Seghedi and Szakacs, 1994; Downes et al. 1995; Seghedi et al. 114 

1998) by various geodynamic processes like roll-back, detachment and/or break-off of the 115 

subducted lithospheric slab (Csontos, 1995; Mason et al. 1998; Seghedi et al. 1998; Linzer 116 

et al. 1998), or delamination of the lower part of the lithospheric mantle from the lower plate 117 

(Gîrbacea, 1997; Gîrbacea and Frisch, 1998; Chalot-Prat and Gîrbacea, 2000).  118 

In this setting the Vrancea region, located at the limit of the SE Carpathian arc (Figure 1) is a 119 

region with notable crustal- and intermediate-depth seismicity with magnitudes up to 7.9, 120 

which can be used to illuminate the entire area. Earthquakes are generally located beneath 121 

the external thin-skinned thrust belt of the SE Carpathians at depths down to 220 km 122 

(Oncescu and Bonjer, 1997; Bala et al. 2003). Martin et al. (2005) have shown that the SE 123 

Carpathians area has a complex lithospheric structure because of its young and intense 124 

tectonic evolution. At least three distinct lithospheric blocks are in contact and responsible 125 

for the seismicity in Vrancea (Figure 1): (1) toward NE the East European Platform, (2) the 126 

Transylvanian Basin, located on the Tisza–Dacia block toward NW, and the Moesian 127 
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Platform toward S-SE. These units show different seismic velocities distributions (Cornea et   128 

al. 1981; Raileanu et al. 1994; Raileanu and Diaconescu, 1998; Radulian et al. 2000). 129 

 130 

 131 

Figure 1 Simplified tectonic map of Romania (a) and sketch representing the attenuation 132 
mechanism (b) for the study area according to researches given in Table 1. 133 
 134 
 135 
3. DATA 136 

Velocity waveforms of local earthquakes in the Vrancea region recorded by 3-component 137 

broadband stations belonging to Romanian Seismic Network (RSN) of the National Institute 138 

for Earth Physics (NIEP) were used in the present study. The hypocentral distance of the 139 

selected earthquakes is in the range of 100 to 250 km. The study region is characterised by 140 

good ray coverage due to the excellent aperture and station spacing of RSN, which has 141 

been constantly growing during the last decade (Neagoe and Ionescu, 2009, Popa et al. 142 

2015). A data set of 204 intermediate-depth earthquakes between 50 and 168 km (50 ≤ 143 

h(km) < 100 – 39 events; 100 ≤ h(km) < 150 - 125 events; h (km) ≥ 150 - 40 events) 144 

occurring mostly between 2009 and 2011 with magnitudes ranging from 2.8 to 5.0 (M < 3.0 - 145 

67 events; 3 ≤ M < 4 -109 events M ≥ 4 - 28 events) was selected for the analysis. The 146 

Romanian Data Centre (RONDC) of NIEP (Romplus catalogue, Oncescu et al. 1999, which 147 

is constantly updated) provided earthquake parameters as well as P- and S-wave travel 148 

times. The distribution of hypocentres, the seismic station coverage, and the ray density are 149 

shown in Figure 2. 150 
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 151 

          152 

Figure 2 Epicenters (colored dots show depth) and stations distribution (black triangles) 153 
used in this study (top-left); a zoom on the seismicity, located in a SSW-NNE-trending 154 
vertical volume (top-right); the seismic ray paths density (bottom left); scattering ellipses for 155 
two source-station configurations, corresponding to ~80 km distance (bottorm right – up) and 156 
~212 -bottom km distance (bottom right-down). 157 
 158 
After the deconvolution of the instrument response, a fourth-order Butterworth bandpass 159 

filter was applied to each seismogram in forward and backward directions to obtain 160 

waveforms in 4 frequency bands (2-4 Hz, 4-8 Hz, 8-16 Hz and 12-24 Hz). Envelopes for 161 

each frequency band were then computed as the root-mean-square (RMS - a direct 162 

measurement of seismic intensity) of each horizontal velocity seismograms (Figure 3). 163 

Finally, we applied smoothing using a moving time window whose typical duration is twice 164 

the central period of each frequency band. 165 
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 166 

4. METHODS 167 

4.1 PEAK DELAY TIME (SCATTERING) MAPPING 168 
 169 
The peak delay time (Tpd) is defined as the time-difference between the S-wave onset and 170 

the maximum amplitude of the envelope, a well-known measurement of forward scattering 171 

(Takahashi et al. 2007, 2009; Tripathy et al. 2010; Calvet et al. 2013a). For each frequency 172 

band (central frequencies 3 Hz, 6 Hz, 12 Hz, and 18 Hz) the maximum was picked on the 173 

EW and NS components at each station in a time-window of 30 s duration, starting at the S-174 

wave onset. After averaging the two component measurements, we obtain 1540 Tpd 175 

measurements for each frequency band. Figure 3 shows the data processing for two station 176 

recordings of the same earthquake (25/02/2010, 15:51:28, Mw = 4.3, depth h = 110km).  177 

 178 

 179 

 180 

Figure 3 Examples of observed seismograms and their filtered envelopes at two stations: 181 
(left) PLOR situated around 140 km hypocentral distance and (right) ARR situated around 182 
250 km (west relative to Vrancea) hypocentral distance. Top to bottom: velocity 183 
seismograms recorded by NS-components, filtered between 1 and 50 Hz after the 184 
deconvolution of the recording system response, and root mean square (RMS) envelopes in 185 
the 2-4 Hz, 4-8 Hz, 8-16 Hz, and 12-24 Hz frequency bands. The amplitudes were 186 
normalized to the maximum amplitude of each trace. The arrival of the S-wave and 187 
measurements of Tpd are shown in each panel. 188 
 189 
 190 
Correction of travel distance and frequency dependence of peak delay times 191 
 192 
We follow the selection criteria for distance of Sato (1989) and Takahashi et al. (2007) and 193 

consider source-station hypocentral distances in the range of 100 to 250 km. These criteria 194 

ensure that the dependence of the envelope broadening on distance has the same 195 

characteristics across the entire hypocentral range. The linear dependence of the logarithm 196 

of peak-delay times against hypocentral distances is shown in Figure 4 (red lines) and is 197 
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characteristic for the selected frequency ranges at lithospheric scale (Takahashi et al. 2007; 198 

Tripathi et al. 2010). The linear fit corresponds to the following equation and is used to 199 

correct for the hypocentral distance (R) dependence: 200 

 201 

 log10Tpd(f) = Ar(f) + Br (f) log10 R.      (1) 202 

 203 

Both the regression coefficients (Ar and Br) and the root mean square errors (RMSE) are 204 

given in Table 2.  205 

 206 

Table 2. Estimated coefficients from peak delay time distance corrections, obtained by least-207 
square regression for each frequency band. The right hand column shows the root mean 208 
square values (RMSE) 209 
 210 

Frequency (HZ) Ar Br RMSE 

2 - 4 Hz 0.9803 -0.1976 0.0875 

4 - 8 Hz 0.4018 -0.0327 0.1250 

8 - 16 Hz -0.0835 0.1490 0.1577 

12 - 24 Hz -0.5725 0.3526 0.1747 

 211 
 212 

Figure 4 reveals three important features of the regression trends with increasing frequency: 213 

(i) the slope of the regression trends increases, (ii) measurements are increasingly spread 214 

around the regression trend, and (iii) the slopes change from negative (3-6 Hz) to positive 215 

(12-18 Hz). Feature (i) is typical of upper-crustal measurements, especially at 3 Hz, while 216 

features (ii) and (iii) are different with respect to what is generally observed at lithospheric 217 

scale (Takahashi et al. 2007; Calvet et al. 2013a). 218 

Several studies (Popa et al. 2005; Oth et al. 2008) have previously highlighted that 219 

attenuation is frequency-dependent, with attenuation variability strongly increasing with 220 

increasing frequency. In particular, Oth et al. (2008) have shown that, at high frequencies (> 221 

4-5 Hz), there is approximately one order of magnitude difference in attenuation between the 222 

recordings in the Carpathians and the foreland areas, whereas, at lower frequencies, the 223 

attenuation characteristics in both regions are similar. Possible physical explanations for this 224 

frequency-dependent behaviour of attenuation involve the degree of coupling between the 225 

slab and the overlying crust (Sperner et al. 2005), strong temperature effects (Zadeh et al. 226 

2005), as well as scattering phenomena within the subducted lithosphere (Furumura and 227 

Kennett, 2005). We rely on the results of Saito et al. (2002), who showed that envelope 228 

broadening strongly increases with frequency if the content of short-wavelength (strong 229 

velocity fluctuations) in random media increases. This and the aforementioned results all 230 

agree with higher variation of high-frequency peak-delay measurements and indicate a 231 

dominance of small-scale heterogeneities in Vrancea and surrounding areas (feature ii). 232 
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It has been shown by several authors that coda-waves at 3 Hz comprise surface waves 233 

(Obermann et al. 2013; Popelliers et al. 2014; Galluzzo et al. 2015; De Siena et al. 2015). 234 

Nevertheless, while surface-wave components could affect Qc measurements, this is no 235 

feasible explanation for the lowering of the peak-delay times with hypocentral distance at low 236 

frequencies (feature iii, Figure 4): if we would pick surface waves instead of S-waves we 237 

would observe a time dispersion, i.e., peak-delays increasing with hypocentral distance. 238 

Takahashi et al. (2007), who analysed data in a similar depth range but with a more 239 

extended lateral coverage, did not observe noticeable changes in the behaviour of the linear 240 

hypocentral-correction fit among different frequency ranges. Calvet et al. (2013a) noticed 241 

changes of the slope of the regression line for different frequencies using seismicity located 242 

in the upper crustal layers with less extended network coverage. However, they did not 243 

measure a negative slope. Our preferred explanation for feature (iii) is thus related (a) to the 244 

particular geometry of the hypocenters in our dataset and (b) to the different sensitivity of 245 

peak-delay measurements to depth in different frequencies. Seismic events are clustered 246 

inside a relatively-small lithospheric volume with respect to the extension of the seismic 247 

network. At larger hypocentral distances, 3 Hz and 6 Hz waves progressively sample 248 

deeper, more-compact/lower-scattering Earth layers, thus consistently showing a decrease 249 

in peak-delay time with distance. 12 Hz and 18 Hz waves sample instead shallower and 250 

more inhomogeneous layers, presenting stronger scattering that increases peak-delay times 251 

at larger hypocentral distances. This difference in sensitivity is the main cause for the low-252 

frequency negative slopes in the peak-delay times. If our interpretation is correct, we can 253 

safely assume that (1) the linear dependence of peak delay times versus distance and (2) 254 

the increase of peak-delay slopes versus distance with increasing frequency (Figure 4) are 255 

sufficient to ensure the validity of the linear peak-delay time distance correction. 256 

 257 

 258 

 259 

 260 
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 261 
 262 

 263 
Figure 4 The logarithm of peak delay times (Tpd) against the logarithm of the hypocentral 264 
distance. Central frequency and distance range (R) are shown in each panel.  265 
 266 
 267 
Spatial distribution of peak delay times in the Vrancea region and adjacent areas 268 
 269 
The 2-D spatial distribution of peak delay times (Tpd) was obtained following the approach of 270 

Takahashi et al. (2007) and Calvet et al. (2013a). The hypocentral distance dependence was 271 

removed for each frequency range computing Tpd differences following the equation: 272 

 273 

Δlog10Tpd = log10 Tpd (f) – (Ar (f )+ Br(f )log10R),     (2) 274 
 275 
 276 
where Δlog10Tpd are the mapped measurements and represent, in our interpretation, the 277 

strength of the scattering due to heterogeneities along the source-station path. The study 278 

region has been divided into squares of 0.250 x 0.250. The average value of Δlog10Tpd from 279 

all rays crossing the square is allocated in space to the centre of the square and results are 280 

then interpolated. Figure 5 shows the Δlog10Tpd, maps in the four frequency bands. We took 281 

into account only squares crossed by a minimum of 4 rays. Red regions are characterized by 282 

low Δlog10Tpd values (low scattering), while blue regions are characterized by high Δlog10Tpd 283 

values (strong scattering). 284 

 285 
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 286 
 287 

 288 
 289 
Figure 5 Maps of logarithmic peak delay times differences for the selected frequency 290 
ranges. Red triangles represent seismic stations and black dots earthquake epicenters. Blue 291 
regions are characterized by strong scattering; red denotes areas of low scattering. 292 
 293 
Standard deviations maps for peak delay time differences for the selected frequency ranges 294 
are shown in Figure 6. Main variations are, as expected, in the source region and close to 295 
the lithospheric slab beneath the Vrancea region.  296 
 297 

 298 
Figure 6 Maps showing the standard deviation of peak delay time differences for the 299 
selected frequency ranges. Red triangles represent seismic stations and black dots 300 
earthquake epicenters.  301 
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 302 

From a smooth spatial distribution of scattering heterogeneity at low frequencies (3Hz) we 303 

pass to strongly variable scattering strengths for higher frequencies (18 Hz). Anomalies in 304 

the high-frequency range show spatial correlation with the S-waves seismic velocity patterns 305 

obtained by Ren et al. (2013) from ambient noise tomography at a depth of 4 km (Figure 7). 306 

These are also associated with the three major tectonic units, intersecting in the Vrancea 307 

region. 308 

 309 

Figure 7 Horizontal section of S -waves velocity at a depth of 4 km according to Ren et al. 310 

2013. 311 

 312 

In particular, the highest peak-delay time differences are distributed W and NW relative to 313 

the Vrancea region, in the Transylvanian Basin, and are associated with the Carpathian 314 

Mountains roots, while the transition to the East European Platform to the Moesian Platform, 315 

east and northeast of Vrancea, produces low-/average-scattering anomalies (compare with 316 

Figure 1). 317 

 318 

4.2 CODA QUALITY FACTOR (ABSORPTION) MAPPING 319 

 320 

The quality factor (Q) is a non-dimensional parameter (Knopoff, 1964) measuring the 321 

decrease in amplitude of a seismic wave travelling through a heterogeneous medium, thus 322 

used to quantify different media characteristics. The inverse coda quality factor (Qc
-1, also 323 

called the coda attenuation factor) represents a direct measurement of seismic attenuation. 324 

According to Sato et al. (2012), Qc
-1 is a linear combination of the inverse intrinsic quality 325 

factor Qi
-1 (measuring intrinsic absorption) and the inverse scattering quality factor Qs

-1 326 

(measuring the energy scattered by the medium that can be recovered in seismic coda). 327 

Starting from Aki (1969), the Qc-1 dependence from scattering and absorption as well as its 328 
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connection to tectonic stress has been the focus of several studies (e.g. Aki and Chouet 329 

1975; Sato, 1977; Rautian and Khalturin, 1978; Hermann, 1980; Oancea et al. 1989b, 1991; 330 

Calvet et al. 2013a, b). In the present study, the single backscattering approach proposed 331 

first by Aki and Chouet (1975) is applied. It measures the coda attenuation factor from the 332 

decay of the energy envelope as a function of time t, according to the following equation: 333 

 334 

A(f,t) = A0 (f)t
-α e–2πft/Qc,      (3) 335 

 336 

where A(f,t) represents the power spectral density, A0(f) is a source-dependent term, t is the 337 

lapse time from the earthquake origin time, f is the frequency, and α is the positive exponent 338 

(assumed equal to 1.5 following Calvet et al. 2013a). Qc
−1 for a single station component 339 

was computed by a least-squares linear fit of log(A(f,t)t1.5) versus t in the four frequency 340 

bands used to measure peak delay times. The average over the two components was then 341 

taken as the source-station Qc
−1. The envelope decay was measured (i) using a time window 342 

starting at the highest possible lapse-time from the origin of the earthquake, (ii) selecting 343 

those seismograms who had a signal-to-noise ratio higher than 1.5 and (iii) for which the 344 

correlation coefficient (CC) of the linear regression was greater than 0.5. The CC value was 345 

chosen after several trial tests. Increasing the CC threshold, we lose data and, 346 

consequently, lower resolution. A CC of 0.5 is similar to that used by De Siena et al., 2014 347 

(0.6) and reduces uncertainties in the results while preserving a sufficient number of data for 348 

the chosen resolution. We obtain 1540 measurements for each frequency band. Figure 8 349 

shows example-measurements for two different source-station pairs, using the same 350 

earthquake described in Figure 3. 351 

According to Calvet et al. (2013a, 2013b), the highest achievable lapse-time is selected (70 352 

s), so that the Qc
−1 dependence on anisotropy and scattering attenuation is low, and the 353 

quantity can be considered a direct measurement of absorption. This assumption is not valid 354 

for shorter lapse times and higher levels of heterogeneity, where topography and different 355 

coherent effects might still affect the coda waves (Saito, 2010; Calvet et al. 2013a; De Siena 356 

et al. 2014). The signal-to-noise ratio after 90 s always drops below 1.5 for most source-357 

station recordings, thus the coda time window (tw) is set at 20 s. Recent advances in coda 358 

wave imaging have shown a complex sensitivity of coda waves to Earth heterogeneities (e.g. 359 

Mayor et al. 2014). Despite this, coda wave lateral- and in-depth sensitivities can be 360 

estimated by computing the surface area and average depth of a scattering ellipsoid (Sato, 361 

1978), dependent on the average lapse-time (80 s), the average S-wave velocity (4 km) for 362 

either a short (100 km) and long (250 km) hypocentral distances. Figure 2 (bottom right 363 

panel) shows the two scattering ellipses for these two source-station configurations. The 364 
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average dimension of the volume producing the coda is 171 km, estimated by considering 365 

an average depth of the seismicity of 100 km. 366 

 367 

 368 

Figure 8 Examples of observed envelopes obtained from the NS components filtered 369 
between 2 and 4 Hz for station PLOR (left) situated at 140 km hypocentral distance and 370 
(right) for station ARR with a 250 km hypocentral distance. The two stations show different 371 
slopes for the envelope decay. 372 
 373 
Spatial distribution of Qc in the Vrancea region and adjacent areas 374 
 375 
We adopt the same mapping strategy for both peak-delay times and coda quality factors, 376 

dividing the region into squares of 0.250 x 0.250, allocating the average over ray values of 377 

Qc
-1 to the centre of each square, keeping only those crossed by at least 4 rays and 378 

interpolate the results. The scattering and absorptions maps (Figures 5 and 10) were 379 

obtained in Voxler 2.0 © through the inverse distant weighting (IDW) interpolation method, 380 

with weighting power equal to 2. This assumes that distance weights each interpolated point. 381 

Data are weighted during interpolation such that the influence of one point relative to another 382 

declines with distance from the grid node. Weighting is assigned to data through the use of a 383 

weighting power that controls how the weighting factors drop off as distance from a grid 384 

node increases. The greater the weighting power, the less effect points far from the grid 385 

node has during interpolation. As the power increases, the grid node value approaches the 386 

value of the nearest point. For a smaller power, the weights are more evenly distributed 387 

among the neighboring data points. 388 

In order to give a better insight on the quality results we represented in Figure 9 the 389 

chessboards maps for the Qc computed for 3Hz. This measurement is the one with the 390 

lowest number of blocks solved according to our 4-rays threshold. The chessboard test 391 

shows sufficient illumination in the areas interpreted.  392 
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 393 

Figure 9 The chessboards maps computed for the Qc at the central frequency of 3Hz 394 

 395 

The ray-dependent Qc
-1 values were finally divided by the average Qc

-1 over the entire 396 

dataset (Qm
-1), to show attenuation variations.  Qm

-1 can be correlated to the tectonic setting 397 

of the area; it is thus computed at each frequency and with the corresponding uncertainties 398 

by using a least square approach: (Qm(3 Hz))-1= 0.0025±0.010;(Qm(6 Hz))-1=0.0014±0.007; 399 

(Qm(12 Hz))-1=0.0007±0.0004; (Qm(18 Hz))-1=0.0004±0.0003. Uncertainties are estimated 400 

computing the 95% confidence interval, using the covariance matrix. Ideally, also the 401 

absolute values of Qc after mapping could be related to tectonics; however, as evidenced by 402 

the chessboard test (Figure 9) ray geometries and selection criteria have important effect on 403 

absolute Qc values, while contrasts are generally preserved. We thus prefer a more careful 404 

approach and divide Qc-1 by Qm-1 to show attenuation variations only.  405 

In Figure 10, red regions are associated with low Qc values (high absorption) whereas blue 406 

colors correspond to high Qc values (low absorption).  No clear correlation exists between 407 

the absorption maps and the three main tectonic units of the area. On the other hand, the 408 

absorption measurements are frequency dependent, with contrasts in absorption properties 409 

clearly enhanced at higher frequencies (Figure 10). At 3 Hz, we observe secondary high-410 

absorption anomalies crossing Vrancea from west to southeast, while at higher frequencies 411 

we observe a south-to-northeast absorption contrast, located between the outer and inner 412 

Carpathians, dominates the maps. 413 
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 414 

 415 

Figure 10 Maps of inverse coda quality factor divided by the mean of all measurements 416 
(Qc/Qm) -1 for the selected frequency ranges. Red triangles represent seismic stations and 417 
black dots earthquake epicenters. Red colours show high absorption, blue colours low 418 
absorption.  419 
 420 
Standard deviations maps of (Qc/Qm) -1 for the selected frequency ranges are shown in 421 
Figure 11. The variations reduce with increasing frequency, as expected. The areas with the 422 
largest uncertainties are those NW and South of the source (Vrancea) area. 423 
 424 

 425 
Figure 11 Maps showing the standard deviation of (Qc/Qm) -1 for the selected frequency 426 
ranges. Red triangles represent seismic stations and black dots earthquake epicenters.  427 
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Although the exact frequency-dependent sensitivity of coda waves to depth is still debated 428 

(e.g. Aki and Chouet, 1975; Shearer and Earle, 2004), it has been theoretically and 429 

experimentally shown that 3 Hz coda measurements are consisting of surface waves, 430 

making them particularly sensitive to surface structures (Calvet et al 2013a, Obermann et al. 431 

2013; Mayor et al. 2014; Galluzzo et al. 2015; De Siena et al. 2016). Attenuation by 432 

absorption is more important in the upper crust than in the upper mantle (Sato et al. 2012). 433 

In a volcanic medium, the high heterogeneity and quick onset of the diffusion regime makes 434 

Qc particularly sensitive to shallow volcanic structures, as debris flows (Popelliers et al. 435 

2015; De Siena et al. 2016). In a lithospheric setting however, different frequency-dependent 436 

behaviours are suggested by other studies (Calvet et al. 2013a, De Siena et al. 2014), with 437 

Qc measurements sampling deeper structures at lower frequencies: the results of the 438 

mapping at Vrancea agrees with this last interpretation, as higher spatial correlation with 439 

superficial lithospheric structures is found at higher frequencies. 440 

 441 

4.3 CLUSTER ANALYSIS 442 

 443 

To separate scattering and absorption patterns quantitatively using the maps of Δlog10Tpd 444 

(Figure 5) and (Qc/Qm)-1  (Figure 10) obtained in previous sections we have applied a non-445 

hierarchical selection analysis known as K-means clustering (Hartigan, 1975) with Euclidean 446 

distance. This method associates measures to a number of clusters (K) independently 447 

defined in order to maximize the clusters separation. The distance between clusters is 448 

Euclidean. Cluster analysis is a widely used method to separate data into groups depending 449 

on their physical characteristics. The main challenge this method presents is the estimation 450 

of an optimal number of clusters (K), each cluster comprising objects with similar 451 

characteristics. According to Cornish (2007), the main disadvantage of cluster analysis is 452 

that there is no mechanism to differentiate between relevant and irrelevant variables when 453 

choosing the number of clusters. Therefore, the choice of variables included in a cluster 454 

analysis must be underpinned by conceptual considerations. 455 

Our dataset comprises couples of peak-delay and (Qc/Qm)-1 measurements, each couple 456 

corresponding to the centre of a square in space (De Siena et al. 2011). To compute the 457 

optimal number of clusters, we used the elbow method (Hartigan, 1975 – Figure 12 shows 458 

the curve obtained at 3 Hz) and the Bayesian Information criterion (BIC - Schwartz, 1978). 459 

The “elbow” method runs K-means clustering on the selected dataset for a range of integers 460 

K, computing the percent of variance reduction due to separation in K clusters. The percent 461 

of variance reduction on K values (Figure 12) is a qualitative way to define the best number 462 

of clusters: when the line deviates from the linear increase (the “elbow) and following values 463 
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reach an approximate plateau, increasing the number of clusters only increase complexity 464 

without adding a relevant percent reduction. At all frequencies the number of clusters 465 

selected is two (see De Siena et al. 2011 for a similar analysis). A 2-mean cluster analysis 466 

was thus performed separately for all frequency ranges, with results (Figure 13) showing 467 

areas of either stronger absorption (orange) or stronger scattering (cyan). At all frequencies, 468 

absorption dominates southeast of Vrancea while scattering attenuation is stronger north 469 

and northwest of Vrancea. 470 

 471 

Figure 12 The percentage of variance reduction versus the number of clusters at 3 Hz. The 472 
number of cluster chosen is 2. 473 
 474 

 475 
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 476 

Figure 13 Maps showing results of cluster analysis obtained using the Δlog10Tpd and the 477 
inverse of (Qc/Qm)-1 spatial measurements. Black dots represent earthquake epicentres. 478 
Orange squares denote higher absorption while cyan squares represent higher scattering 479 
 480 
 481 
5. DISCUSSION  482 

 483 

The goals of the present study are (1) to investigate the two mechanisms producing seismic 484 

wave attenuation in the Vrancea region and adjacent areas and (2) to interpret the patterns 485 

in terms of seismotectonic structures. In this section, we take into account the 486 

interdisciplinary literature relative to the geophysical and geodynamical characteristics of the 487 

area, and discuss the limitations of the methodology. Scattering is dominant in the north, 488 

northwestern, and western parts of the maps, and is spatially correlated with the Southern 489 

Carpathian. Absorption dominates in the Focsani Basin, crosses the Moesian Platform, and 490 

reaches the Southern part of the Scythian Platform southeast of Vrancea (see Figures 1 and 491 

13). 492 

The strong frequency-dependence of scattering attenuation for waves generated in the 493 

Vrancea subcrustal domain (Figures 4 and 5) correlates well with the results of Popa et al. 494 

(2005), who first remarked a difference in total attenuation depending on frequency content, 495 

and Oth et al. (2008), who found that attenuation variability strongly increases with 496 

increasing frequency. The last authors showed that, at high frequencies (> 4-5 Hz), there is 497 

approximately one order of magnitude difference in total attenuation between the mountain 498 

range and the foreland, whereas at lower frequencies the attenuation characteristics are 499 

rather similar. The similarity between the attenuation characteristics above described and 500 

the behaviour of peak delay times in frequency (Figure 4) and space (Figure 5) implies that 501 

scattering is the main attenuation mechanism in the area, at least at the investigated 502 

frequencies. Possible physical explanations for these results involve the degree of coupling 503 

between the subducting slab and the overlying crust (Sperner et al. 2005), scattering 504 

phenomena within a subducted (Furumura and Kennett, 2005) or delaminated (Koulakov et 505 
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al. 2010) lithospheric fragment. Strong temperature effects (Ismail-Zadeh et al. 2005) should 506 

rather produce relevant patterns in the frequency-dependent absorption imaging. 507 

The high-scattering Southern Carpathians represent the region characterized by the highest 508 

velocity and density contrasts, coupled with strong time-dependent deformations (Schmid et 509 

al. 1998, Matenco and Bertotti, 2000, Cloetingh et al. 2005). According to Bocin et al. (2005), 510 

three main post-docking deformational stages were recognised in this region. During 511 

Palaeogene-Early Miocene times, the clockwise rotation of the Tisza–Dacia block (Balla, 512 

1986) has caused NNE–SSW to ENE–WSW shortening in the internal Moldavides napes of 513 

the East Carpathians (Matenco and Bertotti, 2000), large scale transtension/extension to 514 

core-complex formation in the South Carpathians (e.g., Schmid et al. 1998), and final 515 

collision of the Balkans with Moesian Platform southwards (e.g., Doglioni et al. 1996). 516 

Collision with the stable foreland has occurred during the Middle and Late Miocene 517 

(Badenian–Sarmatian), leading to large-scale deformation characterised by EW shortening 518 

in the East Carpathians (e.g., Sandulescu, 1988; Matenco and Bertotti, 2000) and 519 

transpression/shortening in the South Carpathians (Matenco et al. 1997). The collision with 520 

the foreland culminated during Late Miocene (Sarmatian) times. This region dominated by 521 

scattering also corresponds to the contact between the South Carpathians and the 522 

hinterland, the South Apuseni Mountains units, where potentially large scale thrusting and 523 

transcurrent motions occurred during the late Alpine evolution (Cloetingh et al. 2005). 524 

Another possible cause of high scattering is the presence of the TTZ (Tornquist-Teisseyre 525 

Zone) in this region. Bocin et al. (2013) suggest that TTZ is situated in Romania beneath the 526 

South-Eastern Carpathians, further to the southeast than assumed by previous studies. As 527 

such, the TTZ incorporates the Vrancea zone earthquake epicentres. In the Carpathians, 528 

Weidle (2004) have also shown that approximately 75% of the observed attenuation of 529 

teleseismic P-waves is induced by scattering, predominantly from complex boundaries and 530 

heterogeneities in the crust. 531 

The area of highest geodynamical and seismotectonic complexity is thus the one marked by 532 

highest scattering attenuation. Regions that produce high scattering are located near the 533 

transition zone from low-velocities to high velocity ratios (Koulakov et al. 2010). This is in 534 

agreement with Takahashi et al. (2007), who obtain similar results in the Japanese crust, 535 

specifically under Quaternary volcanoes. The analogy suggests that the dimension of the 536 

strong heterogeneities ranges from a few hundred metres to a few kilometres and scattering 537 

in the area (including Ciomadul volcano) is influenced by volcanism. 538 

At the lowest frequency (Figures 10 and 13, 3 Hz panel, in our assumption the frequency 539 

band sampling deepest Earth layers) absorption increases northwest and southeast of the 540 

epicentral area, crossing an area of average-to-strong scattering (Figure 5). This anomaly is 541 

spatially correlated with the location of the hypothesised asthenospheric upwelling beneath 542 
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the Neogene volcanic arc (Figure 1), which migrated from NW to SE (Seghedi, 2005; 543 

Koulakov et al. 2010; Popa et al. 2011; Panaiotu et al. 2012). Comparing the NW and SE 544 

high-absorption features with the results of the tomography study of Koulakov et al. (2010), 545 

high absorption correlates with strong S-waves velocities perturbations at depths of 110-130 546 

km. The region characterized by high absorption (Figure 10) at higher frequencies (from 6  to 547 

18 Hz) starts from the front of the Carpathian bend (Focsani Basin) and extends to the South 548 

and South-Eastern Moesian Platform within the southwestern part of Scythian Platform 549 

(compare Figures 1 and 10). The results in the Focsani Basin confirm that sedimentary 550 

basins represent a primary cause of high absorption (see e.g. Calvet et al, 2013a for 551 

Pyrenees). Bocin et al (2005) model the Foscani Basin as containing up to 13 km of 552 

sediments, deposited in a foredeep type setting. This basin, according to Mocanu et al. 553 

(1996), is predominantly characterized by Neogene sedimentary rocks derived from the 554 

Carpathians, with significant contributions of detritus from the more external Moldavian and 555 

Moesian Platform. We also note that important crustal movements characterize areas of 556 

active subsidence (up to 3mm yr-1) in this region (Popescu and Dragoescu, 1987). The 557 

location of the high-absorption anomalies at higher frequencies (12 and 18 Hz) in such 558 

stable regions (platforms), however, suggests that high-frequency absorption effects are 559 

generated by even shallower structures. The anomalies are in fact spatially correlated with 560 

zones of hydrocarbons, natural gas, and oil accumulation (Radulescu et al. 1976; 561 

Stefanescu et al. 1988; Stanica and Stanica, 1998; Matenco and Bertotti, 2000; Tarapoanca 562 

et al. 2003; Leever et al. 2006). 563 

To better understand the meaning of the scattering/absorption contrasts at different 564 

frequencies (Figures 5 and 10), they are compared with the heat flow map displayed using 565 

the Global Heat Flow Database (http://www.heat flow.und.edu)  (Figure 14, left). High 566 

scattering (represented in blue in Figure 5) corresponds mostly to average/low heat-flow 567 

values, while high absorption anomalies correlate spatially with high heat flow values. The 568 

highest heat flow, corresponding to the location of the Ciomadul volcanic field, is at the 569 

northwestern limit of the southeast-west trending absorption anomaly at 3 Hz (Figure 10, 3 570 

Hz). A second comparisons of our results with the Bouguer anomaly (Figure 14, right) shown 571 

using the grid provided by Bureau Gravimetrique International (Bureau Gravimétrique 572 

International; http://bgi.omp.obs-mip.fr) reveals that the highest seismic scattering overlaps 573 

the lowest Bouguer anomalies (lower densities – compare with Figure 5), while the south 574 

and southeastern high-absorption structures correlate with positive Bouguer anomalies. 575 

 576 
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 577 
Figure 14 Maps showing heat flow distribution (left) and Bouguer anomaly (right). The high 578 
heat flow corresponds to the location of Ciomadul volcano. 579 

 580 

The cluster analysis results (Figure 13) at low frequencies (3 Hz and 6 Hz) quantify and map 581 

the absorption and effects of deep seismic structures. High-scattering structures (cyan) 582 

characterize the regions southwest and northeast of Vrancea, spreading along the 583 

Carpathians, whose high topography possibly influences measurements. Orange anomalies 584 

(high absorption) are distributed along a trend that is almost perpendicular, and crosses, the 585 

epicentral trend (NW-SE). The limit of the high-absorption pattern spatially corresponds to 586 

the Ciomadul volcanic region, situated just NNW of the Vrancea region (Seghedi, 2005; 587 

Popa et al. 2011; Panaiotu et al. 2012). Such a high-absorption trend has been observed 588 

under the Cascadian volcanoes and related to the effect of a deep magmatic arc (De Siena 589 

et al. 2016). Cluster analysis results at low frequencies thus depict a unique high-absorption 590 

structure extending from southeast of Vrancea, at the location of the mantle upwelling 591 

modelled by several studies (e.g. Popa et al. 2011), to northwest of Vrancea, feeding 592 

Ciomadul volcano (Koulakov et al. 2010). 593 

At high frequencies (Figure 13, 12 Hz and 18 Hz), the NNE-SSW scattering/absorption 594 

contrast follows the epicentral trend. This observation is similar in space and nature to that of 595 

Takahashi et al. (2007) for the subducting Japanese crust, at least for the peak delay time, 596 

and consistent with the presence of a NNE-SSW-oriented sinking lithospheric fragment into 597 

the asthenosphere (Radulian et al. 2006). In this framework, considering the investigated 598 

frequencies and Bouguer anomalies, the high scattering following the epicentral trend and 599 

extending to the west (Figure 13, 12 Hz and 18 Hz) is feasibly caused by either coupling 600 

between a subducting slab and the overlying crust (Sperner et al. 2005) or small-scale 601 

scattering phenomena within the upper portion of a subducted (Furumura and Kennett, 602 

2005) or detached (Seghedi, 2005; Koulakov et al. 2010; Popa et al. 2011; Panaiotu et al. 603 

2012) lithospheric fragment, sinking into the asthenosphere. 604 

 605 
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6. CONCLUSIONS 606 

 607 

We have mapped different seismic attenuation mechanisms in the Vrancea area and 608 

adjacent regions quantitatively using two integrated measurements, peak delay times and 609 

late lapse-time coda quality factors (Qc), in four frequency bands. Using these techniques we 610 

were able to identify structures of different dimension and depth (different 611 

wavelength/frequency) responsible for seismic absorption and seismic scattering. The 612 

approach complements other geophysical and geodynamical results and provides a 613 

quantitative interpretation of deep Earth properties and tectonic structures. Peak-delay time 614 

values, interpreted as a measurement of scattering attenuation, show considerable 615 

variations at high frequencies, which suggests a strong effect of short-wavelength 616 

heterogeneities in the upper crust and strong differences in sampling at different 617 

frequencies. Once mapped, peak delay time differences grow (scattering increases) towards 618 

the Carpathians (north, northwest, and west of Vrancea) with the highest values in the 619 

southern Carpathians, the same region characterized by a minimum in Bouguer anomaly. 620 

Qc
-1 is interpreted as a measurement of absorption, with patterns showing lower frequency 621 

dependence, but still progressively sampling shallower regions with increasing frequencies. 622 

High absorption is prevalent in the fore-arc region (SE of Vrancea): besides the Focsani 623 

Basin, which shows the highest absorption, the area includes the southeastern side of the 624 

Moesian Platform, in strong spatial correlation with hydrocarbon and natural gas reservoirs 625 

consistently depicted by seismic exploration studies. 626 

Cluster analysis has been used to obtain a quantitative interpretation of the structures 627 

producing the scattering and absorption anomalies: the results are mainly influenced by 628 

deep tectonics structures. At high frequencies, we observe clear correlation of high 629 

scattering/absorption contrasts acting along the NW-SE trend crossing Vrancea, and feasibly 630 

produced by coupling or small-scale scattering phenomena produced at the top of either a 631 

subducting or detached slab sinking into the astenosphere. While at all frequencies the 632 

highest absorption still corresponds to the Focsani sedimentary basin. A unique low-633 

frequency high-absorption southeast-to-northwest trend marks areas of mantle upwelling, 634 

feeding deep Neogene volcanism and reaching the Ciomadul volcanic area, NNW of 635 

Vrancea. 636 
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