
Efficient update of ghost regions
using active messages

Josh Milthorpe
Alistair P. Rendell

Research School of Computer Science
Australian National University

{josh.milthorpe, alistair.rendell}@anu.edu.au

Abstract—The use of ghost regions is a common feature
of many distributed grid applications. A ghost region holds
local read-only copies of remotely-held boundary data which
are exchanged and cached many times over the course of a
computation.

X10 is a modern parallel programming language intended to
support productive development of distributed applications. X10
supports the “active message” paradigm, which combines data
transfer and computation in one-sided communications. A central
feature of X10 is the distributed array, which distributes array
data across multiple places, providing standard read and write
operations as well as powerful high-level operations.

We used active messages to implement ghost region updates
for X10 distributed arrays using two different update algorithms.
Our implementation exploits multiple levels of parallelism and
avoids global synchronization; it also supports split-phase ghost
updates, which allows for overlapping computation and commu-
nication. We compare the performance of these algorithms on two
platforms: an Intel x86-64 cluster over QDR InfiniBand, and a
Blue Gene/P system, using both stand-alone benchmarks and an
example computational chemistry application code. Our results
suggest that on a dynamically threaded architecture, a ghost re-
gion update using only pairwise synchronization exhibits superior
scaling to an update that uses global collective synchronization.

Index Terms—parallel programming models; Partitioned
Global Address Space (PGAS); X10 language; active messages;
structured grids; distributed arrays; ghost regions; lattice Boltz-
mann method; Smooth Particle Mesh Ewald method

I. INTRODUCTION

Spatial grids1 are used in a wide range of scientific applica-
tion codes including computational fluid dynamics, weather
simulations and molecular dynamics. Computation on each
grid element requires only those elements in the immediate
neighborhood – a locality property that may be exploited in
distributed algorithms. A common feature of many distributed
grid codes is the use of ghost regions. A ghost region holds
read-only copies of remotely-held data, which are cached
to enable local computation on boundary elements. Grid
applications are typically iterative, so processes coordinate to
exchange and cache ghost data many times over the course of
a computation. The efficient implementation of ghost region
updates is therefore an important factor in achieving perfor-
mance and scalability.

1or meshes, not to be confused with grid computing architectures

Traditionally, grid applications for distributed memory ar-
chitectures have been implemented using the message pass-
ing programming model, exemplified by MPI[1]. However,
the Partitioned Global Address Space (PGAS) programming
model is becoming increasingly popular. The PGAS model
provides a global view of memory in which a portion of the
memory is local to each process, making it straightforward to
write programs in which processes access remote data, while
still accounting for locality and associated communication
costs.

Modern PGAS languages such as X10[2] and Chapel[3]
support the active message idiom, which combines data
transfer and remote computation within a single message;
this allows for the terse expression of many distributed
algorithms using localized patterns of communication and
synchronization. X10 is a PGAS language which explicitly
represents locality in the form of places. A place in X10
corresponds to one or more co-located processing elements
with attached local storage. Each place supports a set of
dynamically spawned lightweight activities, spawned using the
async statement. An activity runs to completion at the place
where it was started, and may spawn new remote activities (at)
and detect termination of spawned activities (finish). Mutual
exclusion is ensured between activities running at the same
place by the use of conditional and unconditional atomic
sections (when and atomic). X10 also provides a rich array
sub-language. An array is a collection of objects which are
indexed by points in an arbitrary bounded region. A key data
structure in X10 is the distributed array. Each element in a
distributed array is assigned to a particular place according
to the array distribution, which is a mapping from point
to place[2]. Distributed arrays are very general in scope:
they allow for arbitrary distributions (for example, block,
block-cyclic, recursive bisection, fractal curve) and arbitrary
regions (for example dense or sparse, rectangular, polyhedral
or irregular). The X10 language specification, programmer’s
guide and tutorials are available at http://x10-lang.org.

The Global Arrays library provides PGAS support for array
data, including ghost region updates, and has been used
successfully to develop structured grid applications as well as
a wide range of other codes[4]. Global Arrays supports one-
sided put and get operations, synchronization and collective
operations but does not support active messages. Palmer and

Nieplocha[5] compared algorithms for the update of ghost
regions for block-distributed rectangular arrays for the Global
Arrays library. They identified two basic algorithms: a put
algorithm in which each process sends ghost data to all
neighboring processes, and a shift algorithm which reduces
the number of messages required by making use of the fact
that some ghost data are required by more than one process.
They compared implementations of these algorithms on two
different architectures – the IBM SP and the Cray T3E – and
found that different algorithms were more efficient on each
architecture depending on the relative cost of communication
and synchronization.

The PETSc[6] library also provides support for distributed
array (‘vector’) data with ghost regions. Data transfer and
synchronization are implemented using MPI functions.

This paper describes how active messages can be used
to implement ghost region updates as a high-level operation
on X10 distributed arrays. The implementation uses only
local synchronization, which results in improved scaling to
larger numbers of distributed processors. It also supports split-
phase updates, allowing communication of ghost data to be
overlapped with computation at each place.

Section II describes the X10 array library in detail. Section
III presents two well-known algorithms for ghost region up-
dates and our implementation of these algorithms in X10. In
section IV, we follow and extend the work of Palmer and
Nieplocha[5] with a comparison of the two algorithms on
two modern systems: a cluster of Intel Nehalem nodes with
an InfiniBand interconnect, and a Blue Gene/P system. We
demonstrate that the total number of messages required to
transfer ghost data is of secondary importance compared to
the method of synchronization. We also identify a limitation
of the current X10 compiler that makes it difficult to efficiently
implement high-level operations for generic array types.

II. DISTRIBUTED ARRAYS IN X10

The X10 standard class library provides a rich set of array
classes in the x10.array package[7]. As X10 supports
a constrained type system[8], array types can carry various
constraints with regard to dimensionality, shape and range
properties. We describe the array classes here as background
for our implementation of ghost regions in distributed arrays
in Section III.

The fundamental X10 array classes are Point, Region
and Array. A Point(n) is an index of rank (dimensional-
ity) n, for example [1,0] is a Point(2). A Region(n)
is a set of Points of rank n. A Region may be of any
shape (for example, rectangular, triangular, general polyhedral,
sparse); the only requirement is that it must be possible to
iterate over all points in the region. An Array is a local
collection of data indexed by Point, with one element
corresponding to each Point in a Region.

Distribution of array data is supported by the classes
PlaceGroup, Dist and DistArray. A PlaceGroup
is a set of Places. One static instance of this class,
PlaceGroup.WORLD, is defined as the set of all places

involved in the computation. A Dist (distribution) divides
a Region between the places in a PlaceGroup, by map-
ping each Point in the Region to a single Place. A
DistArray is a collection of indexed data distributed over
places according to a given Dist.

Both Array and DistArray support standard subscript-
ing operations to get and set individual elements. They also
support higher-level operations such as:

• sequence() - iterate over all elements in sequence
• fill() - set every element to a defined value
• map(op:(T)=>U) - return a new array that is the result

of applying the given map function to each element
• reduce(op:(T,T)=>T, unit:T) - reduce all ele-

ments in the array using the given reduction function e.g.
sum, min, max

These high level operations may be implemented using ef-
ficient parallel algorithms, which makes them useful building
blocks for high performance application codes. Our implemen-
tation of ghost region updates complements these high level
operations.

Array operations are optimized for the specific case of
dense, rectangular arrays. A small number of standard distribu-
tions are supplied as subclasses of Dist. However, these are
implemented entirely in X10 code (without special compiler
support), so there is nothing to prevent users creating their
own subclasses of Dist in a similar manner.

Although ghost regions are useful in both structured and
unstructured grid computations, for the purpose of this paper
we limit our discussion to structured grid applications in which
each place holds a portion of a larger dense, rectangular
grid. For structured grid applications, the distributions of most
interest are:

• BlockDist - a regular distribution of a rectangular
region, divided along one dimension

• BlockBlockDist - a regular distribution of a rectan-
gular region, divided along two dimensions

We modified the X10 array library to support ghost region
updates for both of these distributions.

III. IMPLEMENTING GHOST REGIONS IN X10
DISTRIBUTED ARRAYS

We implemented ghost regions as new classes in the pack-
age x10.array, as well as modifications to the existing
DistArray class.

We added a method, Region.getHalo(haloWidth:Int),
which returns a halo region comprising the neighborhood of
the target region. For rectangular regions, the halo region is
simply a larger rectangular region enclosing the target region.
For the special case of a zero-width ghost region (no ghosts),
Region.getHalo(0) returns the region itself.

X10 makes use of a natively implemented generic class,
PlaceLocalHandle, to allocate and track a unique object
at each place. DistArray is implemented using a
PlaceLocalHandle[DistArray.LocalState],
which holds local data for each place. In the constructor for

DistArray, the Dist is used at each place to determine
the region that is mapped to that place (the resident region),
and the local state is allocated to hold the portion of the
distributed array corresponding to that region.

We changed the constructor to allocate storage for the
ghost region in LocalState, and added a new field
LocalState.ghostManager:GhostManager which
holds a distribution-specific object that manages ghost updates.
This reduces to “standard” behavior for DistArray in the
special case of ghostWidth==0 as there is no ghost
manager and the ghost region is identical to the resident
region. All operations on DistArray were changed to use
the ghost region rather than the resident region for indexing.

The implementation of the GhostManager interface is
specific to the distribution type. It may also be implemented
using different algorithms depending on the target architecture.
We implemented the two basic algorithms described by Palmer
and Nieplocha[5] (see §III-E and §III-F).

A. Library interface
The following methods are defined on DistArray and

constitute the user API for our implementation:
• sendGhostsLocal()

a single-place operation that sends boundary data from
this place to the ghost regions stored at neighboring
places

• waitForGhostsLocal()
a single-place operation that waits for ghost data at this
place to be received from all neighboring places

• updateGhosts()
a global operation that is called at a single place to update
ghost regions for the entire array; this starts an activity at
each place in the distribution to send and wait for ghosts

B. Synchronization requirements
Ghost region updates are typically used in the context of a

phased, iterative computation, for example:

for (i in 1..ITERS) {
updateGhosts();
computeOnLocalData();
computeOnGhostData();

}

It is necessary to synchronize between reads and updates
to ensure that ghost regions have been fully received before
computation begins at each place.

There are two basic approaches to this problem. One is to
use implicit synchronization through two-sided (send/receive
or scatter/gather) communications. This is the approach used
in the PETSc[6] library, and in the M P (message-passing)
algorithm described by Palmer and Nieplocha[5].

An alternative is to use one-sided communications sur-
rounded by explicit synchronization. In some computations,
such synchronization may naturally be included in the compu-
tation. In the following example, an energy and a maximum
change per grid point are calculated at different times in a
structured grid code:

for (i in 1..ITERS) {
energy = allReduce(energy, SUM, ...);
computeOnLocalData();
sendGhosts();
maxDelta = allReduce(maxDelta, MAX, ...);
computeOnGhostData();

}

The collective reduction operations surrounding the ghost
update ensure the consistency of ghost data by enforcing an
ordering with other messages. All previous send operations
from a place must complete before the collective reduction can
begin. Where such natural synchronization is not present, the
ghost update operation must perform synchronization before
and after sending ghosts. In Global Arrays this synchronization
is done with a global collective operation.

Our approach combines non-blocking messages with local
synchronization as suggested by Kjolstad and Snir[9]. We
assign a phase counter to each ghosted DistArray. The use
of a unique phase counter per array allows ghost updates on
different arrays to proceed independently. This could be of
use for example in a multigrid or adaptive mesh refinement
algorithm in which different timesteps are used for coarser
or finer grids. In each even-numbered phase the program
computes on ghost data; in each odd-numbered phase ghost
data are exchanged with neighboring places. A place may
not advance more than one phase ahead of any neighboring
place. A call to sendGhostsLocal() increments the phase
for this place and then sends active messages to update
ghost data at neighboring places. Each active message also
sets a flag to notify the receiving place that data have ar-
rived from a particular neighbor. The receiving place calls
waitForGhostsLocal() to check that flags have been set
for all neighbors before proceeding with the next computation
phase.

C. Split-phase updates

The use of local synchronization allows phases to proceed
with computation before neighboring places have received
their ghost data; it also allows communication of ghost data
to overlap with computation on local data at each place, as
follows:

// at each place
for (i in 1..ITERS) {
sendGhostsLocal();
computeOnLocalData();
waitForGhostsLocal();
computeOnGhostData();

}

D. Use of active messages

An active message both transfers data and initiates com-
putation at a remote place; in X10, this computation may
include synchronization with other activities running at the
target place. For example, in the following code, activity 1
sends an active message to fill a buffer at place p with a value

of type T. Activity 2 running at place p waits for the buffer
to be filled, and then removes and computes on the value.

// activity 1
val v:T = ...;
async at(p) {

when(!buffer.full) {
buffer.put(v);

}
}

// activity 2 at Place p
async {

val v:T;
when(buffer.full) {

v = buffer.remove();
}
computeOn(v);

}

In our implementation of ghost updates, active messages are
used to transfer and perform local layout of ghost data, and
to ensure consistency of data for each phase of computation.
In the shift algorithm (§III-F) additional synchronization is
required between the two phases of the shifts.

In sendGhostsLocal(), each place sends messages to
neighboring places. A conditional statement (when) ensures
that the ghost data are not updated until the receiving place
has entered the appropriate phase. After ghost data have been
updated, a flag is set within an atomic section to indicate that
the data have been received:

at(neighbor) async {
val mgr = localHandle().ghostManager;
when (mgr.currentPhase() == phase);
for (p in overlap) {

ghostData(p) = neighborData(p);
}
atomic

mgr.setNeighborReceived(sourcePlace);
}

In waitForGhostsLocal(), another conditional
atomic block is used to wait until ghost data have been
received from all neighboring places:

public def waitForGhostsLocal() {
when (allNeighborsReceived()) {

currentPhase++;
resetNeighborsReceived();

}
}

E. Ghost updates using the put algorithm

The put algorithm is the most straightforward way to
transfer ghost data between places[5].

At each place:
1) determine the list of neighboring places

2) for each neighbor:
a) determine the overlap between data held at this

place and the neighbor’s ghost region
b) send the overlapping data to the neighbor and store

in the neighbor’s ghost region.

Fig. 1: Ghost update put algorithm in two dimensions: ghost
data are sent from a place to all neighboring places. Note:
exchange of data between other places is not shown.

This algorithm requires a maximum of 3D − 1 messages
per place, where D is the number of divided dimensions in
the distribution. For example, in a block dist divided in one
dimension, there is a maximum of 2 messages per place,
and in a two-dimensional block/block dist (see figure 1),
there is a maximum of 8 messages per place. No ordering
or synchronization is required between the messages to each
neighbor.

F. Ghost updates using the shift algorithm

The shift algorithm makes use of the fact that after some of
the ghost data have been received at a place, some of those
data are required by other neighbors and can be passed on in
messages to those neighbors[5].

Fig. 2: Ghost update shift algorithm in two dimensions: Step
1: ghost data are sent from each place to neighboring places
along one axis.

Fig. 3: Ghost update shift algorithm: Step 2: ghost data are sent
to neighboring places along the other axis, including those data
previously exchanged.

At each place:
1) for each axis d in the distribution:

a) determine the neighboring places along the axis d
b) for each neighbor:

i) determine the overlap between data held at this
place – including ghost data already received
from other places – and the neighbor’s ghost
region

ii) send the overlapping data to the neighbor and
store in the neighbor’s ghost region.

This reduces the number of required messages to a maximum
of 2D where D is the number of divided dimensions, at a cost
of increased synchronization.

For example, in a block/block dist, a maximum of 4
messages per place is required (see figures 2 and 3). However,
an additional synchronization step is required. Each place must
wait until ghost data have been received from places along one
axis before proceeding to send data along the next axis.

IV. EVALUATION

We evaluated the performance of our ghost update im-
plementation using microbenchmarks and in the context of
complete application codes. Evaluation was performed on
two machines: the Watson 4P Blue Gene/P system at IBM
Watson Research Center, and Vayu, which is an Oracle/Sun
Constellation cluster installed at the NCI National Facility at
the Australian National University. Each node of Vayu is a
Sun X6275 blade, containing two quad-core 2.93GHz Intel
Nehalem CPUs, 24GB DDR3-1333 memory and on-board
QDR InfiniBand.

For all reported results, the Native (C++ backend) version
of X10 2.2.2.1 was used. Single-threaded places were used
(X10_NTHREADS=1) to avoid complications from interac-
tions with the work-stealing runtime. Therefore 8 places were
run on each dual quad-core node of Vayu, and 4 places on
each quad-core node of Watson 4P.

Version 5.1 of Global Arrays was used for comparison (see
§IV-C).

A. Alternative algorithm for static threads

The default implementation of the X10 runtime uses a dy-
namic thread pool for each place. At the start of computation,
the number of threads created at each place is determined
by the environment variable X10_NTHREADS. Each thread
maintains a double-ended queue (deque) of activities to be
executed. Whenever an activity is created, it is pushed to the
bottom of the deque of the creator thread. An idle thread may
steal work from other threads by removing activities from the
tops of their deques[10].

When an activity must block — for example waiting for the
condition guard on an atomic block to evaluate to true —
the X10 runtime “parks” the worker thread that is executing
that activity, and creates an additional thread to process
other queued activities. This ensures that the same level of
parallelism is maintained throughout a computation, even in
the presence of blocking constructs. In other words, at any time
there are at most X10_NTHREADS active threads, although
there may be additional threads that are blocked.

However, some architectures do not support dynamic thread
creation; this includes Blue Gene/P. To support these archi-
tectures, dynamic thread creation may be disabled by setting
the environment variable X10_STATIC_THREADS. With the
current implementation of X10_STATIC_THREADS, it is
possible for otherwise correct application code using blocking
constructs to deadlock, as all threads may be blocked waiting
on activities that are further back in the work queues.

Due to the above limitation, our implementation of ghost
region update worked correctly for any number of threads
on the dynamically-threaded Vayu machine, but deadlocked
on the statically-threaded Watson 4P. As a workaround, we
implemented a version of the ghost update using collective
barrier synchronization, similar to that in Global Arrays; this
is the version used with X10_STATIC_THREADS=true on
Blue Gene (Watson 4P).

B. Ghost update microbenchmark results

Figure 4 presents ghost update timings with the put and shift
algorithms on Watson 4P and Vayu. This benchmark performs
10,000 ghost updates sequentially over a large distributed
array. The array size for one place is 1003, and the array size
is increased with the number of places (weak scaling), so that
each place always holds one million double-precision values.

The time for 2 and 4 places are significantly lower than
for 8 or more places. This is expected for two reasons: when
there are less than 16 places, there are no interior places with
neighbors on all sides; and as both platforms support 4 places
on a single CPU, all communication is done through shared
memory thereby avoiding the network. Scaling is fairly flat
above 8 places, as the number and size of messages sent by
each place is roughly constant.

On Watson 4P (Blue Gene/P), the put algorithm is sig-
nificantly faster. On Vayu (Nehalem + InfiniBand), the shift

 0

 10

 20

 30

 1 4 16 64 256 1024

w
al

l c
lo

ck
 ti

m
e

(m
s)

number of places

Watson 4P - shift
Watson 4P - put

Vayu - shift
Vayu - put

Fig. 4: Ghost region update: weak scaling for three-
dimensional array using put and shift algorithms on Vayu
(Nehalem + InfiniBand) and Watson 4P (Blue Gene/P).

algorithm is marginally faster. This reflects the relative bal-
ance between CPU and network performance on the two
architectures; the reduced number of messages for the shift
algorithm is more than outweighed on Blue Gene/P by the
cost of synchronizing X10 activities. This is consistent with
Palmer and Nieplocha’s finding that synchronization costs
significantly affect the relative performance of the algorithms
depending on architectural characteristics[5].

Figure 5 demonstrates the benefit of using only local
synchronization as compared to a global barrier. We per-
formed the same benchmark on Vayu to compare our local-
synchronization implementation of the shift algorithm with the
alternative algorithm using a global barrier (§IV-A).

 0

 1

 2

 3

 4

 5

 6

 1 4 16 64 256 1024

w
al

l c
lo

ck
 ti

m
e

(m
s)

number of places

global barrier
local synchronization

Fig. 5: Ghost region update: weak scaling with global barrier
vs. local synchronization on Vayu.

For 2-8 places, the difference between local and global
synchronization is insignificant, as all communications (in-
cluding the global barrier) take place within a single node.
For more than eight places, the update time with a global

barrier increases more rapidly than the time with only local
synchronization. This is expected as the collective operation
on which it is implemented scales as 0(log p) where p is the
number of places, whereas other elements of the ghost update
scale as 0(1).

These results suggest that the use of local vs. global syn-
chronization is more important to overall performance than the
difference in synchronization requirements due to the update
algorithm (put vs. shift).

C. Application: Lattice Boltzmann

The Global Arrays library[4] is distributed with a sample
Fortran code that performs a two-dimensional lattice Boltz-
mann simulation of flow in a lid-driven square cavity. This has
been used to demonstrate GA’s ghost update capabilities[5].
We implemented an equivalent code in X10 to enable direct
comparison between our ghost update implementation and
that in GA. The X10 code is significantly shorter: around
600 (non-comment) lines of code compared to almost 900 in
the Fortran/GA example. (The X10 application also uses less
memory in execution, at about 94MB per process compared
to 156MB per process with Fortran/GA. The difference in
memory footprint is probably due to maintaining local and
globally shared copies of data in Global Arrays.)

 1

 10

 100

 1000

 1 4 16 64 256 1024

w
al

l c
lo

ck
 ti

m
e

(s
)

number of processors

X10 − total
X10 − update ghosts

GA − total
GA − update ghosts

Fig. 6: Timing comparison between X10 and Fortran / Global
Arrays code for a 5000 step lattice Boltzmann simulation
on 1024 × 1024 grid on Vayu. Both the total time for the
calculation and the ghost region update time are shown.

Figure 6 presents strong scaling results for both the X10 and
Fortran/GA codes on Vayu. The X10 code exhibits superior
performance and scaling, and is almost 40% faster on 64
places (31.1s total compared to 50.3s for the Fortran/GA code).
2 The scaling of the X10 code starts to reduce noticeably above
256 places. For this number of places, more than one third of
the computation time is spent in updating ghost regions. As
the time for ghost updates is roughly constant regardless of
the number of places, the update of ghost regions becomes
the dominant factor in scaling when the problem is divided

2The Global Arrays example code currently crashes with a segmentation
violation for ≥128 processes for this problem size.

finely enough. It would be necessary to increase the problem
size to achieve further (weak) scaling.

D. Application: Particle Mesh Ewald
Our second application example is from the chemistry

domain: a Smooth Particle Mesh Ewald (PME) electrostatics
calculation from the ANUChem suite of chemistry codes in
X10[11]. The code uses lattice-centric charge interpolation as
suggested by Ganesan et al.[12], but differs from their scheme
in that it does not use neighbor lists. Instead, the code divides
the charges into subcells with a side length equal to half the
direct interaction cutoff distance. Each place considers charges
in a region of subcells surrounding its resident lattice points.
The subcells are also used in the calculation of direct particle-
particle interactions. Ghost regions are used to store a halo of
neighboring subcells for each place, to support efficient local
calculation of the direct interaction.

The previously published version of the code used an
application-specific ghost region update to gather subcells
from neighboring places. We altered the code to use our
ghost cell update algorithm, which reduced the size of the
application code from 682 to 617 non-comment source lines.
Figure 7 presents strong scaling results for a system of 17,132
water molecules.

 0.001

 0.01

 0.1

 1

 10

 1 2 4 8 16 32 64

w
al

l c
lo

ck
 ti

m
e

pe
r i

te
ra

tio
n

(s
)

number of processors

Watson 4P - total
Watson 4P - update

Vayu - total
Vayu - update

Fig. 7: ANUChem PME electrostatics calculation for 17K
water molecules on Vayu (Nehalem + InfiniBand) and Watson
4P (Blue Gene/P). Both the total time for the calculation and
the subcell ghost region update time are shown.

The modified PME code scales well from 1-64 places on
both Vayu and Watson 4P. We were not able to gather timings
on more than 64 places because the width of the ghost region
for this application is too small (see §VI-A2).

V. RELATED WORK

The Global Arrays library (GA)[4] supports distributed ar-
ray functionality, including ghost cells and periodic boundary
conditions, in the context of C++ and Fortran applications.
Palmer and Nieplocha[5] evaluated alternative algorithms for
GA ghost cell updates on the Cray T3E and IBM SP architec-
tures. This paper updates their work for current architectures

(Blue Gene/P and Nehalem+InfiniBand), and reevaluates the
two basic algorithms (shift and put) in the context of the PGAS
programming model with active messages.

PETSc[6] also supports distributed arrays with ghost data
and periodic boundary conditions. If ghost data are required,
the storage vector must be duplicated into an extended “local”
vector with room for the ghost data. PETSc uses blocking
scatter and gather operations to exchange ghost data between
processes.

Wen et al.[13] implemented exchange of irregular ghost
regions in Titanium (a PGAS language based on Java) for an
Adaptive Mesh Refinement application. Their implementation
overlaps computation and communication and uses global
synchronization. They also suggest that their approach may
transfer to X10, but no implementation work has been under-
taken.

Claridge[14] also implemented exchange of irregular ghost
regions in Chapel (a PGAS language similar to X10) for an
Adaptive Mesh Refinement library.

VI. DISCUSSION AND FUTURE WORK

Our experience developing the ghost update implementation
suggests a number of possible improvements. We divide
these improvements into two categories: those related to the
update algorithm, and those related to language support for
implementing the algorithms in X10.

A. Algorithmic improvements

1) Irregular distributions: We implemented ghost regions
for 1- and 2-dimensional block distributions (see section II),
which are most relevant to structured grid applications. Other
distributions may also be of interest including Morton (Z-
index) and irregular distributions.

2) Fallback algorithm for extended ghost regions: Ghost
regions for structured grid calculations are often a single cell
in width, as only immediately neighboring data are needed
to calculate at each point. However, it may be advantageous
to exchange wider ghost regions, to allow less frequent
updates[15].

If the ghost region is wide enough and the local region
held at each place narrow enough in a particular dimension,
it is possible that the ghost region for a place will extend
beyond its immediate neighbors. In this case, the fast put
and shift algorithms described above will not work, and it
is necessary to fall back to a slower, more general algorithm
that calculates ghost region overlaps for all places rather than
for the immediate neighbors only. This is the approach used
in the Global Arrays library[4]. We have not yet implemented
this fallback approach in X10. Such extended ghost regions are
not likely to occur for typical problem sizes in structured grid
calculations, however we plan to implement such a fallback
algorithm to complement the fast algorithms described above,
to ensure that the implementation is robust in this case.

B. Language implementation issues

1) Atomic blocks: Our local synchronization algorithm is
implemented in the X10 language using atomic blocks. The
current implementation of atomic blocks in X10 uses a place-
wide lock. While semantically correct, this choice means that
at any given time, only one thread may progress in an atomic
block. For single-threaded places, this does not introduce
additional overhead. However, for multithreaded places, the
time that threads spend waiting on the place-wide lock may
become significant.

X10 allows for a number of different implementations of
atomic semantics, including finer-grained locks and software
transactional memory[2], which would improve the perfor-
mance of local-synchronization ghost updates, as threads could
handle incoming active messages with atomic blocks in par-
allel.

2) Inlining of Point objects: The implementation of both
put and shift algorithms was rendered more difficult by a
current limitation of the X10 compiler. Where the rank of
an array is statically known, it may be indexed using standard
integer indices e.g. a(4,2). However when the rank is a
dynamic constraint — as is typical in library code — arrays
must be indexed using Point e.g. a(p). Objects of type
Point (which may be of arbitrary rank) are not currently
inlined. This means that array indexing using Point gener-
ates a high overhead of Point object creation and method
calls. To measure the overhead due to the use of Point
objects, a “hand-inlined” version using only integer indices
was constructed for both algorithms for DistArray(3).
Table I shows the speedup of the “hand-inlined” versions
relative to the Point versions of the code, on 16 places
on Vayu. These results indicate that Point inlining would
significantly improve the performance of ghost updates for
arrays of arbitrary rank, and may be expected to improve the
performance of similar algorithms. Hand-inlined versions of
both algorithms were used for all benchmarks reported above.

TABLE I: Speedup from “hand-inlining” of Point objects.
Ghost update time for 16M element array on 16 places on Vayu

time (ms)
algorithm Point inlined speedup

put 12.3 4.02 3.1
shift 10.5 3.75 2.8

Well-known automatic inlining and scalar replacement
transformations[16] will be implemented in future versions of
the X10 compiler[17].

3) Byte order in serialization: The current implementation
of X10 implements byte-order swapping to ensure message
compatibility between places of different architectures. All
messages use big-endian byte order. When a place running on
a little-endian architecture (e.g. x86) serializes data to be sent
to another place, it swaps the byte order to big-endian during
serialization. Similarly, when a little-endian place receives
a message, it swaps the byte order to little-endian during
deserialization.

Swapping byte order adds to the cost of communications,
but adds no value for systems where all places share a single
byte order (e.g. the Vayu cluster of x86 nodes). To avoid this
cost, we modified the X10 runtime to avoid byte swapping
for homogeneous clusters. If the flag -HOMOGENEOUS is
set during compilation of the X10 runtime, the byte-order
swapping code is replaced with a straightforward memory
copy. Table II shows the speedup from avoiding byte swapping
on Vayu. There is no improvement on Watson 4P, as Blue
Gene is a big-endian architecture, for which the standard X10
implementation does not perform byte swapping.

TABLE II: Speedup from avoiding byte-order swapping in
serialization for a homogeneous cluster.
Microbenchmark timings with shift algorithm as per figure 4 on Vayu

time (ms)
number of places swap no swap speedup

2 1.27 1.09 1.17
4 1.91 1.56 1.26
8 3.82 2.96 1.29

16 3.77 3.00 1.26
32 4.21 3.39 1.24
64 4.15 3.42 1.21

128 4.31 3.58 1.20
256 4.36 3.62 1.20
512 4.67 3.97 1.18

1024 4.64 3.95 1.17

The patched version of X10 was used for all benchmarks
reported in section IV. We have submitted this enhancement
as a patch for inclusion in version 2.3 of the X10 runtime.

A more general solution would perform byte swapping
between places only when necessary. For example, places
could broadcast architectural information to all other places,
and then use this information to determine whether to swap
byte order in serialization. Alternatively, each message could
include a flag (little/big-endian) which could be used at the
receiving place during deserialization.

VII. CONCLUSION

Active messages allow the straightforward specification of
an efficient local-synchronization ghost region update algo-
rithm. We implemented ghost region updates for distributed
arrays in the X10 programming language using active mes-
sages to combine data transfer and local (pairwise) synchro-
nization. Our results show that using local rather than global
synchronization reduces the cost of updating ghost regions
on a dynamically threaded architecture. The shift algorithm,
which trades an increase in synchronization for a reduction
in the number of required messages, does not significantly
improve performance on either of the architectures we used.

The application and library codes described in this paper are
available at http://cs.anu.edu.au/ Josh.Milthorpe/anuchem.html
and are free software under the Eclipse Public License.

ACKNOWLEDGEMENTS

We would like to thank Daniel Frampton and Steve Black-
burn from the ANU and David Grove and Olivier Tardieu from

IBM Watson Research Center. This work was partially sup-
ported by the Australian Research Council and IBM through
Linkage grant LP0989872, and by the NCI National Facility
at the ANU.

REFERENCES

[1] MPI Forum, “MPI-2: Extensions to the Message-Passing Interface,”
University of Tennessee, Knoxville, Tech. Rep., Nov 2003.

[2] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioğlu, C. von Praun, and V. Sarkar, “X10: an object-oriented
approach to non-uniform cluster computing,” in Proceedings of the 20th
annual ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications (OOPSLA 2005), 2005, pp. 519–
538, 10.1145/1094811.1094852.

[3] “Chapel language specification,” Cray Inc., Tech. Rep. 0.91, April 2012.
[4] J. Nieplocha, B. Palmer, V. Tipparaju, M. Krishnan, H. Trease, and

E. Apra, “Advances, applications and performance of the Global Arrays
shared memory programming toolkit,” International Journal of High
Performance Computing Applications, vol. 20, p. 203, May 2006,
10.1177/1094342006064503.

[5] B. Palmer and J. Nieplocha, “Efficient algorithms for ghost cell updates
on two classes of MPP architectures,” in Proceedings of the 14th IASTED
International Conference on Parallel and Distributed Computing and
Systems (PDCS 2002), Nov 2002, pp. 197–202.

[6] S. Balay, J. Brown, K. Buschelman, V. Eijkhout, W. D. Gropp,
D. Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith, and H. Zhang,
“PETSc users manual,” Argonne National Laboratory, Tech. Rep. ANL-
95/11 - Revision 3.2, 2011.

[7] V. Saraswat, B. Bloom, I. Peshansky, O. Tardieu, and D. Grove, “X10
language specification, version 2.2,” IBM, Tech. Rep., Jan 2012.

[8] N. Nystrom, V. Saraswat, J. Palsberg, and C. Grothoff, “Constrained
types for object-oriented languages,” in Proceedings of the 23rd
ACM SIGPLAN conference on Object-oriented programming systems
languages and applications (OOPSLA 2008), 2008, pp. 457–474,
10.1145/1449764.1449800.

[9] F. Kjolstad and M. Snir, “Ghost cell pattern,” in Proceedings of the
2010 Workshop on Parallel Programming Patterns (ParaPLoP ’10), Apr
2010, 10.1145/1953611.1953615.

[10] O. Tardieu, H. B. Lin, and H. Wang, “A work-stealing scheduler for
X10’s task parallelism with suspension,” in Proceedings of the 17th
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, (PPoPP 2012), Feb 2012.

[11] J. Milthorpe, V. Ganesh, A. Rendell, and D. Grove, “X10 as a par-
allel language for scientific computation: practice and experience,” in
Proceedings of the 25th IEEE International Parallel & Distributed
Processing Symposium (IPDPS 2011), May 2011, pp. 1067–1075.

[12] N. Ganesan, B. Bauer, S. Patel, and M. Taufer, “FENZI: GPU-enabled
molecular dynamics simulations of large membrane regions based on
the CHARMM force field and PME,” in Proceedings of Tenth IEEE
International Workshop on High Performance Computational Biology
(HiCOMB 2011), May 2011.

[13] T. Wen, J. Su, P. Colella, K. Yelick, and N. Keen, “An adaptive mesh
refinement benchmark for modern parallel programming languages,” in
Proceedings of the 2007 ACM/IEEE conference on Supercomputing, Nov
2007.

[14] B. Chamberlain, S.-E. Choi, T. Hildebrandt, V. Litvinov, G. Titus,
J. Lewis, K. Maschhoff, and J. Claridge, “Chapel HPC Challenge
entry,” Nov 2011, http://chapel.cray.com/presentations/SC11/ ChapelH-
PCC2011.pdf.

[15] C. Ding and Y. He, “A ghost cell expansion method for re-
ducing communications in solving PDE problems,” in Proceed-
ings of the 2001 ACM/IEEE conference on Supercomputing, 2001,
10.1145/582034.582084.

[16] S. Fink, K. Knobe, and V. Sarkar, “Unified analysis of array and object
references in strongly typed languages,” in Seventh International Static
Analysis Symposium (SAS2000). Springer, June 2000, pp. 155–174.

[17] D. Grove, February 2012, private communication with X10 design team.

