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Abstract— In this paper, we study the leaderless consensus
problem for general linear multi-agent systems under a general
directed graph. A distributed consensus algorithm with gain
adaption is proposed. A novel integral-type Lyapunov function
is constructed to study the consensus convergence. The con-
trol gains are varying and updated adaptively by distributed
adaptive laws. The proposed algorithms require no global
information and thus can be implemented in a fully distributed
manner.

I. INTRODUCTION

The consensus problem of multi-agent systems has re-
ceived a great deal of attention in the last decade due to its
potential applications in broad areas, including distributed
computation [1], parameter estimation [2], optimization [3],
and robotic networks [4]. The objective is to design distribut-
ed algorithms for multiple agents to achieve a common final
state by interacting with their local neighbors. One important
focus in the consensus problem is agent dynamics, including
single and double integrators, general linear systems, and
nonlinear systems. Most of the existing results have been
mainly focused on agents with first-order or second-order
integrators (see [5]–[8] and reference therein).

The present paper focuses on the consensus problem of
multi-agent systems with general linear dynamics, which
include single and double integrators as special cases. This
problem has been studied previously based on relative state
or output measurements with respect to the neighboring
agents [9]–[18]. Specifically, the works in [9]–[12] rely on
the assumption that the state matrix A has no eigenvalue with
positive real part, including the cases with A being Hurwitz,
neutrally stable, and marginally stable. The works in [13]–
[19] consider the more general case that the agent’s state-
space realization (A,B,C) is stabilizable and detectable. As
stated in [14], this condition is actually necessary for the
agents to achieve consensus.
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It is worth emphasizing that the extension of consensus
algorithms from single integrators to general linear multi-
agent systems is nontrivial. With a fair condition on the
communication graph (e.g., the graph contains a directed
spanning tree), single integrator agents are bound to achieve
consensus. This however is no longer true with general
linear agents. Indeed, even for the special case with A
having no eigenvalue with positive real part, the agents may
still not achieve consensus (see Theorem 3 in [9] for a
proof). In [13] and [15], distributed observer-type consensus
algorithms are proposed by introducing a common scalar
control gain. Besides the condition on the topology and the
agents’ dynamics, if the common control gain is above a
certain bound, the agents will achieve consensus. However,
this bound is contingent on global information which cannot
be obtained in a distributed manner.

One approach to overcome the difficulty calls for the use
of adaptive gain updating laws based on local information.
Examples of this strategy include the distributed adaptive
coordination algorithm for multiple nonlinear systems [20],
[21] and general linear multi-agent systems [16]. Never-
theless, these results require a symmetric framework with
an undirected graph. Recently, there have been attempts on
the gain adaption under a directed graph [22]–[25]. In [22],
the coordinated tracking problem is studied for multi-agent
systems with first-order nonlinear dynamics. The authors
construct an integral Lyapunov function and they utilize the
property that the associated matrix (Laplacian matrix plus a
diagonal matrix) for coordinated tracking problem is positive
stable. However, the results in [22] cannot be used for
leaderless consensus since the associated matrix (Laplacian
matrix) is only semi-positive stable. [23] extends the results
to general linear multi-agent systems. In [24], the consensus
algorithm with gain adaption is proposed for second-order
Lagrange systems. However, the final consensus state is
stationary with a zero velocity. By establishing a connection
between an undirected graph and a directed graph, the
authors solve the consensus problem for second-order multi-
agent systems with gain adaption in [25].

In this paper, we propose fully distributed consensus
algorithms for general linear multi-agent systems which can
be implemented in a fully distributed manner under a general
directed graph. Our algorithms use relative state measure-
ments, and we consider general linear agents where (A,B)
is stabilizable. Specifically, we begin with the algorithm us-
ing relative state measurements and heterogeneous constant
gains, where we show that the agents achieve consensus if
all the heterogeneous control gains are chosen large enough.
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We then proposed a distributed consensus algorithm with
gain adaption, in which the gains will always increase if
they do not achieve consensus. The control gains in the
proposed algorithm are varying and updated adaptively using
only local information.

Notations: Let 1m and 0m denote, respectively, the m×1
column vector of all ones and all zeros. Let 0m×n denote
the m× n matrix with all zeros and Im denote the m×m
identity matrix. Let λmax(·) and λmin(·) denote, respec-
tively, the maximal and minimum eigenvalue of a square
real matrix with real eigenvalues. Let σmax(·) denote the
maximal singular value of a matrix. Let diag(z1, · · · , zp)
be the diagonal matrix with diagonal entries z1 to zp. Let
col(z1, · · · , zp) be the stacked vector of all vectors z1 to zp.
For a complex number µ, let R(µ) be its real part and I (µ)
be its imaginary part. For a vector function f(t) : R 7→ Rn,
it is said that f(t) ∈ L2 if

∫∞
0
f(τ)T f(τ)dτ < ∞ and

f(t) ∈ L∞ if for each element of f(t), noted as fi(t),
supt |fi(t)| < ∞, i = 1, . . . , n. Throughout the paper, we
use ‖ · ‖ to denote the Euclidean norm.

II. BACKGROUND AND PROBLEM STATEMENT

We use a directed graph to describe the network topology
between the n agents. Let G 4= (V, E) be a directed graph
with the node set V 4

= {1, ..., n} and the edge set E ⊆
V × V . An edge (i, j) ∈ E denotes that agent j can obtain
information from agent i, but not vice versa. Here, node i is
the parent node while node j is the child node. Equivalently,
node i is a neighbor of node j. The set of all neighbors of
node i is denoted as Ni. A directed path from node i to
node j is a sequence of edges of the form (i, i2), (i2, i3),
. . ., (ik, j), in a directed graph. A directed graph is strongly
connected if there exists a directed path from every node to
every other node. A directed tree is a directed graph, where
every node has exactly one parent except for one node, called
the root, and the root has directed paths to every other node.
A directed spanning tree of a directed graph is a direct tree
that contains all nodes of the directed graph. A directed graph
contains a directed spanning tree if there exists a directed
spanning tree as a subset of the directed graph.

The adjacency matrix A = [aij ] ∈ Rn×n associated with
G is defined as aij > 0 if (j, i) ∈ E , and aij = 0 otherwise.
In this paper, self edges are not allowed, i.e., aii = 0. The
(nonsymmetric) Laplacian matrix LA = [lij ] ∈ Rn×n asso-
ciated with A and hence G is defined as lii =

∑n
j=1,j 6=i aij

and lij = −aij , i 6= j.
Lemma 2.1: [26], [27] Suppose that G is a directed graph

of order n and is strongly connected. There exists a vector
ξ
4
= [ξ1, . . . , ξn]T ∈ Rn with

∑n
i=1 ξi = 1 and ξi > 0,

∀i = 1, . . . , n, such that ξTLA = 0.
The following lemma establishes a connection between a

strongly connected directed graph and an undirected graph,
which was first proposed in [25].

Lemma 2.2: Suppose that G is a directed graph of order
n and is strongly connected. Define the matrix L̂

4
= ΞLA +

LTAΞ, where Ξ
4
= diag(ξ1, . . . , ξn) with ξi defined as in

Lemma 2.1. Then L̂ is the symmetric Laplacian matrix
associated with an undirected graph. In addition, let ς ∈ Rn
be any positive vector. The following inequality holds

min
ϑT ς=0

ϑTϑ=1

ϑT L̂ϑ >
λ2(L̂)

n
, (1)

where λ2(L̂) is the second smallest eigenvalue of L̂.
Using the properties of Kronecker product, we have the

following result which will be used subsequently.
Lemma 2.3: Suppose that U = [uij ] ∈ Rn×n and V =

V T ∈ Rp×p. Let S ∈ Rp×p be the unitary matrix such
that SV ST

4
= diag(λ1(V ), λ2(V ), · · · , λp(V )) and let xi =

[xi1, xi2, . . . , xip]
T ∈ Rp, i = 1, . . . , n. The following

equality holds

xT (U ⊗ V )x =

p∑
k=1

λk(V )vTk Uvk,

where x = col(x1, . . . , xn) ∈ Rnp and vk =
[vk1, . . . , vkn] ∈ Rn is the stacked vector of the kth elements
of all Sxi, i = 1, . . . , n.

III. CONSENSUS ALGORITHM WITH RELATIVE STATE
MEASUREMENTS

In this section, we aim to design a fully distributed
consensus algorithm for linear multi-agent systems where
each agent simply chooses or updates its own control gain
via the local relative state measurements with respective to
its neighbors. We consider a group of n agents where the
dynamics of the agents is described by the following identical
general linear equations

ẋi(t) = Axi +Bui, i = 1, . . . , n. (2)

where xi ∈ Rp is the state of agent i, ui ∈ Rm is the control
input of agent i which can only use local information from
its neighbor agents, A ∈ Rp×p and B ∈ Rp×m are constant
matrices.

For general linear multi-agent systems, the following con-
sensus algorithms is proposed [10], [13]–[15]

ui =αK

N∑
j=1

aij(xi − xj), (3)

where α is a positive constant representing the control gain
and K = −BTP where P > 0 is the unique solution of the
following control algebraic Riccati equation (ARE)

ATP + PA− PBBTP + Ip = 0. (4)

Note that the above ARE has a unique solution if and only if
(A,B) is stabilizable [28]. Therefore, we have the following
assumptions on the dynamics of (2).

Assumption 3.1: The pair (A,B) is stabilizable.
Using (3) for (2), the agents achieve consensus if the

underlying directed graph contains a directed spanning tree
and the control gain is chosen such that

α ≥ 1

minµi 6=0 R(µi)
, (5)
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where µi is the eigenvalue of the Laplaican matrix LA.
Note that in (3) all agents share the common control gain

α. However, such a design is not fully distributed because
in a fully distributed context each agent simply chooses
its own gains and these gains are generally not identical.
Moreover, the common control gain α must be above a
certain lower bound (see (5)), which is determined by the
(nonsymmetric) Laplacian matrix. Such a requirement is
also not fully distributed as global information is needed to
determine the lower bound. One possible way is to assign
each agent a constant gain and tune the gains according to
each agent’s local information and performance, i.e., increase
the control gains of the agents that do not converge to
their neighbors or even move far away from their neighbors
during a period of time. The above principle works when
the agents share a common control gain. But for the case
with heterogeneous gains is much different as shown in the
following example.

A. Example

The dynamics of the agents are modeled as double in-

tegrators, and we have A =

(
0 1
0 0

)
, B =

(
0
1

)
, and

thus P =

(
1.7321 1

1 1.7321

)
. We consider the consensus

problem for six agents with the following (nonsymmetric)
Laplacian matrix

0.15 −0.1 0 −0.05 0 0
0 0.3 −0.15 0 −0.15 0
0 0 0.1 0 0 −0.1
0 0 0 0.15 −0.15 0
0 −0.15 0 −0.15 0.3 0
0 0 0 0 −0.2 0.2

 .

Clearly, the associated graph is directed and contains a direct-
ed spanning tree. The initial states are chosen as xi(1) = 2i
and xi(2) = 0.5i, where i = 1, . . . , 6.
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(a) Velocities with a common gain
α = 0.4.
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(b) Velocities with heterogeneous
gains α4 = 1.2 and αi = 0.4,
i 6= 4.

Fig. 1. The agents’ velocities using a common control gain and heteroge-
neous control gain.

Due to the space limitation, we only show the second state
of xi, i.e., the velocity of agent i. By simulation, we get
that the lower bound using a common gain is nearly 0.176.
Therefore, if we choose α = 0.4 > 0.176, we can see from
Fig. 1(a) that the agents achieve consensus. But if the control
gains are heterogeneous, it is observed from Fig. 1(b) that

the agents cannot achieve consensus even by increasing one
of the control gains. Therefore, the case with heterogeneous
control gains needs further investigation.

B. Consensus algorithm with heterogeneous constant control
gains

We begin with the problem by investigating the consensus
for agents with heterogeneous constant control gains. Here
we assume that the directed graph G is strongly connected
and Assumption 3.1 holds. The consensus algorithm for the
linear multi-agent systems is proposed as

ui =αiK

N∑
j=1

aij(xi − xj), (6)

where αi is a positive constant and K ∈ Rm×p is a constant
matrix defined as in (3). In contrast to (3), here we allow that
the agents have heterogeneous control gains. Actually, the
heterogeneous gains make the consensus convergence more
challenging since it is not clear how to use the eigenvalue
analysis as in [10], [13]–[15] since there exist n unknown
variables (αi). On the other hand, since the underlying graph
G is directed, due to the loss of symmetry, the Lyapunov
analysis as in [16] which is only valid for undirected graphs
cannot be directly used in our problem. Instead, we introduce
the following novel Lyapunov function candidate

V =

n∑
i=1

αiξi

[ n∑
j=1

aij(xi − xj)
]T
P

n∑
j=1

aij(xi − xj)

=[(LA ⊗ Ip)x]T (ΞΛ⊗ P )(LA ⊗ Ip)x, (7)

where ξi is well defined as in Lemma 2.1 since G is strongly
connected, Ξ = diag(ξ1, . . . , ξn), Λ = diag(α1, . . . , αn),
x = col(x1, . . . , xn), and P is defined as in (4). Here we
integrate the graph information (ξi) and the control gains
(αi) into the Lyapunov function candidate. Using (6), the
closed-loop system of (2) can be written as

ẋ = (In ⊗A+ ΛLA ⊗BK)x. (8)

Then the derivative of V (t) is given as

V̇ (t) = 2[(LA ⊗ Ip)x]T (ΞΛLA ⊗ P )ẋ

= 2sT (ΞΛ−1 ⊗ PA+ ΞLA ⊗ PBK)s, (9)

where s
4
= (ΛLA ⊗ Ip)x. Note that K = −BTP . From (9),

we can obtain

V̇ (t) =sT
[
ΞΛ−1 ⊗ PBBTP

]
s− sT (L̂⊗ PBBTP )s

− sT (ΞΛ−1 ⊗ Ip)s, (10)

where L̂ is defined as in Lemma 2.2 and we have used
(4) to obtain the last equality. In (10), the first term is
nonnegative and the second and third terms are nonpositive.
We aim to derive conditions on αi such that V̇ (t) is negative
definite. Since ΞΛ−1 is positive definite and L̂ is positive
semidefinite, from the first glance, it seems impossible to
make V̇ (t) negative definite. However, note that s is not
arbitrary but associated with the Laplacian matrix LA. This
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fact leaves some hope for us. We next show a rigorous
analysis on how to choose the control gains αi such that
V̇ (t) is negative definite, where we will use the results in
Lemma 2.2 and Lemma 2.3.

Note that PBBTP is symmetric positive semidefinite.
There exists an unitary matrix S such that SPBBTPST =
diag(λ1, · · · , λp), where λi ≥ 0, i = 1, . . . , p, are p
eigenvalues of PBBTP . Write s as s = [s1, . . . , sn] ∈ Rnp
with si ∈ Rp. From the definition of s, we have si =
αi
∑n
j=1 aij(xi − xj). Let vk = [vk1, . . . , vkn] ∈ Rn be the

stacked vector of the kth elements of all Ssi, i = 1, . . . , n.
From Lemma 2.3, we have

sT (L̂⊗ PBBTP )s =

p∑
k=1

λkv
T
k L̂vk. (11)

Note that Ssi = αi
∑n
j=1 aij(Sxi − Sxj). we have

vki = αi

n∑
j=1

[(Sxi)k − (Sxj)k], (12)

where (Sxi)k denotes the kth element of the vector Sxi,
k = 1, . . . , p. Define ωk

4
= [(Sx1)k, . . . , (Sxn)k]T ∈ Rn.

From (12), we have vk = ΛLAωk. Therefore, vTk Λ−1ξ =
ωTk LTAξ = 0. Since ξi > 0 and αi > 0, ∀i = 1, . . . , n,
the vector Λ−1ξ is positive. Under the condition that G is
strongly connected, we can get from Lemma 2.2 that the n
eigenvalues of L̂ can be arranged as 0 = λ1(L̂) < λ2(L̂) ≤
· · · ≤ λn(L̂) and thus

vTk L̂vk ≥
λ2(L̂)

n
vTk vk. (13)

From Lemma 2.3 and (11), we can obtain

sT (L̂⊗ PBBTP )s =

p∑
k=1

λkv
T
k L̂vk

≥λ2(L̂)

n

p∑
k=1

λkv
T
k vk

=
λ2(L̂)

n
sT (Ip ⊗ PBBTP )s, (14)

where we have used (13) to obtain the inequality. Substituting
(14) into (10), we obtain

V̇ ≤−
n∑
i=1

[λ2(L̂)

n
− ξi
αi

]
sTi PBB

TPsi −
n∑
i=1

ξi
αi
sTi si.

We then have the following result.
Theorem 3.2: Suppose that the directed graph G is strong-

ly connected and Assumption 3.1 holds. Using (6) for (2)
with K = −BTP where P > 0 is the unique solution of
the ARE (4), if the heterogeneous control gains are chosen
such that

αi >
nmaxi ξi

λ2(L̂)
, (15)

the agents achieve consensus exponentially.
As shown in (15), αi should be above a certain lower

bound which is determined by some global information (L̂

and n). But the positive side is that we allow all agents
to have heterogeneous control gains, which implies that the
principle to increase the control gains also works as long as
the gains are chosen large enough. This fact inspires us to
introduce an adaptive strategy for the control gains which
will be discussed in the following section.

C. Consensus algorithm with heterogeneous varying control
gains

Here, we are ready to deal with the consensus problem
for linear multi-agent systems with heterogeneous varying
control gains. An intuitive algorithm is as follows

ui =αi(t)φi(v
T
i Pvi)K

n∑
j=1

aij(xi − xj), (16)

α̇i(t) =γiϕi(

n∑
j=1

aij(xi − xj)), (17)

where γi is a positive constant, vi
4
=
∑n
j=1 aij(xi − xj),

φi(w) is continuous and monotonically increasing with re-
spect to w and satisfying φi(w) > 0 when w ≥ 0 to
be determined later, and ϕi(w) is continuous in w which
satisfies ϕi(w) ≥ 0 and ϕi(w) = 0 if and only if w = 0.
Here we assume that αi(0) > 0.

Under the condition that G is strongly connected, since
αi(t) and φi(vTi Pvi) is varying, we consider the following
integral-type Lyapunov function

V (t) =

n∑
i=1

αi(t)

∫ vTi Pvi

0

ξiφi(τ)dτ. (18)

Note from (17) that αi(t) ≥ αi(0) > 0, and P is positive
definite. It implies that V (t) will always be nonnegative
and V (t) = 0 if and only if ‖

∑n
i=1 aij(xi − xj)‖ = 0,

which also guarantees the consensus of all agents under
a strongly connected directed graph. Therefore, V (t) is a
suitable Lyapunov function candidate. For conciseness, we
denote by φi = φi(v

T
i Pvi). Let Φ

4
= diag{φ1, · · · , φn}. The

derivative of V (t) is

V̇ (t) =

n∑
i=1

α̇i(t)

∫ vTi Pvi

0

ξiφi(τ)dτ

+ 2[(LA ⊗ Ip)x]T (ΞΛΦ⊗ P )(LA ⊗ Ip)ẋ. (19)

Note that the time-varying vector ΦΛξ is always positive
and φi(ω) is continuous and monotonically increasing with
respect to ω. Following the same steps in Section III-B, we
have

V̇ (t) ≤
n∑
i=1

ξiα̇i(t)φi(v
T
i Pvi)v

T
i Pvi −

n∑
i=1

ξiαi(t)φiv
T
i vi

−
n∑
i=1

[λ2(L̂)

n
α2
i (t)φ

2
i − ξiαi(t)φi

]
vTi PBB

TPvi.

(20)

The first term of (20) inspires us to introduce the func-
tion ϕi(t, ω) as ϕi(t, ω) = ωTPBBTPω, and thus
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the time-varying control gains are updated by α̇i(t) =
γiv

T
i PBB

TPvi. We have

V̇ (t) ≤−
n∑
i=1

[λ2(L̂)

n
α2
i (t)φ

2
i − ξiαi(t)φi − ξiγiφivTi Pvi

]
· vTi PBBTPvi −

n∑
i=1

ξiαi(t)φiv
T
i vi. (21)

The challenge is how to derive an appropriate upper bound
for the term ξiγiφiv

T
i Pvi. Note that φi is assumed to be a

function of vTi Pvi. Let φi(vTi Pvi) = (c1i + ci2v
T
i Pvi)

ri ,
where c1i > 0, ci2 > 0, and ri 6= 1 are positive constants1.
Using Young’s inequality, for positive real numbers qi1 and
qi2 satisfying 1

qi1
+ 1

qi2
= 1, we have

ξiγiφiv
T
i Pvi ≤

(ξiγi)
qi1

qi1(ci2ki)qi1
+
kqi2i φ

ri+1

ri
qi2

i

qi2
, (22)

where ki is a positive constant satisfying k
qi2
i

qi2
= λ2(L̂)

2n α2
i (0).

Let ri+1
ri

qi2 = 2. Since ri 6= 1, we have qi2 > 1 and thus the
Young’s inequality is valid for qi2 and qi2 satisfying 1

qi1
+

1
qi2

= 1. In this case, the control algorithm (16) with (17)
can be rewritten as

ui =αi(t)(c1i + c2iv
T
i Pvi)

riK

n∑
j=1

aij(xi − xj), (23)

α̇i(t) = γiv
T
i PBB

TPvi, (24)

where c1i > 0, ci2 > 0, ri 6= 1, and γi are positive constants.
For simplicity, choose ri = 3. We have

qi1 = 3, qi2 =
3

2
, ki =

[3λ2(L̂)α2
i (0)

4n

] 2
3

. (25)

We then have the following main result.
Theorem 3.3: Suppose that the directed graph G is strong-

ly connected. Using (23) and (24) for (2) with K = −BTP
where P > 0 is the unique solution of the ARE (4), the
following two statements hold.
(i) αi(t) is monotonically increasing and will converge to

a finite positive constant as t→∞, ∀i = 1, . . . , n.
(ii) The agents achieve consensus asymptotically with a

common varying velocity.
Proof: Consider the following Lyapunov function candidate

V0(t) = V (t) +

n∑
i=1

λ2(L̂)αi(0)c2ri1i

8γin
[αi − ᾱ]2, (26)

where V (t) is defined as in (18), ri = 3, and ᾱ is a large
constant satisfying

ᾱ >
4n2

λ2(L̂) mini αi(0)c6i1
+

32n2 maxi γ
3
i

27λ32(L̂) mini α5
i (0)c61ic

3
2i

.

(27)

1Here we give an example of φi to make the proof clear. There are other
choices of φi, for example, φi(vTi Pvi) = c1i + ci2(v

T
i Pvi)

ri , with c1i,
ci2, and ri 6= 1 being positive constants. ri 6= 1 is required for the use of
Young’s inequality.

From (21) and (22), the derivative of V0(t) is given as

V̇0(t) =V̇ (t) +

n∑
i=1

λ2(L̂)αi(0)c61i
4n

[αi(t)− ᾱ]vTi PBB
TPvi

≤−
n∑
i=1

[λ2(L̂)

n
α2
i (t)φ

2
i−ξiαi(t)φi−

λ2(L̂)α2
i (0)

2n
φ2i

− ξ3i γ
3
i

3c3i2k
3
i

− λ2(L̂)αi(0)c61i
4n

[αi(t)−ᾱ]
]
vTi PBB

TPvi

−
n∑
i=1

ξiαi(t)φiv
T
i vi.

Note that αi(t) ≥ αi(0) > 0, φi ≥ c31i, and

ξiαi(t)φi ≤
nξ2i

λ2(L̂)
+
λ2(L̂)

4n
α2
i (t)φ

2
i .

We have

V̇0(t) ≤−
n∑
i=1

[λ2(L̂)αi(0)c61i
4n

α− nξ2i

λ2(L̂)
− ξ3i γ

3
i

3c32ik
3
i

]
· vTi PBBTPvi −

n∑
i=1

ξiαi(t)φiv
T
i vi,

≤−
n∑
i=1

ξiαi(0)c31iv
T
i vi, (28)

where we have used (27) and the fact that PBBTP is
positive semidefinite to obtain the last inequality. Therefore,
we have V0(t) ≤ V0(0) and thus

∑
j=1 aij(xi−xj), αi−ᾱ ∈

L∞. Since ᾱ is a constant, we have αi ∈ L∞. Also note
that αi is monotonically increasing. Therefore, all αi will
converge to some finite constants and thus i) holds. Note that
V̇0 = 0 implies that

∑n
j=1 aij(xi − xj) = 0, ∀i = 1, . . . , n.

Then we can conclude from LaSalle’s invariance principle
that limt→∞ ‖

∑n
j=1 aij [xi(t)− xj(t)]‖ = 0, ∀i = 1, . . . , n.

Since G is strongly connected, we can get that the agents
will achieve consensus and thus ii) holds.

Here we use the example in Section III-A to show the
effectiveness of the proposed algorithm. We choose ri = 3,
c1i = 1, c2i = 0.1, and γi = 0.03. The initial values are
chosen as αi(0) = 0.01. We can see from Fig. 2(a) that all
agents achieve consensus. Fig. 2(b) shows the varying gains
αi(t), i = 1, . . . , n, which converge to different constants.
An incredible observation is that some αi(t) is even smaller
than the lower bound by using a common control gain. This
is because that the case with heterogeneous gains are more
feasible than the case with a common gain. Actually, the
latter can be seen as a special case of heterogeneous gains.
An intuitive future work is to find the best control gains in
the sense of, for example, minimum energy of the whole
system, with respect to the traditional LQR problem.

Another advantage of using varying heterogeneous control
gains is that we allow uncertainties in the control input. For
example, due to the disalignment of actuators attached to
agent i, the control input might be (1 + δi)ui instead of ui.
Then from the control input (23) and the preceding analysis,
we can see that the uncertainties δi on ui will not effect the
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Fig. 2. The agents’ velocities and control gains using (23) and (24).

consensus convergence if ‖δi‖ < 1. Moreover, we also allow
δi to be time-varying as long as its derivative are relatively
small. On the other hand, uncertainties in the dynamics as in
[17] are also deserved special attention and will be conducted
in the future by combining the idea in the present paper.

Remark 3.4: Here we highlight the difference between our
results and [23]. The work in [23] focuses on the leader-
following tracking problem. The authors utilize the property
that the associated matrix (Laplacian matrix plus a diagonal
matrix) for the coordinated tracking problem is positive
stable. In contrast, the associated matrix (Laplacian matrix)
for the consensus problem studied in the current paper is only
semi-positive stable. Therefore, the results in [23] cannot
be used for the leaderless consensus problem. In fact, the
leaderless problem is considered as future work in [23]. Note
that the results in this paper are obtained under a strongly
connected directed graph. By using the Perron-Frobenius
form, all the results can be extended to the case where the
directed graph has a directed spanning tree following similar
steps to those in [24]. And the result in [23] becomes a
special case of our results when there exists one agent that
has no neighbors and has directed paths to all other agents.

IV. CONCLUSIONS

In this paper we have studied the distributed consensus
problem for general linear multi-agent systems under a gen-
eral directed graph. Fully distributed consensus algorithms
have been proposed using the relative state measurements. A
notable feature of the proposed consensus algorithm is that
the control gains are heterogeneous for each agent and can
be obtained with only local information from the neighbors.
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