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Abstract—This paper investigates the optimal linear precoder
design for packet retransmissions in multi-input–multi-output
(MIMO) systems. To fully utilize the time diversity provided by
automatic repeat request (ARQ), we derive a sequence of succes-
sive optimal linear ARQ precoders for flat fading MIMO channels,
which minimize the mean-square error between the transmitted
data and the joint receiver output. The optimization is subject
to an overall transmit power constraint. This progressive linear
ARQ precoder combines the appropriate power loading and the
optimal pairing of channel matrix singular values in the current
retransmission with previous transmissions. This optimal pairing
is a special feature unique to our sequential ARQ precoding
approach. Simulation results demonstrate the effectiveness of this
optimized ARQ precoding in reducing symbol MSE and detection
bit-error rate.

Index Terms—Automatic repeat request (ARQ), multi-input–
multi-output (MIMO), minimum mean-square error (MMSE),
packet retransmission, precoding.

I. INTRODUCTION

I T HAS BEEN widely recognized that by utilizing multiple
transmit and/or receive antennas, substantial improve-

ment of channel capacity can be achieved by multi-input–
multi-output (MIMO) systems. However, to exploit the advan-
tages provided by MIMO, well designed precoding is critical
when channel state information (CSI) is available. There has
been extensive research on the selection of optimal precoders
under various criteria. The optimal precoder design was first
considered jointly with the optimal decoder design in MIMO
systems. With the objective of minimizing the mean-square
error (MSE) under total transmit power constraint, optimal
joint linear precoder, and decoder have appeared in [1]–[4]. A
more comprehensive linear precoder and decoder design with
different criteria of optimality and constraints can be found in
[5] and [6]. Recently, precoder design from the perspective of
maximizing mutual information (channel capacity) for mul-
tiple-antenna systems has also received considerable attention.
This subject has been well studied by Telatar [7] for the case
of perfect CSI at the transmitter and receiver. Optimal precoder
designs with partial (statistical) CSI feedback have also been
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investigated for both the multiple-input–single-output (MISO)
system [8] and the MIMO system [9], [10].

The design of optimal linear precoders for single-input–
single-output (SISO) convolutive systems was considered in
[11] and [12]. There, it was explained that a linear precoder
can reduce the effects of fading but cannot effectively combat
additive noise. Therefore, it was argued that for performance
improvement, the linear precoder and associated equalizer
should be used as an inner code, with an forward error cor-
rection (FEC) encoder and associated decoder added to the
system to form an outer code. In particular, this means that
appropriate linear precoder/equalizer combination should be
chosen to minimize the MSE and not bit error rate (BER). The
same design philosophy is used in the present paper.

In practice, to improve link reliability, modern systems are
often assisted by the automatic repeat request (ARQ) mecha-
nism. While extensive investigations have been presented for
ARQ strategies primarily from the view point of FEC, the
integrated effect of MIMO and ARQ has not been adequately
addressed. To practically achieved capacity gain provided by
MIMO systems, it has been proposed to decompose the MIMO
channel into multiple orthogonal subchannels over which data
stream can be sent without interchannel interference [13],
[14]. By applying the similar idea, hybrid ARQ for the SISO
system has been modified and proposed for the MIMO system
[15]–[17]. Performance of different combining schemes for
Type-I hybrid MIMO ARQ retransmissions has also been
analyzed and compared in the [18].

In this paper, we consider the optimal linear precoding of
MIMO ARQ retransmissions. We focus our precoder design on
flat fading MIMO systems with perfect CSI knowledge at the
transmitter and receiver. By sequentially optimizing the pre-
coder for each ARQ transmission, we aim at minimizing the
symbol MSE at any transmission stage without considering fu-
ture retransmissions.

It should be remarked that sequential precoding optimization
is a unique feature in ARQ systems as subsequent retransmis-
sion is only needed when previous transmissions failed to de-
liver satisfactory packet reception. As previous transmissions
cannot be altered once a new ARQ request is sent and future
retransmissions may not be needed, the transmitter can only
process the current (re) transmission for optimum effects.

This paper is organized as follows. Section II introduces the
system model and Section III summarizes the optimal precoder
under the minimum MSE (MMSE) criterion for MIMO systems
without ARQ. In Section IV, we extend the optimal precoder
design to MIMO system with ARQ (re) transmissions. To min-
imize the MSE of the joint receiver output, we formulate the
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SUN et al.: PROGRESSIVE LINEAR PRECODER OPTIMIZATION FOR MIMO PACKET RETRANSMISSIONS 449

Fig. 1. Block diagram of linearly precoded flat fading MIMO communication
systems.

optimal precoder design as a trace minimization problem under
transmission power constraint. We then propose the optimal se-
quential precoder with proof given in the appendices. Simula-
tion results are presented in Section V. Finally, Section VI pro-
vides concluding remarks.

Notations in this paper are mostly standard. Upper and bold
case letters denote matrices and lower case letter with an arrow
on top denote column vectors, such as and . Tabulated below
is a list of the remaining notation symbols.

Conjugate transpose operation.
identity matrix.

Diagonal matrix with diagonal elements
.

Determinant of a square matrix .
Trace of a square matrix .
Expected value.
2 norm.

II. SYSTEM MODEL

Consider a flat fading MIMO wireless communication system
with transmit antennas and receive antennas. In gen-
eral, we assume that to guarantee the symbol re-
coverability in presence of linear reception and single transmis-
sion. Let the source data vector be which is to be sent to the
receiver using the MIMO channel under white noise. As in [5],
[8], [9], and [19], we consider a transmitter that utilizes a linear
precoding matrix . As shown in the simple diagram of Fig. 1,
the received MIMO signal vector is given by

(1)

in which is the channel matrix, while is an
1 independent white Gaussian vector representing noises

from all receive antennas.
The MMSE precoder design of in a single transmission

problem has been investigated in the literature [5], [19]. The re-
sulting MMSE design requires a power loading approach based
on the singular value decomposition (SVD) of the channel ma-
trix . In many wireless systems with appropriate feedback
link, an ARQ mechanism can be incorporated where packet re-
transmissions are requested if detections of previous transmis-
sions end in error. In order to improve transmission reliability,
advanced receivers can benefit from joint demodulation and de-
tection of the transmitted data vector from its multiple retrans-
missions. As shown in Fig. 2, a single integrated receiver can be
used to extract the data vector from . Since diversity can
lead to better performance, our approach, as shown in Fig. 2, is
to apply different precoders against multiple MIMO chan-
nels at different retransmission epochs.

Fig. 2. Block diagram ofM linearly precoded (re) transmissions of a packet
through flat fading MIMO channel.

Using a quasi-static model, the MIMO channel matrix is as-
sumed to be fixed during each individual transmission. We also
assume that the same data packet will be transmitted during
ARQ retransmissions, for instance, the same outer FEC encoder
is used for all transmissions which simplifies the decoder design
even though it is suboptimum. Hence, the received signal of the

–th ARQ transmission is modeled by

(2)

where is the MIMO channel matrix, is the
linear precoder matrix, and is the

independent identically distributed (i.i.d.) white Gaussian noise
vector.

At the (integrated) receiver, after ARQ transmissions of
the same packet , the overall received signal can be expressed
as

...
...

...

(3)

Notice that the number is not predetermined as it depends on
the successes of the receiver given previous (re) transmissions.

Without loss of generality, we assume that the symbols in the
input vector are i.i.d. with zero mean. Hence, the signal vector
covariance matrix is

In addition, the noises are also i.i.d. with zero mean,
leading to covariance matrix

where

For convenience, we define the transmission signal-to-noise
ratio (SNR) as .

In order to design the optimal precoder, the optimality crite-
rion has to be defined. In this paper, we consider the precoder
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design under a well-established criterion of minimizing the
MSE between the transmitted data and the receiver output se-
quence. This optimization is achieved by jointly designing the
optimal linear precoder and decoder. For fairness, the precoder
design must be under a resource constraint. We consider the
MMSE design subject to the total transmit power constraint

.
Note that (3) is indeed a general model for linear systems.

The case of flat fading MIMO channel is a special example. Re-
lying on orthogonal frequency-division multiplexing (OFDM),
our precoder design presented in this paper can be applied to the
more general linear frequency-selective channels suffering from
intersymbol interferences. To establish the performance bench-
mark and bound, we focus on the optimal precoder design when
the transmitter and receiver have perfect knowledge of the CSI.

III. LINEAR PRECODING FOR SINGLE TRANSMISSION

For single transmissions, optimal precoder design has been
extensively studied in the literature [1], [5], [7], [9], [12], [11].
Similarly, when the number of transmissions is predetermined,
the results are the same. In this section, we briefly summa-
rize the design of single transmission linear precoders based on
the MMSE criterion [5], [19], before investigating its nontrivial
generalization to MIMO ARQ systems.

MMSE precoder design not only specifies the transmitter pre-
coder, but at the same time it also determines the linear receiver
that can achieve the minimum MSE for a given precoder. Hence,
precoder design with the MMSE criterion requires the joint op-
timization of linear precoder at the transmitter and linear de-
coder at the receiver. The linear decoder generates an output
as the estimated signal . It is related to the original signal by

(4)

Our objective is to find the optimal and that min-
imize symbol MSE under total transmit power constraint

subject to

(5)

For a fixed precoder and channel matrix , the optimal
linear decoder that minimize the symbol MSE is given by [20]

(6)

Using this optimum , the symbol MSE can be written as a
function of precoder only

(7)

Given (7), the optimal precoder design problem is trans-
formed into a trace minimization problem with total transmit
power constraint as follows:

subject to

(8)

For convenience, define the singular value decomposition
(SVD) of as . Without loss of generality,
we assume that the diagonal entries of matrix

are arranged in decreasing order, i.e., . The
solution of optimization problem (8) has been proved in [1] and
[21] to be

(9)

in which the diagonal entries are determined by

(10)

where is the positive cropping function and
must be chosen to satisfy the power constraint

. This is the MMSE power loading precoder.
Note that a related objective of precoder design is the max-

imization of mutual information, or channel capacity, obtained
by MIMO transmission. See, for example, the works by Telatar
[7]. The maximization of mutual information results in a sim-
ilar precoder structure but a different power loading strategy
(through waterpouring).

IV. PROGRESSIVE OPTIMIZATION OF MMSE PRECODING

FOR MIMO ARQ

We are interested in the design and optimization of MMSE
linear precoders when ARQ retransmission is incorporated in
the MIMO system. Specifically, MMSE linear precoders under
ARQ are different from those with predetermined time diver-
sity because future retransmissions may not occur. For a given
retransmission, the receiver can only utilize the current retrans-
mission and the previously unsuccessful (re) transmissions of
the same data packet. The ARQ transmitter must progressively
find the best linear precoder based on the knowledge it has of
its previous precoders. In particular, the current precoder is de-
signed under the assumption that no further retransmissions will
be required. In other words, the th transmission precoder
is optimum based on the current channel and the channels

and the precoders
in previous transmissions.

A. General Formulation of MMSE Optimization

In a more formal representation of MMSE linear precoder
design, we consider the precoder during the th transmission
and rewrite the system output (3) as

...
...

(11)

where are optimal precoders that have
already been optimized using the same MMSE criterion and
applied during the previous transmissions. is the effective
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channel with dimension of by . Following the pro-
gressive process (as in induction), our objective now is to de-
sign the current optimal precoder under the same MMSE
criterion.

We first find the joint MMSE linear decoder under
given precoders and CSI . Similar to (6), the by
MMSE linear decoder is given by

(12)

Once the optimum joint receiver is found, we rewrite
the receiver output symbol MSE as a function of the unknown
precoder only. We then determine the optimal linear pre-
coder that minimizes the receiver output symbol MSE, as
shown in (13) at the bottom of the page. The Hermitian ma-
trix can be simply diagonalized by
unitary matrix via

As a result, the MSE of the receiver output can be simplified
into

(14)

It is, therefore, clear that the th progressive MMSE precoder
should be

subject to

(15)

Given the orthogonality of , we can simplify this problem by
denoting

to obtain

subject to

(16)

This optimization problem for the th transmission turns out
to be equivalent to finding the optimum precoder for the second
transmission. Hence, without loss of generality, we start with the
design of optimal precoder for the second transmission.

This will provide a general methodology. For the first transmis-
sion, optimal precoder as described in the previous section
diagonalizes the channel correlation matrix

To design the precoder for the second transmission, the opti-
mization problem becomes

subject to

(17)

Compared with the first transmission precoder design (8), the
first term now becomes an arbitrary diagonal matrix
instead of identity matrix. The approaches taken in designing the
MMSE precoder for the first transmission no longer apply
here. This new optimization problem, in general, requires the
optimal pairing of the singular values of the current channel
correlation matrix with those of the previous transmission.

Let the SVD of be . We define and
as permutation matrices to rearrange the order of the diagonal
entries in and into reverse order. Specifically

in which whose diagonal entries

are arranged in a nondecreasing order .

Similarly, with diagonal entries or-

dered decreasingly, .
In order to simplify the trace optimization problem, we intro-

duce the following transformation based on and

(18)

By substituting (18) into (17), we have a better formulated
equivalent optimization problem

subject to

(19)

B. Solution to the MMSE Precoder Design

For the MMSE precoder, we rewrite using simpler notations,
the general optimization problem

subject to

(20)

where matrices , and have the same dimension of
. is the diagonal matrix with positive diagonal entries

(13)
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, while is also diagonal with nonnegative
entries. Note that, without loss of generality, we can assume that
the diagonal entries of and are paired in any appropriate
way. In the following solution, we will automatically show that
the optimal pairing is the reverse order pairing achieved by the
optimal precoder .

The Lagrangian associated with this constrained optimization
problem is

(21)

where is Lagrangian multiplier. By setting derivative of (21)
(with respect to ) to zero, we can see that optimal must
satisfy

(22)

We assume that has distinct eigenvalues (diagonal en-
tries) with multiplicity , respec-
tively. Without loss of generality, we can arrange the diagonal
entries of in nonincreasing order, hence, is a block diagonal
matrix and each block is a scalar of identity matrix

. . .
...

...
. . .

. . .

We now present two useful lemmas for the derivation of
MMSE precoders. The proofs of the lemmas are given in the
Appendix .

Lemma 1: For any matrix that satisfies (22), can be
decomposed as

. . .
...

...
. . .

. . .
(23)

where is a unitary block diagonal matrix with the same
block structure as . In other words, . is
a diagonal matrix with nonnegative entries and is a unitary
matrix.

Lemma 2: If (22) holds, and can be jointly diago-
nalized by a unitary matrix.

Using Lemma 1, since does not change the cost func-
tion and the trace constraint, without loss of gener-
ality, we can assume to be identity. Hence, the optimization
problem (20) can be simplified into

(24)

Applying Lemma 2, instead of optimizing over an arbitrary
unitary matrix , we can further constrain the to be a per-
mutation matrix denoted by . This gives us the optimization
problem

(25)

In the optimization of (25), achieves power loading,
while pairs and rearranges the order of diagonal entries of

and so as to minimize the cost. We claim that pairing the
diagonal entries of and in the reverse order gives the best
power loading performance. Without loss of generality, it is
sufficient to show this result for a 2 2 case.

Consider , , and two functions

Both function and are minimized under
identical constraint

and

In order to show that can achieve smaller minimum,
it is sufficient to prove that for any , we can find a
pair of nonnegative such that

and

We only need to consider two cases.
• : It is easy to show that

since

Hence, in this case, , while .
• : we have

and obviously

Hence, while
.

By induction, we now generalize this optimal pairing to
any size matrix . Let there be two arbitrarily ordered se-
quences with optimal power loading. Find two entries from
each sequence that are in the same order. If we keep all other
entries and corresponding power loading unchanged. By only
reverse-ordering the two entries from one sequence and per-
forming different power loading on these two entries, we have
already shown that a lower cost value can be achieved without
increasing the total power. Hence, the optimal pairing of the
two sequences must be such that individual pairing of any two
entries is in reverse order. This implies that the two sequences
must be entirely paired in reverse order.

This optimum pairing of entries in and can
be achieved by the permutation matrix . Once the optimum
pairing is determined, the power constraint can be achieved ac-
cording to optimal power loading such as the results in [5].
Hence, to summarize, the following theorem describes the pro-
gressive MMSE precoder design.



SUN et al.: PROGRESSIVE LINEAR PRECODER OPTIMIZATION FOR MIMO PACKET RETRANSMISSIONS 453

Theorem 1: The solution of the optimization problem
(19) is a diagonal matrix with the diagonal entries determined
via

(26)

in which is chosen such that .
Hence, the optimal sequential linear precoder for the second
transmission is

(27)

Remarks: The optimal MMSE precoder of (26) and (27)
consists of three important parts.

1) Unitary matrix indicating that the optimal trans-
mission subspaces are the orthogonal eigenvectors
determined by the channel correlation matrix .

2) Diagonal matrix that implements the constrained
power loading.

3) Permutation matrix and to achieve the optimal
reverse order pairing of the singular values of with
the singular values of previous precoded transmissions

, i.e, the smallest singular value of is
paired with the largest diagonal element of ,
the second smallest with the second largest, and so on.

This result can be directly applied to optimal sequential pre-
coder design for multiple ARQ transmissions. By induction, we
can assume that at the th ARQ transmission, all the previous

precoders have been sequentially determined with each
diagonalizing the . The optimal

precoder employs the similar structure as (26) and (27)
with a minor change of indices

(28)
in which

while is chosen such that . The
SVD of is , and and are per-
mutation matrices such that

and

with and .
Note that, similar precoder structure (28) characterized by

the reverse order pairing, but with a different powering loading
strategy, has also been proved to be optimal [22] for sequential
precoder design under maximum mutual information criterion.

TABLE I
OPTIMAL SEQUENTIAL CHANNEL DIRECTION ASSIGNMENT AND POWER

LOADING WITH SNR  = 10 dB

C. Additional Considerations

In the sequential precoder design under the MMSE crite-
rion, we assume that both input signal and noise are white.
For cases where correlations exist between input symbols, i.e.,

, a prewhitening operation can be performed prior
to precoding, and the corresponding inverse operation can be ap-
plied after decoding. Cases with noise correlations can be sim-
ilarly dealt with.

Note that we require the noise vectors to be
zero mean and independent. This is a reasonable assumption
in practice since it is unlikely that the noise correlations span
longer than the delay involved in requesting and transmitting
retransmissions.

V. SIMULATION RESULTS

To illustrate the performance improvement of optimal se-
quential linear precoding, specifically, the importance of reverse
order alignment of singular values, we test over a MIMO system
with four transmit and four receive antennas ( ).
The input bit stream is quadrature phase-shift keying (QPSK)
modulated. The entries of matrix are zero-mean i.i.d. com-
plex Gaussian random variables with unit variance in each
dimension, and are generated independently for every packet.
We consider a maximum of four transmissions per packet. To
focus on the precoder performance with retransmissions, we as-
sume that every packet will be retransmitted no matter whether
it is correctly received or not during the previous transmissions.

A. Subspace Pairing

We first present the simulation results that demonstrate the
effect of reverse order pairing. The optimal precoder (28) trans-
mits each symbol of the data vector via a different channel
subspace indicated by the different column of with different
power loading. The diagonal entries of quantify the quality
of different channel subspaces. Reverse ordering of the singular
values in effect tries to compensate for the unreliable symbols
that are transmitted via the weaker channel subspaces in the pre-
vious transmissions by assigning them to the stronger channel
subspaces in current transmission.

Table I shows the channel subspace assignment and power
loading at SNR dB. We randomly generate one channel
matrix and keep it constant for subsequent retransmissions.
Values given in parentheses show either the channel subspace
quality or the loaded power for different symbols. In the first
transmission, the first symbol is transmitted via the strongest
channel subspace which gives the most reliable symbol de-



454 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 24, NO. 3, MARCH 2006

Fig. 3. Symbol MSE achieved using different precoding strategies, with
varying and identical channels: 1) ��: 1st tran.; 2) ���: 2nd tran.; 3)���:
3rd tran.; and 4) � �: 4th tran.

tection, while the last symbol is transmitted via the weakest
channel subspace and, hence, becomes the least reliable symbol.
During the second transmission, in order to compensate for the
unequal channel assignment and power loading, the last symbol
will be transmitted via the best channel subspace, while the
first symbol is transmitted using the worst channel subspace.
However, since the first symbol is reliable enough during the
first transmission, indeed, it is not transmitted during the second
transmission (loaded with zero power). In summary, reverse
singular value pairing achieves the optimal channel assignment,
which, together with the optimal power loading, enables the
sequential minimization of the symbol MSE.

This example represents a very special case in which MIMO
channels are stationary. It is not surprising that the most reason-
able and fair thing to do is to reverse pair the subspaces. Overall,
our MMSE precoder design provides the optimum MMSE pre-
coding design for the more general cases with fading channels.

B. MSE and BER Comparison With Individually Optimized
Precoding

We next present the MSE and BER simulation results to
demonstrate the effectiveness of our proposed sequential op-
timal linear precoding. We compare two types of precoding:
optimal sequential precoding derived by pairing the singular
values in reverse order and individually optimized precoding
without considering previous transmission. Note that for indi-
vidually optimized precoder, there exists a design ambiguity
because right-multiplying the optimal precoder (9) with any
unitary matrix ( ) still achieves the optimality. While
this unitary matrix has no effects on a single transmission,
it has significant impact during joint design. In our simulation
of individually optimized precoding, we let be the identity
matrix. For all test cases, we compare situations when the
channels remain identical and when the channels
vary independently for different retransmissions.

Fig. 3 illustrates the resulting MSE for the two different pre-
coding strategies. For any given SNR, Monte Carlo simulations
over 1000 packets are averaged to obtain the results.

The optimal sequential precoder clearly provides substantial
improvement in terms of decoder MSE. It is interesting to note
that, whether or not retransmission channels vary, the differ-
ence in performance improvement provided by optimal sequen-
tial precoding and individually optimized precoding remains
nearly the same. As shown in the simulation, optimal pairing

Fig. 4. BER performance improvement of optimal sequential precoding.
(a) Compared with individually optimized precoding without permutation.
(b) Compared with individually optimized precoding with random permutation.

of the singular values plays a critical role in minimizing the de-
coder output MSE. When ARQ precoder is independently opti-
mized for each transmission without considering precoders and
channels in previous transmissions, there is a substantial perfor-
mance loss.

Since the MMSE precoder design specifies the joint decoder
after each retransmission, we test the BER of the overall wire-
less communication system. Shown in Fig. 4, BER is an alter-
native performance metric. The BER results after the first trans-
mission are not shown as they are identical for both precoders.

Evidently, optimal sequential precoding provides substantial
BER improvement. The surprisingly poor performance of indi-
vidually optimized precoding shown in Fig. 4(a) is attributed
to the lack of any singular value pairing. As stated earlier, by
fixing the ambiguity matrix as identity, we always load the
least amount of power on the last symbol (data stream). Hence,
the resulting BER will be dominated by the low-power data
transmitted on the last stream. In order to alleviate this problem,
for individually optimized precoding, we randomly permute the
stream order during each transmission. As shown in Fig. 4(b),
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Fig. 5. BER performance improvement of optimal sequential precoding
compared with joint type-II hybrid ARQ by using Reed–Solomon code and
individually optimized precoding.

even though random permutation reduces the BER, compared
with optimal pairing (permutation) implemented by the sequen-
tial precoding, it still suffers from significant performance loss.

C. Comparison With Traditional Type-II Hybrid ARQ

As progressive MIMO ARQ design demonstrates substantial
performance advantages, it is well known that practical systems
may be in favor of implementing a Type-II hybrid ARQ. Type-II
hybrid ARQ does not repeat the data packet in retransmissions.
Instead, it can send parity bits of a FEC codeword involving the
original data packet for better error correction.

For further comparison, we also consider a Type-II hybrid
ARQ [23], [24] scheme by sending incremental redundancy
during retransmissions. We use a (63, 31) Reed–Solomon code
over field to generate the parity bits for retransmis-
sion. During the first transmission, information bits will be
precoded and transmitted through MIMO channel. If detection
error occurs after the first transmission and retransmission is
requested, instead of transmitting the same data again, parity
bits generated by Reed–Solomon encoder will be precoded and
transmitted. At the receiver side, after applying MMSE linear
decoder on each transmission individually, hard Reed–Solomon
decoding will be performed based on the concatenation of the
two received data vectors. For simplicity of illustration, we only
consider two maximum ARQ transmissions. Since different
transmissions contain different data, the concept of sequential
optimal linear precoding cannot be applied here. Instead, we
individually optimize precoder for each transmission. Fig. 5
compares the joint detection BER performance for our pro-
posed sequential linear precoder versus the joint Type-II hybrid
ARQ by using Reed–Solomon code and individually optimized
precoding. For reference, we also include the individually
optimized precoding with random permutation. As shown in
Fig. 5, for individually optimized precoding, Type-II hybrid
ARQ outperforms random permutation at medium to high SNR
(when BER is lower than 10 ), since transmitting parity bits
is much more efficient than sending the identical but randomly

permuted data. As shown from the simulation results, our pro-
posed sequential precoding continue to outperform the tested
Type-II hybrid ARQ scheme given low to moderate SNR. For
instance, at 10 , individually optimized precoding
with Type-II hybrid ARQ achieves more than 3 dB SNR gain
compared with random permutation, but suffers from about 4
dB SNR loss compared with the MMSE sequential optimal
precoding. By increasing the number of retransmissions, more
powerful (lower rate) channel code can be employed by Type-II
hybrid ARQ, it is highly possible that the performance gap will
become smaller.

D. Discussions and Complexity

It should be noted, however, that the performance of Type-II
hybrid ARQ can be further improved by using much more
powerful channel codes, including longer RS codes, turbo
codes, and low-density parity-check (LDPC) codes. Addi-
tional performance gain can also be achieved by employing
more advance decoding strategies, such as soft decoding or
iterative decoding. Nonetheless, compared with our simple
linear detection, longer codes and iterative decoding require
considerable increase in decoding delay and computational
complexity. For static or quasi-static channel, the optimum
linear precoder and decoder can be computed offline or updated
very slowly. During each packet transmission, only simple
matrix multiplication is required. The complexity of computing
optimum linear precoder and decoder mainly consists of SVD
and inversion of a Hermitian matrix which is roughly .
While for Type-II hybrid ARQ, channel decoding has to be
performed for every codeword and the complexity will increase
at least linearly with the length of codeword which usually will
be much larger than .

VI. CONCLUDING REMARKS

This paper investigates the progressive design of sequential
linear MMSE precoders for MIMO wireless communications.
Given the available ARQ diversity, properly precoded MIMO
packet retransmissions can significantly improve the overall per-
formance under wireless fading channels. Incorporating a joint
receiver that utilizes multiple retransmissions, we design the op-
timal sequential linear precoders to minimize the receiver output
MSE. The result shows that, in addition to the optimal power
loading idea used in single transmission, optimal sequential pre-
coding requires the reverse order pairing of the singular values
of current MIMO channel with previous transmissions. Simu-
lation results demonstrate significant gains in terms of receiver
MSE and BER under optimum MMSE precoding.

APPENDIX I
PROOF OF LEMMA 1

A. Proof

We multiply both sides of (22) on the right by . The
resulting equality implies that is a hermitian matrix.
Therefore, commutes with , i.e., .
Considering the special block diagonal structure of ,
must be a block diagonal matrix with the same structure which



456 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 24, NO. 3, MARCH 2006

can be unitarily diagonalized by a block diagonal matrix ,
. Let and denote its SVD as

, we have . Since
takes all the nonnegative square roots of diagonal entries of
, and must share the same eigenvectors. Therefore,
also diagonalizes , . Finally, we

have

APPENDIX II
PROOF OF LEMMA 2

A. Proof

If we multiply both sides of (22) on the left by , sim-
ilarly, we can show that is a hermitian
matrix. Hence, commutes with . For two
commutative hermitian matrices, there exits an unitary matrix
that jointly diagonalizes both of them [25], i.e.,

, . Since is a her-
mitian positive definite matrix, we prove that must also diag-
onalize .

Consider a hermitian positive semidefinite matrix , denote
its SVD as , all the diagonal entries of are
nonnegative. For a matrix that diagonalizes , we have

Note that contains all the nonnegative square roots of diag-
onal entries of , we have

By now, we prove that jointly diagonalizes the and
, obviously, also diagonalizes the .
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