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Abstract. What is a qualitative calculus? Many qualitative spatial and tempo-
ral calculi arise from a set of JEPD (jointly exhaustive and pairwise disjoint)
relations: a stock example is Allen’s calculus, which is based on thirteen basic
relations between intervals on the time line. This paper examines the construc-
tion of such a formalism from a general point of view, in order to make apparent
the formal algebraic properties of all formalisms of that type. We show that the
natural algebraic object governing this kind of calculus is a non-associative al-
gebra (in the sense of Maddux), and that the notion of weak representation is
the right notion for describing most basic properties. We discuss the ubiquity of
weak representations in various guises, and argue that the fundamental notion of
consistency itself can best be understood in terms of consistency of one weak
representation with respect to another.

1 Introduction

What is a qualitative temporal or spatial calculus? And: why should we care? An obvi-
ous, if not quite satisfactory way of answering the first question would consist in listing
some examples of fairly well-known examples: on the temporal side, Allen’s interval
calculus [1] is the most famous candidate; others are the point calculus [24], the point-
and-interval calculus [7], generalized interval calculi [14], or the INDU calculus [20];
on the spatial side, there are Allen-like calculi, such as the directed interval calculus
[22], the cardinal direction calculus [16], which is a particular case of the n-point cal-
culi [4], the rectangle calculus [3], and more generally the n-block calculi [5], as well as
calculi stemming from the RCC-like axiomatics, such as the RCC-5 and RCC-8 calculi
[21], and various kinds of calculi, such as the cyclic interval calculus [2], the star calculi
[19], or the preference calculi [8].

Why should we care? A first reason is that, as becomes soon apparent after con-
sidering some of the examples, many calculi share common properties, and are used in
analogous ways: Take for instance Allen’s calculus. It makes use of a set of basic re-
lations, and reasoning uses disjunctions of the basic relations (representing incomplete
knowledge), also called (disjunctive) relations. A relation has a converse relation, and
relations can be composed, giving rise to an algebraic structure called Allen’s algebra
(which is a relation algebra, in Tarski’s sense [23]). In applications, the knowledge is
represented by temporal networks, which are oriented graphs whose nodes stand for
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intervals, and labels on the arcs which are relations. In this context, a basic problem
is determining whether a given network is consistent (the problem is known to be NP-
complete, [24]). Finally, when a network is consistent, finding a qualitative instantiation
of it amounts to refining the network to an atomic sub-network which is still consistent:
and this can be checked at the algebraic level.

Thus, it makes sense to ask the question: to what extent do those properties extend
to the other calculi we mentioned above? As first discussed in [17], it soon appears that
some properties of Allen’s calculus do not extend in general. Some disturbing facts:

– As remarked by [9, 17], the algebras of some calculi are not relation algebras in
the sense of Tarski, but more general algebras called non-associative algebras by
Maddux (relation algebras being the particular case of associative non-associative
algebras). In fact, the INDU algebra is only a semi-associative algebra.

– The natural or intended models of the calculus may not be models in the strong
sense or, in algebraic terms, representations of the algebra. This is no new realiza-
tion: Allen’s composition, for instance, expresses necessary and sufficient condi-
tions only if the intervals are in a dense and unbounded linear ordering. But what
is less known, apart from the fact that it may be interesting to reason in weaker
structures, e.g., about intervals in a discrete linear ordering, is the fact that all such
models correspond to weak representations of the algebra, in the sense of [13].

– For some calculi, such as the containment algebra [12] or the cyclic interval calcu-
lus [2], it has been observed that some finite atomic constraint networks which are
algebraically closed1 are not consistent. Again, this phenomenon is best expressed,
if not explained, in terms of weak relations.

– For Allen’s calculus, any consistent atomic network is in fact k-consistent, for all
k < n, if it has n nodes. Again, the analogous result is false for many calculi, and
considering the various weak representations helps to explain why it may be so.

So we cannot hope to have general methods and have to look closer at what the calculi
have to offer. Defining a family of calculi by giving examples amounts to a partial
extensional definition. But what would an intensional definition be? If we can answer
this last question, we have some hope of developing general methods which could be
used for whole classes of calculi, instead of specific ones which have to be reinvented
for each particular calculus.

Although we do not consider this particular aspect in this paper, an example of a
general concept which is valid for a whole class of calculi is the notion of pre-convexity
[15] which has been shown as providing a successful way of searching for tractable
classes, at least for formalisms based on linear orderings such as Allen’s calculus.

The purpose of this paper is to give a precise technical answer to the first question:
what is a qualitative calculus? The answer involves a modest amount of – actually, two
– algebraic notions, which both extend standard definitions in universal algebra: the
notion of a non-associative algebra (which generalizes that of a relation algebra), and
the notion of a weak representation, (which generalizes that of a representation).

1 We use the term algebraically closed, or a-closed, to refer to the notion which is often (in some
cases incorrectly) referred to as path-consistency: for any 3-tuple (i, j, k) of nodes, composing
the labels on (i, k) and (k, j) yields a result which contains the label on (i, j).
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This paper provides a context for discussing these various points. In section 2, the
general construction of JEPD relations is presented in terms of partition schemes. The
main operation in that context is weak composition, whose basic properties are dis-
cussed. Section 3 describes some typical examples of the construction. It is shown in
Section 4 that all partition schemes give rise to non-associative algebras, and in Sec-
tion 5 that the original partition schemes are in fact weak representations of the corre-
sponding algebra. A proposal for a very general definition of a qualitative calculus is
presented in Section 6 as well as a description of the various guises into which weak
representations appear: both as particular kind of network and as natural universes of in-
terpretation. Section 7 is concerned with the basic notion of consistency, which appears
as a particular case of a more general notion of consistency of one weak representation
with respect to another.

2 Developing a New Calculus

Although there seems to be almost no end to defining qualitative spatial or temporal
calculi, most constructions are ultimately based on the use of a set of JEPD (jointly
exhaustive and pairwise disjoint2) relations. This will be our starting point for defining
a generic qualitative calculus, in a very general setting.

2.1 Partition Schemes

We start with a non-empty universe U , and consider a partition of U × U into a family
of non-empty binary relations (Ri)i∈I :

U × U =
⋃

i∈I

Ri (1)

The relations Ri are called basic relations. Usually, calculi defined in this way use a
partition into a finite number of relations. In order to keep things simple, we assume I
to be a finite set. In concrete situations, U is a set of temporal, spatial, or spatio-temporal
entities (time points, intervals, regions, etc.). Among all possible binary relations, the
partition selects a finite subset of “qualitative” relations which will be a basis for talking
about particular situations. For instance, in Allen’s calculus, U is the set of all intervals
in the rational line, and any configuration is described in terms of the 13 basic relations.

We make some rather weak assumptions about this setup. First, we assume that the
diagonal (the identity relation) is one of the Ris, say R0:

R0 = Δ = {(u, v) ∈ U × U | u = v} (2)

Finally, we choose the partition in such a way that it is globally invariant under conver-
sion. Recall that, for any binary relation R, R� is defined by:

R� = {(u, v) ∈ U × U | (v, u) ∈ R} (3)

2 Contrary to one of the authors’ initial assumption, the JEPD acronym does not seem to be
related in any way to the JEPD hypothesis in biblical exegesis, where J, E, P, D stand for the
Jehovist, Elohist, Priestly and Deuteronomist sources, respectively!
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We assume that the following holds:

(∀i ∈ I)(∃j ∈ I) R�
i = Rj (4)

Definition 1. A partition scheme is a pair (U, (Ri)i∈I), where U is a non-empty set
and (Ri)i∈I a partition of U × U satisfying conditions (2) and (4).

2.2 Describing Configurations

Once we have decided on a partition scheme, we have a way of describing configura-
tions in the universe U . Intuitively, a configuration is a (usually finite) subset V ⊆ U of
objects of U . By definition, given such a subset, each pair (u, v) ∈ V ×V belongs to ex-
actly one Ri for a well-defined i. Later, we will think of V as a set of nodes of a graph,
and of the map ν : V × V → I as a labeling of the set of arcs of the graph. Clearly,
ν(u, u) is the identity relation R0, and ν(v, u) is the transpose of ν(u, v). The resulting
graphs are called constraint networks in the literature. More generally, we can express
constraints using Boolean expressions using the Ris. In particular, constraint networks
using disjunctive labels are interpreted as conjunctions of disjunctive constraints repre-
sented by unions of basic relations on the labels.

2.3 Weak Composition

Up to now, we did not consider how constraints can be propagated. This is what we do
now by defining the weak composition of two relations. Recall first the definition of the
composition R ◦ S of two binary relations R and S:

(R ◦ S) = {(u, v) ∈ U × U | (∃w ∈ U) (u, w) ∈ R & (w, v) ∈ S} (5)

Weak composition, denoted by Ri�Rj , of two relations Ri and Rj is defined as follows:

(Ri � Rj) =
⋃

k∈J

Rk where k ∈ J if and only if (Ri ◦ Rj) ∩ Rk 
= ∅ (6)

Intuitively, weak composition is the best approximation we can get to the actual
composition if we have to restrict ourselves to the language provided by the partition
scheme. Notice that weak composition is only defined with respect to the partition, and
not in an absolute sense, as is the case for the “real” composition.

At this level of generality, some unpleasant facts might be true. For instance, al-
though all relations Ri are non-empty by assumption, we have no guarantee that Ri�Rj ,
or Ri ◦ Rj for that matter, are non-empty. A first remark is that weak composition is in
a natural sense an upper approximation to composition:

Lemma 1. For any i, j ∈ I: Ri � Rj ⊇ Ri ◦ Rj

Proof. Any (u, v) ∈ Ri ◦Rj is in some (unique) Rk for a well-defined k. Since this Rk

has an element in common with Ri ◦ Rj , Rk must belong to Ri � Rj . �

Lemma 2. For any i, j, k ∈ I: (Ri�Rj)
⋂

Rk = ∅ if and only if (Ri◦Rj)
⋂

Rk = ∅
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Proof. Because of Lemma 1, one direction is obvious. Conversely, if (Ri � Rj)
⋂

Rk

is not empty, then, since (Ri � Rj) is a union of Rls, Rk is contained in it. Now, by
definition of weak composition, this means that Rk intersects Ri ◦ Rj. �

The interaction of weak composition with conversion is an easy consequence of the
corresponding result for composition:

Lemma 3. For all i, j ∈ I: (Ri � Rj)� = R�
j � R�

i

2.4 Weak Composition and Seriality

In many cases, the relations in the partition are serial relations. Recall that a relation R
is serial if the following condition holds:

(∀u ∈ U)(∃v ∈ U) such that (u, v) ∈ R (7)

Lemma 4. If the relations R and S are serial, then R ◦ S is serial, (hence it is non-
empty).

Proof. If R and S are serial, then, for an arbitrary u, choose first w such that (u, w) ∈ R,
then v such that (w, v) ∈ S. Then (u, v) ∈ (R ◦ S). �

As a consequence, since all basic relations are non-empty, the weak composition of
two basic relations is itself non-empty.

Lemma 5. If the basic relations are serial, then ∀i ∈ I:
⋃

j∈I(Ri � Rj) = U × U

Proof. We have to show that, for any given i, and any pair (u, v), there is a j such that
(u, v) is in Ri � Rj . We know that (u, v) ∈ Rk, for some well-defined k. Because Ri

and Rk are serial, for all t there are x and y such that (t, x) ∈ Ri and (t, y) ∈ Rk.
Therefore (x, y) ∈ R�

i ◦ Rk, so R�
i ◦ Rk is non-empty. Moreover, there is one well-

defined j such that (x, y) ∈ Rj . Hence (t, y) is both in Rk and in Ri ◦ Rj . Therefore,
Rk ⊆ (Ri � Rj), hence (u, v) ∈ (Ri � Rj). �

3 Examples of Partition Schemes

Example 1 (The linear ordering with two elements). Let U = {a, b} a set with two
elements. Let R0 = {(a, a), (b, b)}, R1 = {(a, b)}, R2 = {(b, a)}. The two-element set
U , in other words, is linearly ordered by R1 (or by R2). Then R1 ◦R1 = R2 ◦R2 = ∅,
R1 ◦ R2 = {(a, a)}, and R2 ◦ R1 = {(b, b)}. Hence R1 � R1 = ∅, R2 � R2 = ∅,
R1 � R2 = R0, and R2 � R1 = R0.

Example 2 (The linear ordering with three elements). Let U = {a, b, c} a set with
three elements. Let R0 = {(a, a), (b, b), (c, c)}, R1 = {(a, b), (b, c), (a, c)}, R2 =
{(b, a), (c, b), (c, a)}. Here, the three-element set U is linearly ordered by R1 (or by
R2). Then R1◦R1 = {(a, c)}, R2◦R2 = {(c, a)}, R1◦R2 = R2◦R1 = {(a, a), (b, b),
(a, b), (b, a)}. Consequently, R1�R1 = R1, R2�R2 = R2, R1�R2 = R2�R1 = U×U .

Example 3 (The point algebra). The standard example is the point algebra, where U is
the set Q of rational numbers, and R1 is the usual ordering on Q, denoted by <. R2 is
the converse of R1. Because this ordering is dense and unbounded both on the left and
on the right, we have R1 ◦ R1 = R1, R2 ◦ R2 = R2, R2 ◦ R1 = R1 ◦ R2 = U × U .
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Example 4 (Allen’s algebra). Here U is the set of “intervals” in Q, i.e., of ordered pairs
(q1, q2)∈Q×Q such that q1 <q2. Basic relations are defined in the usual way [1]. Since
Q is dense and unbounded, weak composition coincides with composition [13].

Example 5 (Allen’s calculus on integers). U is the set of intervals in Z, that is, of pairs
(n1, n2) ∈ Z × Z such that n1 < n2. Weak composition differs from composition in
this case: e.g., we still have p � p = p, but the pair ([0, 1], [2, 3]) is in p, but not in p ◦ p.

4 The Algebras of Qualitative Calculi

4.1 Algebras Derived from Partition Schemes

Now we take an abstract algebraic point of view. For each i ∈ I , we introduce a symbol
ri (which refers to Ri) and consider the set B = {ri | i ∈ I}. Let A be the Boolean
algebra of all subsets of B. The top element of this algebra is denoted by 1, and the bot-
tom element (the empty set) by 0. Union, intersection and complementation are denoted
by +, · and −, respectively. Let 1′ denote {r0}. We still denote by r�

i the operation of
conversion. On this Boolean algebra, the weak composition function defines an opera-
tion which is usually denoted by ;. When tabulated, the corresponding table is called the
weak composition table of the calculus. The operation of composition on basic symbols
is extended to all subsets as follows:

For a, b ∈ A, (a ; b) =
⋃

i,j

(ri ; rj), where ri ∈ a and rj ∈ b. (8)

Since the algebraic setup reflects facts about actual binary relations, the algebra we
get in this way would be a relation algebra in Tarski’s sense, if we considered composi-
tion. In the general case, however, what we are considering is only weak composition,
an approximation to actual composition. What happens is that we get a weaker kind of
algebra, namely, a non-associative algebra [18, 10]:

Definition 2. A non-associative algebra A is a tuple A = (A, +,−,0,1, ; , �,1′) such
that:

1. (A, +,−,0,1) is a Boolean algebra.
2. 1′ is a constant, � a unary and ; a binary operation s. t., for any a, b, c ∈ A:

(a) (a�)� = a (b) 1′ ; a = a ; 1′ = a (c) a ; (b + c) = a ; b + a ; c
(d) (a + b)� = a�+ b� (e) (a − b)� = a�− b� (f) (a ; b)� = b� ; a�

(g) (a ; b) · c� = 0 if and only if (b ; c).a� = 0

A non-associative algebra is a relation algebra if it is associative.

Maddux [18] also introduced intermediate classes of non-associative algebras be-
tween relation algebras (RA) and general non-associative algebras (NA), namely
weakly associative (WA) and semi-associative (SA) algebras. These classes form a
hierarchy:

NA ⊇ WA ⊇ SA ⊇ RA (9)

In particular, semi-associative algebras are those non-associative algebras which satisfy
the following condition:

For all a, (a ; 1) ; 1 = a ; 1. (10)
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Proposition 1. The algebraic structure associated to a partition scheme is a non-asso-
ciative algebra. If the basic relations are serial, it is a semi-associative algebra.

Proof. We have to check points (2(a–g)) of Def.2 (checking the validity on basic re-
lations is enough). The first six points are easily checked. The last axiom, the triangle
axiom, holds because of lemma 2. If all basic relations are serial, the condition for
semi-associativity holds, because, by lemma 5, (a ; 1) = 1 for all basic relations a. �

4.2 What About Associativity?

The non associative algebras we get are not in general associative. E.g., the algebra of
Example 1 is not associative: ((r1 ; r2) ; r2) = (1′ ; r2) = r2, whereas (r1 ; (r2 ; r2))
= (r1 ; 0) = 0. Although it satisfies the axiom of weak associativity [18], it is not
semi-associative, since for instance (r1 ; 1) ; 1 = 1 whereas r1 ; (1 ; 1) = r1 + 1′.

If weak composition coincides with composition, then the family (Ri)i∈I is a proper
relation algebra, hence in particular it is associative. However, this sufficient condition
is not necessary, as Example 2 shows: although the structure on the linear ordering on
three elements has a weak composition which is not composition, it defines the point
algebra, which is a relation algebra, hence associative. An example of an algebra which
is semi-associative but not associative is the INDU calculus [6]. The semi-associativity
of INDU is a consequence of the fact that all basic relations are serial.

5 Weak Representations

In the previous section, we showed how a qualitative calculus can be defined, starting
from a partition scheme. The algebraic structure we get in this way is a non-associative
algebra, i.e., an algebra that satisfies all axioms of a relation algebra, except possibly
associativity.

Conversely, what is the nature of a partition scheme with respect to the algebra? The
answer is that it is a weak representation of that algebra. The notion of a weak repre-
sentation we use here3 was first introduced in [13] for relational algebras. It extends in
a natural way to non-associative algebras.

Definition 3. Let A be a non-associative algebra. A weak representation of A is a pair
(U, ϕ) where U is a non empty set, and ϕ is a map of A into P(U × U), such that:

1. ϕ is an homomorphism of Boolean algebras. 3. ϕ(a�) is the transpose of ϕ(a).
2. ϕ(1′) = Δ = {(x, y) ∈ U × U | x = y}. 4. ϕ(a ; b) ⊇ ϕ(a) ◦ ϕ(b).

A weak representation is a representation if moreover:

5. ϕ is injective. 6. ϕ(a ; b) = ϕ(a) ◦ ϕ(b).

Example 6. Take a set U = {u1, u2, u3} with three elements. Let ϕ be defined by:
ϕ(o) = {(u1, u2)}, ϕ(o�) = {(u2, u1)}, ϕ(m) = {(u1, u3)}, ϕ(m�) = {(u3, u1)},
ϕ(d) = {(u3, u2)}, ϕ(d�) = {(u2, u3)}, ϕ(eq) = {(u1, u1), (u2, u2), (u3, u3)}, and
ϕ(a) = ∅ for any other basic relation a in Allen’s algebra. Then (U, ϕ) is a weak
representation of Allen’s algebra which can be visualized as shown in Fig. 1(a).

3 This notion is not to be confused with weak representability as used by Jónsson, see [11, 10].
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u1

u2

u3

(a)
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v1 v2 v3

(b)

Fig. 1. A weak representation of Allen’s algebra (a) and of the point algebra (b).

Example 7 (The point algebra). A weak representation of this algebra is a pair (U,≺),
where U is a set and ≺ is a linear ordering on U . It is a representation iff ≺ is dense
and unbounded. Fig. 1(b) shows a weak representation with three points v1, v2, v3.

5.1 Partition Schemes and Weak Representations

Now we come back to the original situation where we have a universe U and a partition
of U × U constituting a partition scheme. Consider the pair (U, ϕ), where ϕ : A →
P(U × U) is defined on the basic symbols by:

ϕ(ri) = Ri (11)

and is extended to the Boolean algebra in the natural way:

For a ∈ A let ϕ(a) =
⋃

ri∈a

ϕ(ri) (12)

Proposition 2. Given a partition scheme on U , define ϕ as above. Then the pair (U, ϕ)
is a weak representation of A.

Proof. The only point needing a proof is concerned with axiom 4. For basic symbols,
ϕ(ri ; rj) = Ri � Rj , by definition, while ϕ(ri) ◦ ϕ(rj) = Ri ◦ Rj . By lemma 1, the
former relation contains the latter. The results extends to unions of relations. �

From this proposition we can assert the (obvious) corollary:

Corollary 1. The weak representation associated to a partition scheme is a represen-
tation if and only if weak composition coincides with composition.

6 What Is a Qualitative Calculus?

We now have a general answer to our initial question: what is a qualitative calculus?

Definition 4. A qualitative calculus is a triple (A, U, ϕ) where:

1. A is a non-associative algebra.
2. (U, ϕ) is a weak representation of A.
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6.1 The Ubiquity of Weak Representations

Summing up, we started with a partition scheme and derived an algebra from it. This
algebra, in all cases, is a non-associative algebra. It may or may not be a relation algebra.
If the partition scheme is serial, it is a semi-associative algebra. In all cases, anyway,
the original partition scheme defines a weak representation of the algebra.

In the next sections, we show that weak representations appear both as constraints
(a-closed, normalized atomic networks) and as universes of interpretation. Consequently,
many notions of consistency are related to morphisms between weak representations.

6.2 Weak Representations as Constraint Networks

Recall that a (finite) constraint network on A is a pair N = (N, ν), where N is a
(finite) set of nodes (or variables) and ν a map ν : N × N → A. For each pair (i, j) of
nodes, ν(i, j) is the constraint on the arc (i, j). A network is atomic if ν is in fact a map
into the set of basic relations (or atoms) of A. It is normalized if ∀i, j ∈ N ν(i, j) = 1′

if i = j, and ∀i, j ∈ N ν(j, i) = ν(i, j)�. A network N ′ = (N, ν′) is a refinement of
N if ∀i, j ∈ N we have ν′(i, j) ⊆ ν(i, j). Finally, a network is algebraically closed, or
a-closed, if ∀i, j, k ∈ N ν(i, j) ⊆ ν(i, k) ; ν(k, j).

Let (N, ν) be a network, and consider for each atom a ∈ A the set ρ(a) = {(i, j) ∈
N×N | ν(i, j) = a}. This defines a map from the set of atoms of A to the set of subsets
of N × N , which is interpreted as providing the set of arcs in the network which are
labeled by a given atom. If the network is atomic, any arc is labeled by exactly one
atom, i.e., the set of non-empty ρ(a) is a partition of N ×N labeled by atoms of A. If it
is normalized, this partition satisfies the conditions (2) and (3) characterizing a partition
scheme. If the network is a-closed, then (N, ρ), where ρ is extended to A in the natural
way, i.e., as ρ(b) =

∑
a∈b ρ(a), is together with N a weak representation of A.

Conversely, for any weak representation (U, ϕ), we can interpret U as a set of nodes,
and ϕ(ri) as the set of arcs labeled by ri. Hence each arc is labeled by a basic relation,
in such a way that (v, u) is labeled by r�

i if (u, v) is labeled by ri, and that for all
u, v, w the composition of the label on (u, w) with that on (w, v) contains the label on
(u, v). Hence a weak representation is an a-closed, normalized atomic network.

Considering a weak representation in terms of a constraint network amounts to see-
ing it as an intensional entity: it expresses constraints on some instantiation of the vari-
ables of the network. Now, weak representations are at the same time extensional en-
tities: as already apparent in the discussion of partition schemes, they also appear as
universes of interpretation.

6.3 Weak Representations as Interpretations

Many standard interpretations of qualitative calculi are particular kinds of weak repre-
sentations of the algebra, namely, representations. Allen’s calculus, e.g., is usually in-
terpreted in terms of the representation provided by “intervals”, in the sense of strictly
increasing pairs in the rational or real line. It has less been pointed out in the litera-
ture that in many cases weak representations, rather than representations, are what the
calculi are actually about.
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P(N × N)

P(U × U)

ρ

ϕ

(h × h)∗

Fig. 2. A general notion of consistency.

As already discussed in [13], a finite weak representation of Allen’s algebra can be
visualized in terms of finite sets of intervals on a finite linear ordering. More generally,
restricting the calculus to some sub-universe amounts to considering weak representa-
tions of Allen’s algebra: for instance, considering intervals on the integers (Example 5)
yields a weak representation. It also makes sense to consider the problem of determining
whether constraint networks are consistent with respect to this restrictive interpretation.

Encountering the notion of seriality is not surprising. Recall that a constraint net-
work is k-consistent if any instantiation of k − 1 variables extends to k-variables. In
particular, a network is 2-consistent if any instantiation of one variable extends to two
variables. Hence a partition scheme is serial if and only if the (possibly infinite) “net-
work” U (or weak representation) is 2-consistent. Many natural calculi have consistent
networks which are not 2-consistent, e.g., Allen’s calculus on integers. Although the
2-element network with constraint d is consistent, it is not 2-consistent: if an interval x
has length one, there is no interval y such that ydx.

7 What Is Consistency?

The preceding discussion shows that a weak representation can be considered alterna-
tively as a particular kind of constraint network (an atomic, normalized and a-closed
one), or as a universe of interpretation. Now, a fundamental question about a network
is whether it is consistent with respect to a given domain of interpretation.

Intuitively, a networkN = (N, ν) is consistent (with respect to a calculus (A, U, ϕ))
if it has an atomic refinement N ′ = (N, ν′) which is itself consistent, that is, the vari-
ables N of N can be interpreted in terms of elements of U in such a way that the rela-
tions prescribed by ν′ hold in U . More specifically, if (N, ν′) is a-closed, normalized,
and atomic, consider the associated weak representation (N, ρ). Then the consistency
of the network with respect to the weak representation (U, ϕ) means that there exists
an instantiation h : N → U such that, for each atom a ∈ A, (i, j) ∈ ρ(a) implies
(h(i), h(j)) ∈ ϕ(a). Hence consistency of such a network appears as a particular case
of compatibility between two weak representations. This means that in fact consistency
is a property involving two weak representations:

Definition 5. Let N = (N, ρ) and U = (U, ϕ) be two weak representations of A. Then
N is consistent with respect to U if there exists a map h : N → U such that the diagram
in Fig. 2 commutes, that is, for each a ∈ A, (i, j) ∈ ρ(a) implies (h(i), h(j)) ∈ ϕ(a).

This generalization of the notion of consistency emphasizes the fact that it is a
notion between two weak representations, where one is interpreted in intentional terms,
while the other is used in an extensional way, as a universe of interpretation.
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Example 8 (The point algebra). A weak representation in that case is a linearly ordered
set. Consider two such weak representations (N,≺N ) and (U,≺U ). Then (N,≺N ) is
consistent with respect to (U,≺U) iff there is a strictly increasing map h : N → U .

7.1 Inconsistent Weak Representations

In that light, what is the meaning of the existence of inconsistent weak representations?
Examples of finite atomic a-closed networks which are not consistent exist e.g. for the
cyclic interval calculus or the INDU calculus [17]. In such cases, the universe of inter-
pretation of the calculus (such as intervals on a rational circle, or intervals with duration)
has too much additional structure and constraints on its relations for the network to take
them into account. Characterizing the cases where this can happen seems to be an open
problem in general.

8 Conclusions

This paper proposes to introduce a shift of perspective in the way qualitative calculi are
considered. Since Allen’s calculus has been considered as a paradigmatic instance of a
qualitative calculus for more than two decades, it has been assumed that the algebraic
structures governing them are relation algebras, and that the domains of interpretation
of the calculi should in general be extensional or, in algebraic terms, representations
of these algebras. These assumptions, however, have been challenged by a series of
facts: some calculi, as first shown in [9], then by [17], involve non-associative algebras.
Also, for many calculi, the domains of interpretation may vary, and do not necessarily
constitute representations.

We argued in this paper that a qualitative calculus should be defined abstractly as
a triple consisting of a non-associative algebra and a weak representation of that alge-
bra. This abstract definition makes apparent the fact that particular kinds of networks
on the one side, and representations of the algebras on the other side, are ultimately
of a common nature, namely, both are particular kinds of weak representations. This
last fact has of course been known before: for instance, the work described in [10] is
about trying to construct representations of a given relation algebra by incrementally
enriching a-closed networks using games à la Ehrenfeucht-Fraissé. However, we think
that putting qualitative calculi in this setting provides a clear way of considering new
calculi, as well as an agenda for questions to be asked first: what are the properties of
the algebra involved? What are weak representations? Are the intended interpretations
representations of the algebra? When are weak representations consistent with respect
to which weak representations?

A further benefit of the framework is that it makes clearly apparent what consis-
tency really means: consistency of a network (a network is a purely algebraic notion)
with respect to the calculus is a particular case of consistency between two weak rep-
resentations: it can be defined as the possibility of refining the network into a weak
representation which is consistent wrt. the one which is part of the calculus considered.

Obviously, defining a general framework is only an initial step for studying the new
problems which arise for calculi which are less well-behaved than Allen’s calculus.
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A first direction of investigation we are currently exploring consists in trying to get a
better understanding of the relationship between consistency and the expressiveness of
constraint networks.
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