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Abstract

A reverse genetics approach was used to investigate the role of c-aminobutyric acid metabolism in the wheat pathogenic
fungus Stagonospora nodorum. The creation of mutants lacking Sdh1, the gene encoding succinic semialdehyde
dehydrogenase, resulted in strains that grew poorly on c-aminobutyric acid as a nitrogen source. The sdh1 mutants were
more susceptible to reactive oxygen stress but were less affected by increased growth temperatures. Pathogenicity assays
revealed that the metabolism of c-aminobutyric acid is required for complete pathogenicity. Growth assays of the wild-type
and mutant strains showed that the inclusion of c-aminobutyric acid as a supplement in minimal media (i.e., not as a
nitrogen or carbon source) resulted in restricted growth but increased sporulation. The addition of glutamate, the precursor
to GABA, had no effect on either growth or sporulation. The c-aminobutyric acid effect on sporulation was found to be dose
dependent and not restricted to Stagonospora nodorum with a similar effect observed in the dothideomycete
Botryosphaeria sp. The positive effect on sporulation was assayed using isomers of c-aminobutyric acid and other
metabolites known to influence asexual development in Stagonospora nodorum but no effect was observed. These data
demonstrate that c-aminobutyric acid plays an important role in Stagonospora nodorum in responding to environmental
stresses while also having a positive effect on asexual development.
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Introduction

Stagonospora nodorum is the causal agent of stagonospora nodorum

blotch, a significant disease of wheat in many parts of the world

[1]. It is has now been established that the wheat pathogen S.

nodorum causes disease through the secretion of small secreted

proteins (effectors) that interact with dominant susceptibility host

genes leading to cell death and disease [2]. These studies have

fundamentally advanced our understanding of the interaction and

provided significant insight into how this necrotrophic pathogen

causes disease [3].

Whilst this effector model has now been established as the

means by which the pathogen initiates disease, there still remains

much to learn about how the fungus grows, develops and

reproduces in the host. Several studies to date have identified

key pathogen metabolic pathways required to complete the

infection cycle. For example, reverse genetics approaches have

demonstrated that the metabolism of mannitol, particularly

through the activity of mannitol 1-phosphate dehydrogenase

(Mpd1) is essential for asexual sporulation [4,5,6]. Mutants lacking

the Mpd1 gene were unable to sporulate, either in vitro or in planta,

unless supplied with exogenous mannitol. A similar approach

identified that trehalose also plays a key role in sporulation [7].

Disruption of a trehalose 6-phosphate synthase resulted in

decreased sporulation that could be restored in the presence of

added trehalose. The role of either of these primary metabolites on

sporulation remains elusive although it was clearly demonstrated

that the metabolism of these compounds, rather than simply their

presence, was required for sporulation.

In a more recent study, a short-chain dehydrogenase, Sch1, was

identified as being negatively regulated in S. nodorum strain lacking

the Ga subunit Gna1 [8]. Subsequent disruption of the Sch1 gene

resulted in a strain that was unable to produce pycnidiospores,

although abnormal pycnidia were differentiated. Metabolite

analysis of the mutant strain showed that neither mannitol nor

trehalose levels were affected. Indeed primary metabolism

appeared relatively unaffected by the Sch1 mutation. Metabolite

profiling though did reveal that the secondary metabolite,

alternariol, was present at very high levels in the mutant leading

to speculation as to its role in asexual differentiation. Subsequent

studies on S. nodorum sporulation-deficient strains have consistently

identified changes in abundance in alternariol suggesting that it,

and/or its associated pathway, play an integral role in sporulation

[9].

These studies highlight the critical role of specific primary

metabolic processes in the development and differentiation of S.

nodorum. However there are many other pathways whose roles

aren’t clear during either development or pathogenicity. One such

pathway is the c-aminobutyric acid (GABA) shunt (Figure 1). This

pathway is a bypass of the TCA cycle from a-ketoglutaric acid to

succinic acid via glutamate, GABA and succinic semialdehyde. In

contrast to the TCA cycle (between a-ketoglutaric acid and

succinic acid), the GABA shunt results in no net gain in NADH or

ATP, leaving many to question its biological role.
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GABA itself is a well described negative neurotransmitter in the

central and peripheral nervous system of vertebrates and some

non-vertebrates [10]. However the role of GABA and its

metabolism in other systems is less well understood. In plants,

GABA has been shown to accumulate under different forms of

stress [11,12,13,14]. Mutational studies in Arabidopsis thaliana have

demonstrated that the GABA pathway plays a role in responding

to osmotic stress, as well as high temperature and light stress [15].

GABA has also been found to accumulate in tomato leaves during

a compatible interaction with Cladosporium fulvum, leading to

speculation that the pathogen was manipulating the host to

produce a preferred nitrogen source [16]. However there has been

no further evidence to support this.

The role of GABA and/or its metabolism in fungi is even less

clear although it is well known that GABA is a suitable nitrogen

source for many fungi [17]. A recent study in Magnaporthe oryzae

identified a gene encoding succinic semialdehyde dehydrogenase

(MoSSADH) as being important for pathogenicity [18]. Char-

acterisation of the MoSSADH mutants found that the gene was

required for appressorium-like penetration, invasive growth and

normal development and conidiation. The mutants were also

highly sensitive to H2O2 and displayed attenuated peroxidase and

laccase activities. The bases of these phenotypes and the role of

MoSSADH though were not elucidated.

In this study, we have focused on understanding the role of

GABA catabolism on the pathogenicity and development of S.

nodorum through the inactivation of the succinic semialdehyde

dehydrogenase gene, Sdh1. The gene encoding succinic semialde-

hyde dehydrogenase was selected to allow a direct comparison of

its role in a necrotrophic pathogen compared to the hemibio-

trophic M. oryzae. This study has revealed various important roles

for succinic semialdehyde dehydrogenase in S. nodorum, and like

previous studies have done [7], has highlighted the significant

differences that exist in the metabolic requirements of these

different pathogens during infection. These data have also shed

light on the novel role of GABA promoting asexual sporulation in

S. nodorum.

Materials and Methods

Fungal strains and growth conditions
Stagonospora nodorum was maintained and grown as previously

described [19]. Minimal media consists of 30 mM sucrose, 2 g/L

NaNO3, 1 g/L NaH2PO4 and 10 mL trace stock solution, pH 6.

For the supplementation assays, the chemicals (e.g. GABA) were

added to media prior to pH adjustment. All strains were routinely

grown under at 12 hr light/dark cycle at 22uC unless otherwise

stated. Oxidative stress growth assays were undertaken by the

addition of analytical grade H2O2 to agar plates to the final

concentrations stated in the Results.

The dothideomycete Botryosphaeria sp. was kindly provided by

Dr. Hugh Wallwork from the South Australian Research and

Development Institute. The strain was grown on Botryosphaeria

growth medium (BGM), which was prepared by adding 15 g of

oats to 200 mL of deionised water and bringing to the boil in a

microwave. To this, 40 g of fresh wheat leaves ground with a

mortar and pestle in a small amount of water were added. The

resulting liquid was then filtered and brought to 1 L with deionised

water. 1.5% agar was added to the media prior to autoclaving.

When used, 1 mM GABA was added prior to autoclaving.

Sporulation assays
For S. nodorum sporulation assays, agar plates were inoculated in

the centre with 10 mL of 106 spores/mL, allowed to dry and then

wrapped in micropore tape (3M). The plates were incubated for 20

days prior to being flooded with 5 mL sterile H2O and scraped

using a 1 mL pipette tip. The plates were then allowed to rest for

10 min prior to a further 5 mL being applied. The liquid on the

plates was then passed through a 10 mL syringe in which a small

amount of sterile glass wool had been inserted into the barrel. The

eluate from the syringe was collected in a 15 mL sterile plastic tube

and centrifuged at 4000 g for 5 min. The pellet was resuspended

in 5 mL sterile water and then diluted as required for subsequent

counting using a haemocytometer.

The Botryosphaeria sp. pycnidia were counted by dividing the

agar plates into eight and counting the pycnidia present on three

representative sections from each plate. Three plates were used for

each assay.

Sdh1 inactivation
The succinic semialdehyde dehydrogenase gene (Sdh1) disrup-

tion construct was created using the split-marker method [20]. p1

and p2 was used to amplify a 775 bp fragment 59 of the Sdh1 gene

whilst p3 and p4 were used to amplify a 760 bp 39 fragment.

These 59 and 39 flanks were fused to the overlapping fragments of

hygromycin cassette creating the constructs 59sdh1KO-YG and

39sdh1KO-HY. These constructs were then further amplified

using standard proof-reading PCR conditions followed by PCR

purification. 3 mg of each construct was then co-transformed into

S. nodorum SN15 as previously described [19]. The resulting

transformants were screened by PCR for homologous recombi-

nation using primers SdhKOscreenF and SdhKOScreenR, with a

2360 bp band representing the wild-type locus and a 3870 bp

band showing a homologous recombination event. The sdh1

complementation construct was created by amplifying the wild-

type Sdh1 gene as well as 1 kb upstream and 500 bp downstream

of the open reading frame using the Sdh1compF and Sdh1compR

primers. The resulting amplicon was fused to a phleomycin

cassette as previously described [20] and transformed into the

sdh1-9 mutant. Gene copy number was determined by quantitative

PCR as previously described [21]. The primer sequences are listed

in Table S1.

In terms on nomenclature throughout the manuscript, Sdh1

refers to the wild-type gene whilst Sdh1 denotes the protein. The

inactive gene is denoted by sdh1 (no capital ‘s’).

Pathogenicity assays
The wheat line Grandin was grown for two weeks under natural

day/night cycle at approximately 22uC in small pots containing

Figure 1. The GABA shunt.
doi:10.1371/journal.pone.0078368.g001
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vermiculite and 5 g of Osmocote slow release fertiliser. After two

weeks, the plants were inoculated with spores at a concentration of

16106/mL containing 0.02% Tween 20 using an airbrush

(Paasche, Chicago, USA). The plants were then covered for two

days in the dark and scored visually as previously described at

seven and 14 days post infection (dpi) [19].

Statistical analysis
All statistical analyses were undertaken using the JMP7 package

(SAS Institute). Statistical significance was determined using the

Tukey–Kramer analysis.

Results

The identification and disruption of Sdh1
To identify the gene encoding a succinic semialdehyde

dehydrogenase in S. nodorum, the Uga2 protein sequence from S.

cerevisiae was used to interrogate the S. nodorum annotated genome

sequence [22]. This approach identified the gene SNOG_00899 as

being 54% identical to Uga2 with an E-value of 0. A reciprocal

blast of the SNOG_00899 protein sequence against yeast

identified Uga2 as the best match. A subsequent BlastP analysis

of the SNOG_00899 protein sequence against the non-redundant

database identified multiple genes putatively encoding fungal

succinic semialdehyde dehydrogenases. Analysis of the protein

sequence revealed multiple matches with known protein motifs

associated with succinic semialdehyde dehydrogenase proteins

(TIGR01780 and cd07103). On this basis, SNOG_00899 was

renamed Sdh1 and was chosen for subsequent analysis through

targeted gene disruption.

The Sdh1 gene disruption construct was amplified as described

above and transformed into the wild-type S. nodorum strain SN15.

Greater than 50 transformants were recovered, of which 24 were

chosen for screening by growth on GABA as a sole nitrogen

source. Four of the 24 transformants showed little or no growth

when GABA was supplied as the sole nitrogen source. PCR

screening of these four transformants resulted in an enlarged PCR

amplicon across the Sdh1 locus confirming the homologous

integration of the disruption construct. These transformants were

named S. nodorum sdh1-9, 12, 21 and 24. Quantitative PCR was

used to confirm that each of the strains had only one copy of the

hygromycin marker. Two of these homologous mutants, sdh1-9

and sdh1-21, as well as an ectopic transformant, S. nodorum Sdh1-2,

were selected for further characterisation (Figure S1). To confirm

that the resulting phenotypes were due to the disruption of the

Sdh1 locus, a complementation construct was transformed back

into the sdh1-9 background restoring the ability of that strain to

grow on GABA as a sole nitrogen source.

Characterisation of S. nodorum sdh1 strains
The role of Sdh1 was assessed during vegetative growth by

measuring the growth of sdh1-9 and sdh1-21 strains on various

defined media. The mutants displayed no difference in growth

rates compared to Sdh1 strains when grown in minimal media in

the absence of GABA (Figure 2; Figure S2). When GABA was

supplied as a nitrogen source rather than nitrate, the growth of the

sdh1 mutants was nearly 100-fold less compared to SN15 and the

ectopic strain. None of the strains assayed grew strongly when

GABA was supplied as a carbon source although the wild-type

strain grew about 3-fold more than the sdh1 strains. All of the

strains grew comparably to each other when grown on glutamate

as a carbon or nitrogen source. The growth of the strains

harbouring an intact Sdh1 gene was marginally affected by the

inclusion of 1 mM GABA in complete minimal media. In contrast,

the growth of the sdh1 mutants was reduced by approximately

30% when GABA was included in the media. No difference in

growth was observed when the mutants were grown on complex

V8PDA media (data not shown).

The strains were also assayed for their ability to sporulate in the

media described above (Figure 3). There was no significant

difference in the ability of strains to asexually sporulate on minimal

media. The sporulation of the sdh1 mutants on GABA as either a

nitrogen or carbon source showed a similar trend to that observed

for the growth assays as GABA proved to be a poor nitrogen

source whilst no spores were detected in any of the strains assayed

with GABA as a carbon source. When 1 mM GABA was added to

minimal media as a supplement, the sporulation of all strains

increased by five to 10-fold compared to the absence of GABA.

This increase in total spores was particularly surprising for the sdh1

strains given the negative impact on growth observed when GABA

Figure 2. Plate growth assay. Colony diameter was measured after 18 days growth with n = 3. Standard error bars are shown. MM, minimal media;
N-GABA, minimal media with GABA as the sole nitrogen source; C-GABA, minimal media with GABA as the sole carbon source; N-Glu, minimal media
with glutamate as the sole nitrogen source; C-Glu, minimal media with glutamate as the sole carbon source; MM+GABA, minimal media with 1 mM
GABA; MM+Glu, minimal media with 1 mM glutamate.
doi:10.1371/journal.pone.0078368.g002
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was included in the media as a supplement. Glutamate was also

assayed as a supplement to determine whether or not the increased

sporulation was due to more nitrogen being available. There was

no increase in sporulation when glutamate was added to the media

implying that the GABA sporulation effect was not due to

nitrogen. Analyses of the resulting pycnidia from these sporulation

assays revealed no phenotypic or viability differences when

differentiated in the presence of GABA (data not shown).

The sdh1 mutants were also tested for their resistance to a

variety of stresses. The growth of the strains was examined during

osmotic, pH, oxidative and temperature stresses. There was no

difference on growth apparent in any of the strains when grown

under different osmotic strengths or pH environments (data not

shown). Similarly, the rate of growth was unchanged in the sdh1

strains compared to SN15 at different incubation temperatures.

There was however a strong phenotypic difference between the

wild-type and mutant isolates when grown at 25uC, a high growth

temperature for S. nodorum (Figure 4A). Incubation of the wild-type

strain at the higher temperature resulted in a fluffy white

appearance with no evidence of pycnidia. In contrast, the sdh1

strains appeared much more similar to the phenotype observed at

21uC with pycnidia evident, although to a lesser degree at 25uC.

Harvesting and counting of the spores on these plates revealed no

significant difference in sporulation at 21uC when comparing the

wild-type and sdh1 strains (Figure 4B). At 25uC, the wild-type did

not sporulate whilst a 10-fold decrease in sporulation was observed

for the sdh1 strains compared to growth at 21uC.

The susceptibility of the sdh1 strains to reactive oxygen stress

was assessed by including different concentrations of H2O2 in

minimal media (Figure 4C). There was no significant difference in

growth rate of the SN15 and sdh1 strains up to concentrations of

1 mM H2O2. There was a small but significant decrease in growth

of the sdh1 strains compared to SN15 at 1 mM whilst the sdh1

strains only grew to approximately 60% of SN15 at 5 mM H2O2

demonstrating that Sdh1 has a role in detoxifying exogenous

reactive oxygen species (ROS).

Sdh1 is required for complete pathogenicity
Spores generated from the sdh1 mutants were used to inoculate

wheat seedlings to determine the involvement of the gene in

virulence. Disease scores recorded at seven dpi revealed the sdh1

strains to be only half as pathogenic as the wild-type and ectopic

isolates (Figure 5; Figure S3). A re-assessment of the disease after

14 dpi showed the disease scores of the sdh1 mutants was closer to

that of the wild-type, but still significantly less proving that Sdh1

does have a role in disease development.

GABA promotes sporulation of S. nodorum
In the course of characterising of the sdh1 strains, it was

observed that the addition of GABA to minimal media (containing

nitrate and sucrose) promoted sporulation. To investigate this

further, S. nodorum SN15 was plated out onto varying concentra-

tions of GABA to determine if the positive effect on sporulation

was dose dependent. An equal number of spores were plated onto

the centre of a standard minimal media plate containing 0, 0.1,

0.3, 1, 3 or 10 mM GABA (Figure 6). The plates were then

allowed to grow for 18 days prior to the spores being harvested

and counted.

The first observation was that the increasing concentrations

of GABA appeared to inhibit growth. There was no change in

total growth observed up to 0.3 mM GABA, however higher

concentrations restricted the rate of growth. Spore counts from

the same plates revealed a positive correlation of GABA

concentration and sporulation. The addition of 0.3 mM GABA

was required to see a significant increase in sporulation with

10 mM resulted in an eight-fold increase in the number of

spores produced per plate. When the reduced growth area of the

cultures growing on higher levels of GABA was considered, the

supplementation of the media with 10 mM GABA resulted in a

10-fold increase in sporulation.

Minimal media was supplemented with isomers of GABA and

other compounds known to induce sporulation in S. nodorum to see

if this positive effect on sporulation was specific to GABA

(Figure 7). With the exception of GABA, none of the compounds

assayed resulted in any increase in sporulation. A decrease in

sporulation was observed with the addition of a-aminobutyric acid

to minimal media, probably reflecting the poor growth of S.

nodorum in the presence of this GABA isomer.

The GABA effect on sporulation is not specific to S.
nodorum

To determine if the positive effect of GABA on sporulation was

specific to S. nodorum, we examined its effect on the ability of a

Figure 3. Sporulation assay for each of the strains grown under different nutritional conditions. MM, minimal media; N-GABA, minimal
media with GABA as the sole nitrogen source; C-GABA, minimal media with GABA as the sole carbon source; MM+GABA, minimal media with 1 mM
GABA; MM+GABA, minimal media with 1 mM GABA; MM+Glu, minimal media with 1 mM glutamate.
doi:10.1371/journal.pone.0078368.g003
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related fungus Botryosphaeria sp. to asexually differentiate. In

the absence of GABA, an average of 1400 pycnidia were

counted per plate shortly after exposure to near-UV light

(Figure 8). The addition of 1 mM GABA to the same growth

media resulted in an approximate 47% increase in the

number of pycnidia counted (average 2064 per plate). The

data suggest that the effect of GABA on sporulation is not

specific to S. nodorum.

Discussion

Since the discovery of GABA metabolism in fungi, its role has

been the subject of several hypotheses, but with little supporting

evidence. Amongst these roles, it has been speculated that GABA

metabolism in phytopathogenic fungi is important for disease. This

idea was proposed by Solomon and Oliver [23] when they

reported millimolar levels of GABA present in the tomato apoplast

during a compatible interaction with the biotrophic fungus

Cladosporium fulvum. In a subsequent study, the same authors

demonstrated that the pathogen genes required to metabolise

GABA were expressed during infection [24]. This lead to the

suggestion that perhaps C. fulvum was able to manipulate the host

in order to provide GABA as a nitrogen source during infection,

although there has been no data published since to support this

[16]. Consequently, to better understand the role of GABA in

filamentous fungi, and in particular phytopathogens, we analysed

its metabolism in the wheat pathogen S. nodorum.

The first observation from this study was that Sdh1, the gene

encoding succinic semialdehyde dehydrogenase in S. nodorum, plays

a role in stress response and pathogenicity. Under standard growth

conditions, the growth rate and phenotype of S. nodorum mutants

lacking Sdh1 appeared unaffected compared to SN15. When

GABA was supplied as a nitrogen source, the sdh1 strains grew

poorly as expected, as only a small amount of nitrogen would have

been available for growth through alanine as a result of GABA

transaminase. Comparable trends were observed when sporulation

was assayed with the sdh1 mutant producing fewer spores than the

wild-type when GABA was supplied as either a nitrogen or carbon

source. These data fit the current dogma in that GABA can only

be metabolised via a transamination and oxidation back to

succinic acid.

It was apparent though from the growth assays that Sdh1 has a

role in enabling S. nodorum to successfully respond to certain

stresses. Upon exposure to 5 mM H2O2 the sdh1 mutants grew

poorly compared to SN15 implying that the metabolism of GABA

is involved in protection against ROS. Previous studies in S.

cerevisiae and M. oryzae have demonstrated a role for GABA

metabolism in resisting oxidative stress. In yeast, strains lacking

either UGA5 (succinic semialdehyde dehydrogenase) or UGA1

(GABA transaminase) show increased susceptibility to higher

concentrations of H2O2 directly implying that the catabolism of

GABA has a role in ROS detoxification [25]. The authors

speculated that the basis of this resistance is through the

production of NADPH by UGA5 during the oxidation of succinic

semialdehyde. In M. oryzae, MoSSADH was found to be regulated

Figure 4. An analysis of the role of Sdh1 during temperature
and reactive oxygen species (ROS) stress. (A) Plate growth assays
of the S. nodorum wild-type SN15 strain and the sdh1-9 mutant at 21uC
and 25uC. (B) Spores collected and counted from the plate sporulation
in (A). (C) Growth assays of the SN15 (solid lines) and sdh1-9 (broken
lines) strains on different concentrations of H2O2.
doi:10.1371/journal.pone.0078368.g004

Figure 5. Pathogenicity scores for the wheat leaf infection
assays. N = 5 and standard error bars are shown.
doi:10.1371/journal.pone.0078368.g005
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by a homologue of the YAP1 transcription factor, which is critical

in regulating the response to ROS. Subsequent deletion of the

MoSSADH gene revealed that the resulting mutants were

susceptible to reactive oxygen stress. Whilst it is possible that

decreased NADPH levels may be responsible for the susceptibility

to ROS in MoSSADH mutants (although NADPH was not

measured in the mutants), the mutants also displayed attenuated

secreted peroxidase activity. One could simply speculate that

reduced peroxidase activities were more likely to be responsible for

the increased ROS susceptibility than reduced NADPH levels. It

was unclear though how MoSSADH regulates peroxidase levels.

Another interesting phenotype displayed by the S. nodorum sdh1

mutants was their ability to better cope with higher than normal

growth temperatures. At 21uC, the phenotypes of the sdh1 and

SN15 strains appeared identical. At 25uC, the growth rate of the

SN15 strain was comparable to that at 20uC, but appeared whiter

in colour and more filamentous with no evidence of pycnidia or

sporulation. In contrast the sdh1 strains displayed a more

comparable phenotype to the growth observed at 20uC. Pycnidia

were also evident, and although less than at 20uC, viable spores

could be extracted. This is the first evidence that the GABA shunt

plays a role in temperature stress in fungi, although the mechanism

underlying this is unclear.

Figure 6. Growth and sporulation assays of S. nodorum SN15
growing in increasing GABA concentrations. (A) Images of S.
nodorum growing at different GABA concentrations captured at eight
days post-inoculation. Increasing levels of pycnidia (small dark spots)
are clearly evident with higher concentrations of GABA. (B) Colony
diameter; (C) Total number of spores per mL produced; (D) Number of
spores produced divided by the area of colony growth. N = 6 and
standard error bars are shown. The letters shown above each of the
bars represent the statistical significance for that treatment with
different letters representing treatments that are statistically different
(p,0.05).
doi:10.1371/journal.pone.0078368.g006

Figure 7. Plate growth assays of S. nodorum SN15 growing on
minimal media supplemented with different compounds. All
compounds were added to a final concentration of 1 mM. Images were
taken at seven days post inoculation.
doi:10.1371/journal.pone.0078368.g007

GABA Metabolism in Stagonospora nodorum
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Perhaps not surprisingly, after demonstrating the increased

susceptibility of the sdh1 strains to different stresses, the mutants

were less pathogenic than wild-type isolates. At seven dpi, the sdh1

strains were about half as virulent as the wild-type, increasing to

about 70% virulence at 14 dpi. It is highly likely that the pathogen

would be subjected to a variety of stresses during infection. It has

been previously established that elevated ROS levels are a result of

the photosynthetic collapse caused by the effector SnToxA [26].

The increased susceptibility of the sdh1 mutants to H2O2 would

suggest that the mutants may struggle to deal with the high in planta

H2O2 levels resulting in slower growth. In contrast, deletion of

MoSSADH in M. oryzae resulted in a completely non-pathogenic

strain [18]. The M. oryzae mutants were unable to penetrate the

cuticle effectively nor grow vegetatively within the leaf. Stagonospora

nodorum and M. oryzae are contrasting pathogens with different

penetration and infection mechanisms. There are multiple

examples of genes that are involved in the pathogenicity of M.

oryzae that do not share a similar role in S. nodorum [7,27,28]. The

data presented in this study would suggest that Sdh1 maybe

another.

Of particular interest was serendipitous observation of the effect

of GABA on the growth and sporulation of S. nodorum when added

to complete minimal medium (i.e. containing sucrose and nitrate).

Increasing concentrations of GABA in the minimal medium

clearly inhibited the growth of S. nodorum, both in wild-type and

sdh1 strains. This impairment of growth is likely to be due to the

increased levels of succinic semialdehyde which itself could be

toxic [15].

Perhaps the more striking observation of GABA supplementa-

tion was that S. nodorum produced nearly 10-fold more spores on

MM when supplemented with GABA. This was surprising when

considering that sporulation was unaffected when GABA was

supplied as a sole nitrogen source; the GABA effect was only

evident when the compound was added to complete MM. GABA

has been previously described to promote conidiation in Penicillium

marneffei, although no further details were reported [29]. The

positive effect of GABA on asexual sporulation was dose

dependent, with increased GABA levels leading to higher spore

production. Isomers of GABA and other compounds previously

associated with sporulation in S. nodorum were also assayed with no

effect observed other than a growth defect on b-aminobutyric acid

(BABA). Previous reverse genetic studies have demonstrated the

requirement for the mannitol and trehalose metabolic pathways

for asexual sporulation [5,7]. However, these compounds do not

increase sporulation when included in complete minimal media

suggesting the mechanisms behind GABA-induced sporulation are

independent of mannitol and trehalose.

The obvious question from this data is why does the presence of

GABA increase the rate of sporulation? Perhaps some light can be

shed from the data on the sdh1 mutants. The inclusion of 1 mM

GABA in minimal media significantly affected the growth of the

sdh1 mutants, which as discussed above, was likely due to the

increased accumulation of succinic semialdehyde. However, as for

the wild-type strain, the presence of GABA also stimulated spore

production in the sdh1 mutants. There are two possible reasons for

this. Firstly, GABA could be metabolised via a route other than

through succinic semialdehyde, and that this alternative pathway

may contribute to sporulation. However the inability of the sdh1

strains to be able to grow on nitrogen as a sole nitrogen source

would suggest this is unlikely.

Another possibility is that that whilst GABA is metabolised

through the conventional pathway (and thus leading to the growth

defect in the sdh1 strains), it may also have another role in inducing

sporulation. Precisely how GABA would fulfil this alternative role

is unclear but there is existing evidence that it can act as a

signalling molecule. Chevrot and colleagues discovered that

GABA stimulated the inactivation of the N-(3-oxootanoyl)homo-

serine lactone quorum-sensing signal secreted by Agrobacterium

tumefaciens [30]. Quorum sensing is a mechanism of cell-to-cell

communication predominantly undertaken by bacteria [31,32].

Multiple studies have shown that quorum sensing is involved in the

successful association of bacteria with eukaryotic organisms

[33,34]. The concept of small diffusible signalling molecules

triggering sporulation in filamentous fungi is not without

precedent. Studies by Adams and colleagues identified that FluG

in Aspergillus nidulans is involved in the secretion of a small molecule

that accumulates externally to induce sporulation [35]. Whilst it

has been shown since that the molecule in A. nidulans is not GABA

[36], our data does show that exogenous GABA does stimulate

sporulation. Studies are underway to dissect this intriguing

phenomenon further.

Supporting Information

Figure S1 (A) PCR amplification of Sdh1 locus using the

SdhKOscreenF/R primers (Supplementary Table S1). A band

of 2321 bp represents the wild-type locus and 4243 bp the sdh1

mutants. (B) Screening of the different strains for the presence of

hygromycin (528 bp) and phleomycin (1998 bp). For both (A) and

(B), lane 1 – 1 kb ladder, lane 2 – S. nodorum SN15, lane 3 – sdh1-9,

lane 4 – sdh1-21, lane 5 – Sdh1-2 and lane 6 - sdh1-9::Sdh1. (C) A

histogram representing the number of copies of the hygromycin

and phleomycin relative to that of c-actin. The primers for these

listed in Supplementary Table S1. The S. nodorum strain

mpdmdh102 was included as a positive control as it has been

previously demonstrated to have one copy each of hygromycin

and phleomycin (Solomon PS, Ipcho SVS, Hane JK, Tan K-C,

Oliver RP (2008) A quantitative PCR approach to determine gene

copy number. Fungal Genetics Reports 55: 5–8.).

(TIFF)

Figure 8. Botryosphaeria sp. sporulation assays in the presence
and absence of 1 mM GABA.
doi:10.1371/journal.pone.0078368.g008
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Figure S2 An example of the growth differences of the sdh1 strains

growing on either nitrate (A) or GABA (B) as a nitrogen source.

(TIFF)

Figure S3 Representative pots infected with S. nodorum SN15

(left) or the sdh1-9 strain (right). Images were captured at 7 dpi.

The red arrows show examples of heavily infected leaves.

(TIFF)

Table S1 Primer sequences.

(DOCX)
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