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Abstract

A holy grail of conservation is to find simple but reliable measures of environmental change to guide management. For
example, particular species or particular habitat attributes are often used as proxies for the abundance or diversity of a
subset of other taxa. However, the efficacy of such kinds of species-based surrogates and habitat-based surrogates is rarely
assessed, nor are different kinds of surrogates compared in terms of their relative effectiveness. We use 30-year datasets on
arboreal marsupials and vegetation structure to quantify the effectiveness of: (1) the abundance of a particular species of
arboreal marsupial as a species-based surrogate for other arboreal marsupial taxa, (2) hollow-bearing tree abundance as a
habitat-based surrogate for arboreal marsupial abundance, and (3) a combination of species- and habitat-based surrogates.
We also quantify the robustness of species-based and habitat-based surrogates over time. We then use the same approach
to model overall species richness of arboreal marsupials. We show that a species-based surrogate can appear to be a valid
surrogate until a habitat-based surrogate is co-examined, after which the effectiveness of the former is lost. The addition of
a species-based surrogate to a habitat-based surrogate made little difference in explaining arboreal marsupial abundance,
but altered the co-occurrence relationship between species. Hence, there was limited value in simultaneously using a
combination of kinds of surrogates. The habitat-based surrogate also generally performed significantly better and was
easier and less costly to gather than the species-based surrogate. We found that over 30 years of study, the relationships
which underpinned the habitat-based surrogate generally remained positive but variable over time. Our work highlights
why it is important to compare the effectiveness of different broad classes of surrogates and identify situations when either
species- or habitat-based surrogates are likely to be superior.
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Introduction

It is financially and logistically impossible to work on the

management and conservation of every species in every environ-

ment. The complexity of ecosystems has led to the development

and use of surrogates to simplify, represent, and help manage

complex systems. That is, rather than measuring ecosystems

directly, the focus has been on using surrogates as proxies for

different ecosystem components such as environmental conditions,

habitats, ecological processes, the abundance of particular species,

the diversity of particular groups of organisms, or overall

biodiversity [1–5].

For the purposes of this paper, we use the following overarching

definition of a surrogate (modified from [1] and [4]):

‘‘…[a measure] that readily reflects: the biotic or abiotic state of

an environment; represents the impact of an environmental

change on a habitat, community or ecosystem; the abundance of a

particular species; or is indicative of the diversity of a subset of

taxa, or of wholesale diversity, within an area.’’

Two broad kinds of surrogates used in conservation manage-

ment are species-based surrogates and habitat-based surrogates.

Species-based surrogates are individual species or sets of species,

which are used as proxies of diversity within a taxon, or of

wholesale diversity within an area or over time. Habitat-based

surrogates are habitat attributes that are used as proxies for the

presence, abundance or diversity of particular elements or groups

of the biota. Habitat-based surrogates are typically based on the

structure and/or composition of vegetation at the site level [6–8]

as well as landscape-level proxies such as the amount and

configuration of vegetation cover [9–11] or environmental

conditions like temperature regimes.

There is a vast and rapidly increasing literature on surrogates

(e.g. [1,3–5,12–15]). This massive literature highlights the large

demand for, and increasing reliance upon, surrogates in all areas
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of applied ecology and conservation management. Despite the

widespread use of surrogates, their identification and application

remains contentious [3,6,12,16–21].

A key reason for ongoing debate on surrogates is a paucity of

rigorous testing. In particular, few proposed surrogates have been

validated [22–25] such as by demonstrating that a species-based

surrogate accurately predicts the fate of an entity for which it is

presumed to be a proxy [13]. Further, there has been limited

assessment of the relative effectiveness of different classes of

surrogates [1,7]. Several authors have suggested that habitat-based

surrogates are likely to be the most efficient and tractable kinds of

surrogates with the greatest practical value for resource managers

and policy makers [6,8]. However, the superiority of habitat-based

surrogates has yet to be examined in detail. These problems

suggest that considerable work remains to be done to establish the

empirical basis for the application of surrogates in ecology.

Rigorous assessment and validation of proposed surrogates is

important for several reasons. First, it is vital to ensure that

surrogacy relationships have sufficient power to detect key trends

in populations or to reflect true levels of environmental change

[18,26–29] and, conversely, limit the potential for poor decisions

associated with the use of weak or ineffective surrogates. Second,

testing is needed to assess the validity of many claims about the

effectiveness of surrogates that have typically been made on the

basis of assertion, advocacy, and the public appeal of charismatic

groups of organisms (reviewed by [30]). Such assertions to date

have typically lacked empirical support [3,4,31,32].

In this paper, we present the results of a test of the relative

effectiveness of species-based and habitat-based surrogates, using a

case study of Australian arboreal marsupials where surrogate use

has been contentious. Some researchers have suggested that

particular species of arboreal marsupial are species-based
surrogates [33], in this case meaning that the occurrence of one

species will reflect the occurrence of another species, and

conserving that (surrogate) species will conserve the broader

arboreal marsupial assemblage. An alternative habitat-based
surrogate for arboreal marsupials is large hollow-bearing trees.

Almost all members of the arboreal marsupial assemblage in the

wet forests of south-eastern Australia are dependent on large old

trees for nesting and denning [34,35], with some species spending

up to 75% of their lives inside such trees. These species do not

persist in areas where hollow-bearing trees are absent [34].

Therefore, the abundance of these large old trees could be an

appropriate habitat surrogate for the presence of arboreal

marsupials. While both are legitimate hypotheses, the relative or

cumulative usefulness of these two classes of surrogate has not been

previously tested.

Our evaluation of both species-based surrogates and habitat-

based surrogates was based on a 30-year dataset on arboreal

marsupials in the forests of south-eastern Australia. Specifically, we

sought to statistically quantify: (1) the effectiveness of the

abundance of a particular species of arboreal marsupial as a

species-based surrogate for other species of arboreal marsupials,

(2) the effectiveness of the abundance of hollow-bearing trees as a

habitat surrogate for the abundance of particular species of

arboreal marsupials, (3) if a particular class of surrogate was

consistently better than the other broad class of surrogate over the

30- year time frame of our work, and (4) whether a combination

of both species and habitat surrogates performed better than either

kind of proxy in isolation.

As part of examining the robustness of species-based and

habitat-based surrogates, we modeled not only individual species

of arboreal marsupials, but also the overall species richness of

animals in this group. We took this approach because estimates of

abundance can be an important part of determining the viability

of a population of a particular species – for example, animals of

conservation concern like the endangered Leadbeater’s Possum

(Gymnobelideus leadbeateri). Measuring diversity can be important to

assess the relative intactness of an assemblage and/or determine

whether the occurrence of a species-based surrogate reflects the

intactness of the rest of the assemblage of which it is a member.

We also wanted to establish whether a particular surrogate was

consistently better than the other over the 30- year time frame of

our work.

Surrogates will continue to be applied in all ecosystems

worldwide [1] and their application will underpin many programs

for environmental and biodiversity management and ecological

monitoring. The assessment and validation of surrogates is

important to avoid problems like inappropriate or weak surrogates

[29] which may lead to failed monitoring programs [36], an

inability to determine the effectiveness of management interven-

tions [37] or management mistakes [38–40]. Our case study

provides new insights into the assessment and comparison of

different kinds of surrogates and the circumstances in which

different classes of surrogates are likely to be superior.

Methods

Background: Arboreal marsupials and hollow-bearing
trees in the wet forests of Victoria

Our assessment of two kinds of surrogates entailed a case study

of arboreal marsupials and large, old, hollow-bearing trees in the

montane ash forests of the Central Highlands of Victoria, south-

eastern Australia. These forests lie approximately 120 km north-

east of Melbourne and cover approximately 60 km680 km

(37u20’–37 u 55’S and 145u 30’–146u 20’E). Further information

on the study area is available in [41].

Montane ash forests have been the focus of ecological studies for

three decades [41,42]. An objective of this research has been to

identify ways of conserving arboreal marsupials. There have been

long-held concerns about the conservation of marsupials because

of the impacts of clearcut logging [41]. Such logging operations

have a wide range of effects, including removing large old hollow-

bearing trees for periods of 150+ years, thereby significantly

impairing the development of suitable habitat for cavity-dependent

arboreal marsupials [43]. Furthermore, clearfell logging leads to

significant changes in patterns of landscape heterogeneity and fire

regimes which also have substantial negative impacts on popula-

tions of arboreal marsupials [44,45].

The arboreal marsupial guild inhabiting montane ash forests

comprises eight species: the globally endangered Leadbeater’s

Possum, the vulnerable Yellow-bellied Glider (Petaurus australis), the

Mountain Brushtail Possum (Trichosurus cunninghami), Greater

Glider (Petauroides volans), Sugar Glider (Petaurus breviceps), Feather-

tail Glider (Acrobates pygmaeus), Common Ringtail Possum (Pseu-

docheirus peregrinus), and Eastern Pygmy Possum (Cercartetus nanus).

No specific permits were required for our field studies as they

were observational investigations and no plants or animals were

harmed in any way. Permissions to enter the government land

where studies were undertaken were issued by Parks Victoria,

Melbourne Water, and the Victorian Department of Environment

and Primary Industries. All native animal species and native

woodland vegetation are protected in Australia, including

endangered birds and plants.

Field data collection
We gathered datasets on the abundance of arboreal marsupials

on 1-ha field sites and the abundance of large, old hollow-bearing
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trees on the same sites. Sites of 1 ha were used in this study

because: (1) they are broadly congruent with the known home

range sizes of our target species [46], and (2) such an area is a

tractable size for ensuring that all large hollow-bearing trees on a

site can be surveyed simultaneously by the stagwatching technique

(see below) to give an accurate count of the numbers of individuals

of each species (see [42]).

Data collection for the species-based surrogate
Our species-based surrogate was the abundance of Leadbeater’s

Possum on 1-ha field sites, which was a potential proxy for the

presence and abundance of other marsupial species, or the species

richness of the broader arboreal marsupial guild on a site.

We selected Leadbeater’s Possum as the species-based surrogate

for a suite of reasons. In particular, the animal is the target of

explicit management action and, for example, has significant areas

of forest zones specifically for its conservation [47]. Therefore,

management decisions for the species (and by default the rest of

the montane ash forest ecosystem) are based on conservation

actions undertaken for Leadbeater’s Possum. More generally,

Leadbeater’s Possum meets many of the selection criteria as a

‘‘landscape species for conservation’’ (after [48]), such as

heterogeneity in its requirements beyond simply a need for large

areas, vulnerability, and socio-economic significance (see [41]).

The field method for data collection of the species-based

surrogate was ‘‘stagwatching’’ which entails counting the abun-

dance of species of arboreal marsupials on 1-ha sites during a 1-

hour period before and after dusk as these animals emerge from

large hollow-bearing trees [41]. Stagwatching surveys have been

conducted annually since 1983 (except in 1985, 1986, 1995 and

1996) [42] and this field technique proved to be the most accurate

method for detecting Leadbeater’s Possum and other species of

arboreal marsupials in montane ash forests [41,49]. We define a

hollow-bearing tree in the following section, but note that all

hollow-bearing trees on a given site are surveyed simultaneously.

Simultaneous stagwatching is necessary for several reasons. First,

all species of arboreal marsupials swap regularly between dens in

different hollow-bearing trees and failure to stagwatch all hollow-

bearing trees at the same time could lead to the same animal being

counted multiple times and hence lead to inflated estimates of

abundance. In addition, a single hollow-bearing tree may be

occupied by any of the species of arboreal marsupials that inhabit

montane ash forests, although previous work clearly indicates that

different species exhibit a preference for trees with different

physical characteristics [50].

The behaviour of arboreal marsupials can be influenced by

factors like weather conditions; animals may remain within

hollow-bearing trees and not emerge during periods of heavy

rain. We controlled for this throughout the 30-year duration of our

work by conducting stagwatching surveys only during suitable

weather conditions in spring, summer and autumn during times of

clear skies, no rain or fog and limited wind.

For the study we report here, we used four datasets collected

between 1983 and 2012 in which all field data were gathered in

the same way. These were (in time order): (1) 146 sites

stagwatched between 1983 and 1989 [34], (2) 55 sites stagwatched

between 1990 and 1993 [35], (3) 160 sites stagwatched between

1997 and 2008 and prior to major wildfires in 2009 [42], and (4)
63 sites stagwatched between 2009 and 2012 (Lindenmayer et al.,

unpublished data). None of these 63 sites had been burned in

major fires that occurred in 2009. Altogether, there were 218 sites,

comprising distinct sets for datasets 1 and 2 plus a further 17 sites

which were in dataset 3; dataset 4 was a subset of dataset 3.

Dataset 3 had 109 sites in common with dataset 1 and 34 with

dataset 2, while dataset 4 had 39 in common with dataset 1 and 19

with dataset 2. During each of these surveys, we gathered data on

the abundance of all eight species of arboreal marsupials known to

occur in montane ash forests.

Data collection for the habitat-based surrogate
Our habitat-based surrogate was the abundance of hollow-

bearing trees on the same 1-ha sites that were surveyed for

Leadbeater’s Possum and other species of arboreal marsupials. A

hollow-bearing tree was defined as any stem . 0.5 m in diameter

at breast height containing an obvious cavity (as determined by

visual inspection with binoculars). We acknowledge that some

hollow-bearing trees may not have contained suitable cavities for a

particular species of arboreal marsupial at a particular point in

time. However, accurate determination as to whether any given

tree contained hollows suitable for a given animal is very difficult

without completing either a thorough aerial survey of each tree

(e.g. by climbing trees to physically inspect hollows) or by felling

trees and conducting dissections (although this would then

preclude subsequent surveys as the trees are removed from the

hollow-bearing tree population).

Each hollow-bearing tree on each site was mapped and geo-

referenced with a GPS, and marked using permanent painted

numbers and metal tags. This enabled us to readily revisit and re-

measure the same hollow-bearing trees on each site over time.

Surveys to quantify the collapse and recruitment of hollow-bearing

trees, (as well as to model the population dynamics of these trees)

were conducted on all sites when they were first established, and

were repeated at 3–7 year intervals thereafter (see [43,51,52]).

Each time a field site was re-surveyed, we completed an additional

reconnaissance in which all overstorey eucalypt trees on each site

were inspected with binoculars. We completed these surveys to

determine if any new cavity trees had been recruited since the

previous survey [43]. No additional hollow-bearing trees were

recruited to any of our field sites throughout the 30-year duration

of our work.

Statistical analysis
We investigated the four datasets to determine how well a

habitat-based surrogate (the number of hollow-bearing trees) and a

species–based surrogate (the abundance of Leadbeater’s Possum)

predicted the abundance of: (i) two target species, the Greater

Glider (GG) and the Mountain Brushtail Possum (MBP), as well as

how well they predicted (ii) the species richness of all arboreal

marsupials.

Abundance was measured by counting individual animals on

each 1-ha site, and values ranged in our four datasets from 0 to 11

with raw means from 0.3 to 1.1 animals per site. Species richness

was measured as the number of species observed at each site,

excluding the potential species-based surrogate. Excluding the

potential species-based surrogate was appropriate because includ-

ing it in the count would induce a relationship between the

response and explanatory variables in the model simply due to the

overlap rather than to any relationship between species. The count

ranged from 0 to 4 with raw means from 0.9 to 1.5 species per site.

We modeled the variation of the counts using the negative

binomial distribution, as this allowed for over-dispersion due to

aggregation effects across sites [53], compared to the simpler

Poisson distribution in which variation is a fixed function of the

mean. The aggregation parameter is also called the heterogeneity

or dispersion parameter, with an infinite value corresponding to

the Poisson distribution (see [53]); the variance, V, is related to the

mean, m, by the equation V = m + m2/k, where k is the

aggregation parameter.

Empirical Assessment and Comparison of Surrogates
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We used the generalized linear model facilities of the GenStat

system to fit the models, and reported the deviance associated with

explanatory terms: this is the generalization of sums of squared

deviations that is appropriate for the negative binomial distribu-

tion [53]. We checked for any evidence of zero-inflation, using the

model of [54], but found no significant effect in any of the models

fitted for the two chosen target species (but see Section 3.2).

For each of our four survey datasets, and for both of two target

species (i.e. GG and MBP), we fitted the explanatory effect of a

potential species-based surrogate (the abundance of Leadbeater’s

Possum [LP]), a potential habitat-based surrogate (number of

hollow-bearing trees [HBT]), and both together. For example, the

model with both explanatory variables was as follows, with

parameters a, b and c:

loge (Mean abundance of target species) =

a + b loge (abundance of LP + 0.5) + c loge (abundance of HBT)

We investigated linearity of each effect using cubic-spline

smoothing, extending the models to generalized additive models

[55], and compared the actual counts and the log-transformed

counts as the explanatory variable. We compared the effect sizes

and significance in the three models to evaluate which explanatory

variable was more reliably associated with the abundance of the

target species. We used the same approach to model species

richness.

Results

Target species analysis
We found that models using log-transformed counts of either

Leadbeater’s Possum or hollow-bearing trees as explanatory

variables were nearly always better than those using untrans-

formed counts, in the sense of accounting for more deviance

(Table 1, data not shown for tests on the natural scale). Moreover,

there was no significant evidence of further non-linearity of the

effects of the explanatory variables, except in two cases (discussed

below), whereas there were five such cases when using the

untransformed counts. We therefore report further results only for

the log-transformed counts as explanatory variables. We checked

the correlation between the two alternative surrogate variables

(transformed), and found it to be moderate: 0.29 (P = 0.004), 0.42

(P = 0.014), 0.10 (P = 0.208) and 0.30 (P = 0.017) for the four

datasets, respectively. Therefore, all values were significantly

greater than zero (P , 0.02) for all datasets, except for dataset 3.

We found a significant positive association of the abundance of

both target species with the habitat-based surrogate in all four

datasets, irrespective of whether the species-based surrogate was

(or was not) included in the model (Tables 2 and 3). However, the

association with the species-based surrogate was significant in only

one case (Mountain Brushtail Possum in Dataset 1, in the absence

of the effect of the habitat-based surrogate). The values of the

regression coefficients, shown in Table 2, are estimated from the

model with both log-transformed explanatory variables. This

result can be expressed as follows for the example of the model for

the Greater Glider in Dataset 1 (see Table 2).

Expected no. of GGs = 0.156 (no. of HBTs)0.71 6
(no. of LPs + K)–0.02

The quantity 0.15 here is an estimated scaling factor

representing the general level of abundance of the Greater Glider

for this dataset.

We found that most of the effect of the species-based surrogate

was confounded with that of the habitat-based surrogate, while the

reverse was not true (Table 2). We therefore summarized the fitted

models using just the habitat-based surrogate as the explanatory

variable. We illustrate the size of the effect of the abundance of

hollow-bearing trees on arboreal marsupial abundance in Table 2

and Figure 1.

As mentioned above, we found evidence of nonlinearity of the

effect of the habitat-based surrogate in two cases, even when using

log-transformed counts. The first of these was for the abundance of

the Greater Glider in Dataset 3, in the model with log abundance

of hollow-bearing trees as explanatory variable. This result was

attributable to the fact that none of the four sites with the highest

number of hollow-bearing trees (20 or more) supported the

Greater Glider, which resulted in the smoothed relationship

leveling off or even decreasing at the high end of the range of

values for the abundance of hollow-bearing trees. The second case

was for the abundance of Mountain Brushtail Possum in Dataset

4, in the model with log abundance of Leadbeater’s Possum, where

only one or no Mountain Brushtail Possums were observed at the

eight sites with the highest numbers of Leadbeater’s Possum (three

or more).

For use in comparison with other analyses using the negative

binomial distribution, and for planning new studies of counts of

animals like these, we show the estimated values of the aggregation

parameter in the fitted models in Table S1. They are mostly near

1.0, except for Dataset 2 where they were over 5.0 with large

standard errors. These values make it clear that there was

significant aggregation in each dataset, which can be attributed to

variation in the underlying mean abundance of the target species

among individual sites within a dataset.

Relationships between two potential surrogates –
Leadbeater’s Possum and the abundance of
hollow-bearing trees

We fitted models of the abundance of Leadbeater’s Possum

using the habitat-based surrogate as an explanatory variable. We

found evidence of significant zero-inflation in Datasets 1, 3 and 4,

using the zero-inflation model of Lambert [54]. The estimated

regression coefficient in the part of this model excluding the extra

zeroes, for the transformed explanatory variable (c.f. Table 2,

Separate model), was 0.29 (s.e. 0.09), 0.86 (0.33), 0.16 (0.22) and

0.28 (0.27) for the four datasets, of which only the first two were

significantly different from zero.

Robustness of the habitat-based surrogate over time
We summarized the estimated regression coefficients for all

three species of arboreal marsupial from the model using the

habitat-based surrogate, plotted against time (the average for each

dataset). Our analyses revealed that the association between the

habitat-based surrogate and the Greater Glider as well as the

Mountain Brushtail Possum was always significant and positive,

but the size of the effect differed widely between datasets gathered

during different time periods (Figure 2). In the case of Leadbeater’s

Possum, the association between the habitat surrogate and the

abundance of Leadbeater’s Possum was significant and positive in

the first two time periods, but not significantly different from zero

in the second two time periods (Figure 2).

Species richness analysis
We found that once we fitted the effect of the habitat-based

surrogate, there was little residual effect of the species-based

surrogate in predicting species richness of the whole marsupial

assemblage in any of our four datasets (Table 4 and Table S2).

This result is similar to our analysis of the Greater Glider and the

Mountain Brushtail Possum above. We did find evidence of a

positive relationship between species richness and the species-

based surrogate in Dataset 1 and Dataset 2, but a non-significant

Empirical Assessment and Comparison of Surrogates
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positive relationship in the other two datasets, showing inconsis-

tency in this relationship through time. In all datasets from each

time period, the relationship with the habitat-based surrogate was

substantially stronger than the species-based surrogate, and there

was no evidence of a relationship with the species-based surrogate

once the effect of the habitat-based surrogate had been fitted.

Discussion

The importance of assessment
Several authors (see [3,4,13,31,32]) note that the application of

surrogates in conservation management has rarely been subjected

to detailed assessment (e.g. see [22,23,25,30]). A key part of such

assessment is testing of the relative effectiveness of different classes

of surrogates [8]. However, to the best of our collective knowledge,

no such comparisons have been conducted in terrestrial systems to

date (but see [56] for a marine example).

The analyses in the study presented here indicated that the

habitat-based surrogate (number of hollow-bearing trees) always

had a stronger association with the abundance of the target species

(Greater Glider or Mountain Brushtail Possum), and with species

richness, than did the species-based surrogate (Leadbeater’s

Possum). This outcome was generally consistent with the

proposition of other authors who suggested that habitat-based

surrogates are likely to perform better than other broad classes of

surrogates (e.g. [8]). However, we suggest this proposition needs

additional rigorous empirical assessment across a range of different

ecosystems.

Based on our empirical assessment, we suggest that the

maintenance of populations of the habitat-based surrogate in our

case study would be strongly linked to the desired outcome of

conserving arboreal marsupials. Indeed, because there has

consistently been a very strong statistical association between the

habitat-based surrogate and the entities for which it is an intended

proxy (see Figure 2; Table 2), we suggest that the probability of a

misleading inference arising from the use of this surrogate is low

(see [57] for analyses in the context of medical surrogates).

Table 1. Comparison of models using log-transformed counts of the explanatory variables.

Linear effect Non-linear effect

LP HBT LP HBT

Dataset Species Scale Deviance P-value Deviance P-value Deviance P-value Deviance P-value

1 GG Log 2.95 0.086 14.66 ,0.001 0.55 0.457 0.59 0.443

MBP Log 9.22 0.002 33.70 0.001 0.12 0.73 0.89 0.35

2 GG Log 1.01 0.316 37.70 ,0.001 0.09 0.770 0.32 0.574

MBP Log 0.75 0.386 46.02 ,0.001 0.27 0.605 0.61 0.437

3 GG Log 3.20 0.074 6.51 0.011 0.35 0.555 5.83 0.016

MBP Log 2.80 0.094 9.37 0.002 0.52 0.470 2.15 0.143

4 GG Log 1.18 0.278 16.37 ,0.001 0.23 0.632 1.68 0.196

MBP Log 0.29 0.593 4.66 0.031 6.69 0.010 0.37 0.542

Comparison of models using log-transformed counts of the explanatory variables (LP abundance of Leadbeater’s Possum, HBT abundance of hollow-bearing trees)
fitted individually in negative binomial models for both target species in all four datasets (GG Greater Glider; MBP Mountain Brushtail Possum); the deviance is the
change in –2 log(likelihood); the non-linear effect is the difference between a cubic smoothing spline with 2 d.f. and a linear model on the log scale; p-values are
approximate because they are based on asymptotic properties.
doi:10.1371/journal.pone.0089807.t001

Table 2. Estimates of the regression coefficient for target species.

Habitat-based surrogate Species-based surrogate

GG MBP GG MBP

Model Dataset Estimate S.e. Estimate S.e. Estimate S.e. Estimate S.e.

Joint 1 0.71a 0.20 0.73a 0.15 –0.02 0.15 0.15 0.11

2 1.24a 0.24 1.07a 0.18 –0.14 0.24 –0.17 0.20

3 0.40a 0.15 0.58a 0.20 –0.33 0.17 0.26 0.17

4 1.78a 0.55 0.49a 0.24 –0.61 0.42 0.01 0.23

Separate 1 0.70a 0.19 0.80a 0.14 0.18 0.10 0.34a 0.11

2 1.21a 0.24 1.03a 0.17 0.34 0.34 0.25 0.30

3 0.39a 0.15 0.59a 0.19 –0.30 0.18 0.29 0.18

4 1.66a 0.52 0.49a 0.23 –0.32 0.31 0.13 0.23

aSignificantly different from 0 at the 5% level.
Estimates of the regression coefficient for the effect of the habitat-based and of the species-based surrogates fitted jointly or separately in negative binomial models for
both target species (GG Greater Glider; MBP Mountain Brushtail Possum) in all four datasets.
doi:10.1371/journal.pone.0089807.t002
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Although the association of the habitat surrogate with the two

target species (the Greater Glider and the Mountain Brushtail

Possum) was always significant and positive, the size of the effect

differed widely between datasets, target species and sites (Table 1;

Figure 2). The association between the habitat surrogate and the

abundance of Leadbeater’s Possum was significant and positive in

the first two time periods, but not significantly different from zero

in the second two time periods (Figure 2). This suggests there has

been a weakening in the association over time. However, this also

could be due to different sets of sites being used in the surveys

completed during the four different time points. The reasons for

this temporal change remain unclear, although they may be

associated with other factors beyond the availability of habitat (e.g.

local and landscape-level population dynamics), which can

influence animal occurrence. Irrespective of the reasons contrib-

uting to the temporal patterns we observed for Leadbeater’s

Possum, our findings suggest there will be limitations in using the

habitat-based surrogate to predict what would happen over time,

Table 3. Expected abundance of Greater Glider and
Mountain Brushtail Possum.

GG MBP

HBT abundance HBT abundance

Dataset 5 10 5 10

1 0.45 0.74 0.73 1.28

2 0.39 0.89 0.74 1.52

3 0.81 1.07 0.42 0.63

4 0.21 0.65 0.78 1.09

Expected abundance of Greater Glider (GG) and Mountain Brushtail Possum
(MBP) in each dataset, from the model with a log-linear effect of number of
hollow-bearing trees (HBT), for two selected values of the explanatory variable.
doi:10.1371/journal.pone.0089807.t003

Figure 1. Observed and expected abundance of Greater Glider and Mountain Brushtail Possum. Observed and expected abundance,
from the model with transformed counts of hollow-bearing trees as the explanatory variable, for all four datasets. Only one observation was greater
than 7 animals, and this is indicated as an abundance of 11 Mountain Brushtail Possums in Dataset 1.
doi:10.1371/journal.pone.0089807.g001
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or at different locations. We argue that this deficiency should be

expected because a measure like the abundance of hollow-bearing

trees provides only a partial description of the habitat require-

ments of a given species [35]; in this case it corresponds only to the

nesting resources for arboreal marsupials and not the suitability of,

for example, food resources. It is likely that in many cases, even a

Figure 2. Estimated regression coefficients. Estimated regression coefficients (with standard errors) in the fitted relationship between
abundance of three species of marsupial and abundance of hollow-bearing trees, plotted over time, together with the associated mean numbers per
site of hollow-bearing trees, and of each species of arboreal marsupial.
doi:10.1371/journal.pone.0089807.g002

Table 4. Comparison of negative binomial models for species richness.

Linear effect Non-linear effect

LP HBT LP HBT

Data set Deviance P-value Deviance P-value Deviance P-value Deviance P-value

1 6.28 0.012 28.68 ,0.001 0.68 0.408 1.61 0.204

2 5.62 0.018 32.67 ,0.001 0.70 0.404 0.71 0.399

3 0.96 0.327 16.09 ,0.001 0.07 0.796 6.05 0.014

4 0.38 0.539 12.83 ,0.001 0.98 0.321 0.98 0.322

The comparison uses log-transformed counts of the explanatory variables (LP abundance of Leadbeater’s Possum, HBT abundance of hollow-bearing trees) fitted
individually.
doi:10.1371/journal.pone.0089807.t004
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well-established habitat-based surrogate will, on its own, provide

only weak inference. This outcome could also be expected given

the inherent complexity that characterizes ecosystems, biotic

assemblages and populations, including the suite of factors that

comprise the habitat requirements of individual species (see [58]).

Key issues of efficiency and cost
Important questions that should be addressed as part of the

identification of robust surrogates are: is the surrogate logistically

efficient, and what are the costs of measuring it? Answering these

questions is important (e.g. [59]) as some applications of surrogates

appear inefficient: It may require more work to use them

appropriately through identifying, rigorously assessing and then

correctly applying them, than the direct measurement of the entity

for which it is considered indicative [3].

In our case study, surveying nocturnal and mobile arboreal

marsupials is time-consuming and labor-intensive. By comparison,

it is easier to repeatedly measure the abundance of large hollow-

bearing trees. The spatial location and abundance of these trees

can sometimes also be identified from the air (e.g. [60]). We

estimated measurement effort using experience from the past three

decades of field-based empirical work. Based on surveying an

average of 45 field sites (each supporting an average of 10 hollow-

bearing trees) per year, field surveys of arboreal marsupials would

require 450 trees63 hours per tree = 1350 hours per year = 169

person days annually. The cost of a person day is approximately

$1000 in 2012 Australian dollars (based on salary and field travel

expenses) and this converts to an annual cost of approximately

AUD $169 000 for data collection for the species-based surrogate.

Field surveys to count the 450 hollow-bearing trees on the same 45

sites would require 15 field days68 hours per day = 120 hours

per year = 15 person days per year. This corresponds to an

annual cost of $15 000 for the collection of the habitat-based

surrogate in 2012 Australian dollars. The habitat-based surrogate

was therefore .10 times less effort (and hence substantially less

costly) to measure than the species-based surrogate.

Can ecological processes underlying surrogacy
relationships be identified?

The ecological mechanisms driving pattern-based surrogacy

relationships are rarely elucidated [1,3]. In our case study, at least

four factors appear to explain habitat-based surrogacy relation-

ships. First, all species of arboreal marsupials in montane ash

forests (except the Common Ringtail Possum) nest only in cavities

within hollow-bearing trees [61]. Species such as Leadbeater’s

Possum spend up to 75% of their lives within a cavity inside a

hollow-bearing tree [62]. Second, all species of arboreal marsu-

pials swap regularly between dens and nests in different hollow-

bearing trees [63]. Therefore, only sites with numerous hollow-

bearing trees will meet these behavioral requirements. Third,

different species of arboreal marsupials tend to select hollow-

bearing trees with different external characteristics (e.g. size,

height, cavity diameter, levels of decay), suggesting inter-specific

resource partitioning [46]. Fourth, different species of arboreal

marsupials rarely co-occupy the same hollow-bearing tree [64].

Thus, many hollow-bearing trees are required to meet the

demands of multiple species of arboreal marsupials within a site.

The interaction between hollow availability and inter-specific

competition for hollows is a likely mechanism underpinning the

surrogacy relationships we describe. Although we found that the

occurrence of one marsupial species was often positively associated

with the second species, this association was relatively small and

sometimes became negative once the habitat surrogate was

included in the model. This result implies that competitive

exclusion may be occurring across some sites where hollow

resources are limiting. While this is not unexpected from an

ecological perspective, it highlights that care must be taken to

elucidate the mechanistic basis of any proposed ecological

surrogates, and consider the conditions under which those

assumptions are likely to hold [1]. Furthermore, we acknowledge

that an important caveat associated with this study was that some

hollow-bearing trees may not have contained suitable cavities for

particular species at a particular point in time. We surveyed all

hollow-bearing trees on all sites as a prelude to stagwatching all

species of arboreal marsupials on those same sites. However, tree

size, tree condition, cavity dimensions and other factors may have

resulted in some trees being inappropriate for occupancy by some

species [50]. Therefore, the total abundance of all hollow-bearing

trees on a site cannot be a complete proxy for the presence and/or

abundance of all species of arboreal marsupials nor for the overall

species richness of these animals.

Temporal reliability
The vast majority of studies of surrogates in ecology and

conservation have been snapshot investigations [1] with few

assessments of temporal robustness [30]. Our analyses indicated

that the habitat-based surrogate generally remained positive

throughout the 30-year period of the datasets used in assessment,

although the size of the effect differed widely between datasets

(Figure 2). However, we do not assume the abundance of hollow-

bearing trees will always be a reliable habitat surrogate in

montane ash forests. A particular risk is a change in the temporal

strength of the surrogacy relationship; as we observed in the case

of the Greater Glider (Figure 2). This weakening might occur as

the abundance of hollow-bearing trees declines over time (see

[65]), and there is a behavioral shift among animals to such

changes in nesting resources. It also may arise because other

processes like patch- and landscape-level population dynamics are

altered, leaving sites with otherwise apparently suitable habitat

unoccupied by arboreal marsupials.

Spatial and taxonomic boundaries for surrogacy
relationships

An important part of the application of surrogates is to define

the spatial and taxonomic boundaries within which particular

kinds of surrogate relationships are valid, but beyond which their

application is invalid and has a high risk of failure and associated

management errors (see [19]). The spatial boundaries of the

habitat-based surrogate in our case study are clear; they are

restricted to the montane ash forests of the Central Highlands of

Victoria, Australia. The relationships between the abundance of

hollow-bearing trees and the presence and abundance of arboreal

marsupials described above have not been identified elsewhere in

south-eastern Australia [66,67]. The taxonomic boundaries of our

habitat-based surrogate are also clear; they are limited to the

arboreal marsupials in montane ash forests. Relationships between

the abundance of animals and the abundance of hollow-bearing

trees are not found for other groups like birds [68] or small

terrestrial and scanscorial mammals in the montane ash forests of

Victoria [69].

Under what circumstances will a given class of surrogate
be superior?

A key question in the application of surrogates is: When will one

kind of surrogate be better than another? Based on the work we

report here, we suggest that if the habitat requirements of a given

Empirical Assessment and Comparison of Surrogates
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species were unknown or if there were very close links between two

or more taxa (e.g. a symbiotic or tight mutualistic relationship),

then a species-based surrogate would be superior. Conversely, we

believe that a habitat-based surrogate is likely to be superior when

the habitat requirements of a species are well known and there is a

readily measured limiting resource that is part of those well-known

habitat requirements. This approach would enable measurements

of that limiting resource to be used as a habitat-based surrogate.

There are many examples worldwide where a key element

structural or floristic element of the vegetation can be readily

measured and is known to be an important limiting resource for a

species or suite of taxa. Examples extend beyond large old trees

(e.g. [70,71]; reviewed by [72]) to include [73,74], large pieces of

coarse woody debris [75] and host plants for herbivorous insects

(e.g. [76]). However, if a given resource were not limiting, then

measurements of that resource would be unlikely to act as a

particularly robust habitat-based surrogate. In addition, we suggest

that the effectiveness of a habitat-based surrogate may be curtailed

for rare species that may be absent from areas of apparently

suitable habitat due to the influence of factors beyond solely the

availability of habitat. Finally, some particular habitat attributes

may be extremely difficult to measure (unlike the general category

of hollow-bearing tree in our study) and in such cases, a species-

based surrogate may be more readily and cost-effectively

measured and hence superior.

Concluding Remarks

Surrogates will undoubtedly continue to be a major component

of conservation management well into the future (reviewed by [1]).

Therefore, more rigorous assessment of surrogates, as well as

comparing broad classes of surrogates is badly needed. This

assessment can reveal which kinds of surrogates are statistically

robust, comparatively superior as well as efficient and less

expensive to measure. This work, in turn, helps determine kinds

of surrogates that will perform best in particular monitoring

programs and in helping to best quantify the effectiveness of

conservation management interventions.
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