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I. INTRODUCTION

The presence of phase dislocations in the wavefront of a
light beam determines both the phase and intensity struc-
ture around them. Since the phase becomes indetermi-
nate at the singularity point, both the real and imaginary
parts of the field amplitude (i.e. also the field intensity)
are zero [1]. Each one-dimensional π phase dislocation is
coupled with a zero-intensity line (one-dimensional odd
dark beam; 1D ODB). An isolated point singularity with
a screw-type phase distribution is associated with an op-
tical vortex (OV). The characteristic helical phase pro-
files of OVs are described by exp(imθ) multipliers, where
θ is the azimuthal coordinate and the integer number m
is their topological charge (TC). As shown [2], an m-fold
charged OV beam carries an orbital angular momentum
of mh̄ per photon independent on the spin angular mo-
mentum (i.e. on the polarization state). Recently, free
space transfer of information encoded as orbital angular
momentum was demonstrated [3], where the inherent se-
curity of the data depended on topological rather than
on mathematical encryption.

The understanding the linear spatio-temporal behavior
of focused femtosecond beams with phase singularities is
of both theoretical and experimental interest. Remark-

able spectral changes take place in the neighborhood of
phase singularities near the focus of a converging, spa-
tially fully coherent polychromatic wave [4]. Broadband
illumination leads to non-negligible chromatic effects in
the vortex region at a slight uncompensated spectral dis-
persion [5, 6].

In self-defocusing media the nonlinearity is able to
compensate for the dark beam diffraction and dark spa-
tial solitons have been generated [7–9] in a variety of
materials. In self-focusing media OV beams are unstable
[10], except the cases of partial incoherence [11], and/or
non-local nonlinear response [12]. Instability-induced
breakup of optical vortices to a controllable number of
bright spatial solitons has lead to the concepts of ’soliton
molecules’ [14] and ’soliton algebra’ [15–19]. All types
of soliton applications will benefit from ultrashort pulses
carrying spatial phase dislocations since such pulses ex-
hibit high peak intensity, enough to access optical non-
linearities in many materials. These concepts along with
the problems to generate subpicosecond helical (spin-
ning) solitons in optical fibers [20] and stable spinning
optical solitons in three dimensions [21] indicate the im-
portance of the problem. Phase dislocations in femtosec-
ond laser fields may also provide a new degree of freedom
in experiments such as phase-controlled high-harmonic
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generation.

The challenge in creating spatial phase dislocations in
short pulses with broad spectral bandwidths is to impose
the desired dislocation onto all spectral components while
keeping the pulse width and shape undistorted [22] and
the pulse front untilted. The known methods for generat-
ing phase singularities applicable in the cw and quasi-cw
regime are not suited for femtosecond lasers. Astigmatic
transverse mode converters [23, 24] can not be used di-
rectly since they require transverse modes higher than
the fundamental TEM00. The approach [25] to prepare
a Hermite-Gaussian-like (HG01) mode at the entrance
of the converter by splitting and spatially offsetting an
HG00 mode out of phase seems feasible but for femtosec-
ond pulses it requires an additional interferometrically-
controlled delay line. Because of the emitted transverse
mode in the femtosecond regime intracavity phase ele-
ments [26] and beam rotators [27, 28] are not applicable.
Transparent spiral wave plates [29, 30] are less flexible in
controlling dynamically the phase distribution as com-
pared to a liquid-crystal modulators structured in pie
slices [31, 32]. They all preserve the beam path, the last
one exhibits a high efficiency in energy conversion. In
both cases, however, the magnitude of the phase jump
of the dislocation will deviate from π for the different
spectral components of the short pulse and topological
dispersion will be present [33]. Glass platelets of a vary-
ing thickness providing linear phase retardation on one
half of a (cw) laser beam and are able to produce optical
vortices [34]. Because of the space-dependent dispersion
and time delays this technique can not be applied to ul-
trashort pulses.

A well known [35] and widely used method to gen-
erate spatial phase dislocations is the reconstruction of
computer-generated holograms (CGH). This method is
used to demonstrate screw [36, 37], step [38, 39] and
mixed type dislocations [40] as well as arrays of such dis-
locations [41] in first-order diffracted beams. In order
to impose the encoded phase dislocation onto all spec-
tral components of the ultrashort pulse while keeping the
pulse undistorted, the CGH has to be aligned as a part of
an optical system with compensated spatial dispersion.
We demonstrated recently [42] that a dispersionless 4f -
system [43–45] is one possible solution of the formulated
problem. Here we extend the investigations and demon-
strate results obtained with 20-fs laser pulses. Even well
suited for femtosecond oscillators, in schemes involving
(chirped pulse) amplifiers problems with the restless be-
havior of the dislocations and with amplified spontaneous
emission in their cores have to be expected. In the second
part of this work we show that spatial phase dislocations
can be encoded in amplified femtosecond laser pulses at
the later stage of the pulse shortening when the CGH is
build in a double-pass grating-pair compressor setup [46].

x0, x

y0, y

x , x
1

2

y , y
1

2

FIG. 1: CGH for generating an 1D ODB in a general (non-
parallel) orientation of the dislocation axis with respect to the
chosen coordinate system (x0, y0).

II. THEORETICAL MODEL

Without loss of generality, in our analysis we nor-
malize the electric field amplitude to unity and assume
that the spatial profile of the optical field is Gaussian
E ∼ exp[−(x2

0 + y2
0)/σ2], where σ is the beam width at

1/e-level and the aperture of the CGH is large enough
not to cause edge diffraction. The field evolution after
passing the CGH is analyzed by using the Fresnel inte-
gral

E(x, y, z = s) =
exp(iks)

iλs

∫ ∫
E(x0, y0, 0) exp(

iπr2

λs
)dx0dy0

(1)
and just behind it it has the form

E(x0, y0, 0) = T (x0, y0) exp[−(x2
0 + y2

0)/σ2]. (2)

In the above expressions r2 = (x − x0)2 + (y − y0)2, λ
is a particular wavelength within the generated spectral
bandwidth, k = 2π/λ, and T (x0, y0) is the grating trans-
mission function containing the phase profile ϕ(x0, y0) of
the desired dislocation. This function can be expanded
in a Fourier-series in terms of field amplitudes Cn of the
different diffraction orders n

T (x0, y0) =
∞∑

n=−∞
Cn exp[in2π(x0/d)] exp[inϕ(x0, y0)],

(3)
where d is the period of the diffraction grating imprinted
on the CGH. In the particular case of a plane phase pro-
file ϕ(x0, y0) = ϕ0 = const, Eq. 3 describes the transmis-
sion of a diffraction grating with stripes perpendicular to
the Ox0-axis (see Fig. 1). The quantity dϕ0/(2π) cor-
responds to the offset of the central transmitting stripe
from the center of the coordinate system Ox0y0. The
coefficients Cn depend on the particular profile of the
stripes. For a binary CGH of perfectly transmitting and
reflecting stripes of equal widths Cn = sin(nπ/2)/(nπ)
[47].

When a plane phase front is used at the stage of the
CGH generation, independent from the type of the en-
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coded dislocation the curvature of the CGH stripes de-
creases away from the singularity and the stripes appear
perpendicular to the coordinate axis Ox0. Since we are
interested in the ±1st diffracted order beams only, which
reconstruct the encoded phase profile, we will analyze
the electric field distribution at distances, at which the
diffracted orders are well separated.

III. CREATION OF PHASE DISLOCATIONS BY
A SINGLE CGH

The structure of the CGH for generating an 1D ODB
and the coordinate system assigned to it are shown in
Fig. 1. In the general situation of a non-parallel orien-
tation of the dislocation axis with respect to one of the
coordinate system axes the dislocation position is given
by the straight-line equation y = x tan α. The encoded
π-phase jump causes an offset of the stripes by half period
on both sides of the dislocation. This CGH (Fig. 1) can
be considered as composed from two offset identical half-
gratings. Let us assume that the grating is illuminated
by a laser beam aligned in a way that the 1D dislocation
crosses its center. The CGH transmission function can
be written in the form

T±(x0, y0) = C1 exp(i
2πx0

d
) exp{i[ϕ0+sgn(y0−x0 tan α)π/2]},

(4)
where the subscript ”±” refers to the value of the sgn-
function (i.e. to the upper or lower half of the grating).
The field just behind the grating is therefore given by

E′
±(x0, y0) = T±(x0, y0) exp[−(x2

0 + y2
0)/σ2

0 ]. (5)

It is more convenient to evaluate the diffraction integral
Eq. (1) in a coordinate system Ox1, y1 with x1-axis par-
allel to the 1D dislocation. After rotating the coordinate
system at an angle α Eq. 5 becomes

E′
y1>0(x1, y1) = exp[−(x2

1 + y2
1)/σ2

0 ]Ty1>0(x1, y1),

E′
y1<0(x1, y1) = exp[−(x2

1 + y2
1)/σ2

0 ]Ty1<0(x1, y1).
(6)

Following the beam propagation, in a coordinate system
Ox2y2 parallel to Ox1y1 but located at a distance z = s
apart of it, the electric field amplitude of the diffracted
wave E(x2, y2) is described by a sum of two integrals

E(x2, y2) = exp(iks)
iλs

[∫∞
−∞

∫∞
0

E′
y1>0(x1, y1) exp(iπr2

21
λs )+

∫∞
−∞

∫ 0

−∞E′
y1<0(x1, y1) exp(iπr2

21
λs )

]
dx1dy1,

(7)
where r2

21 = (x2 − x1)2 + (y2 − y1)2. By the substitution
y1 → −y1, denoting r2

i = x2
i +y2

i , i = 1, 2 and after some

FIG. 2: Gray-scale images of 1D ODB 17cm (top) and 35cm
(bottom) behind a single CGH, for cw (left) and fs laser beams
(right).

routine mathematics the integrals can be unified and

E(x2, y2) = 2C1
iλs exp(iϕ0) exp(iks) exp(iπr2

2
λs )×

∫∞
−∞

∫∞
0

exp(− r2
1

σ2
0
) exp(iπr2

1
λs )×

exp[−ikx1(x2 − λs
d cos α)] sin[k

s y1(y2 + λs
d sin α)]dx1dy1.

(8)
The equation describing the position of the dislocation

y2+(λs/d) sin α = 0 arises from the physical requirement
for a zero value of the electric field amplitude E(x2, y2)
of the diffracted wave at the position of the phase dislo-
cation. In a coordinate system (x, y) with axes parallel
to the initial (x0, y0) axes (see Fig. 1) the orientation of
the dislocation at arbitrary z = s is described by the
condition

y = (x− λs/d) tan α. (9)

Hence, in the course of its propagation the dislocation re-
mains parallel to this encoded in the CGH, however there
is a wavelength-dependent spatial offset (spatial disper-
sion) proportional to λs/d. The only initial orientation
of the 1D dislocation for which, for a broadband illu-
mination of the CGH, the integral intensity remains zero
along the dislocation, is when it is encoded perpendicular
to the CGH stripes (i.e. at an angle α = 0). This is intu-
itively easy to understand since the spatial dispersion is
perpendicular to the CGH stripes. Unfortunately, spatial
chirp is inevitable. Its presence can be clearly recognized
in Fig. 2 by the horizontal elongation of the beam (along
an axis, perpendicular to the grating stripes).

The gray-scale images of 1D ODB in cw and fem-
tosecond regime are obtained by changing the operation
regime of a Ti:sapphire Kerr-lens mode-locked oscilla-
tor. The oscillator being pumped by intracavity-doubled
Nd : Y V O4 (Millenia Vi) laser emits nearly transform-
limited 20-fs pulses at a repetition rate of 78MHz with
an average power of 200mW at a central wavelength of
797nm. In the measurements presented in the first part
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FIG. 3: Vertical cross-sections of the images shown in Fig. 2.
Solid squares, cw regime; open circles, femtosecond regime.

of this work binary CGH produced photolithographically
with a stripe period of d = 30µm are used and the ex-
perimental frames are recorded with a CCD-camera with
12µm resolution. In order to demonstrate the influence
of the beam diffraction, in the left column of Fig. 2 frames
of 1D ODBs in continuous-wave regime 17cm and 35cm
behind the hologram are shown. The images in the right
column are recorded at the same distances when mode-
locking was turned on. The beam broadening along the
1D dislocation due to the spatial dispersion is clearly
much stronger pronounced in the femtosecond regime as
compared to the cw one and it increases with increasing
propagation path length. In Fig. 3 vertical cross-sections
of the images shown in Fig. 2 are compared. As seen, in
both regimes the integral intensity approaches the zero-
level at the phase dislocation encoded perpendicular to
the grating stripes.

For an arbitrary orientation of the 1D dislocation the
integral intensity can not be zero since the position of the
dislocation in each monochromatic spectral component
depends on λ. Pair of perpendicular 1D phase disloca-
tions were encoded in another CGH at an dislocation-
to-stripe angle α = 45 deg. The results observed in cw-
and femtosecond regime are shown in Fig. 4 for the same
propagation distances (17cm and 35cm) after the CGH.
It is obvious that the cw quasi-2D dark beam retains its
high contrast. Due to the spatial dispersion of the CGH
the dislocations generated in the different spectral com-
ponents in the femtosecond regime are displaced and the
intensity modulation depth decreases along the propa-
gation path. This results in the formation of horizontal
grey stripes instead of a black cross.

FIG. 4: Gray-scale images of a quasi-2D dark beam formed
by crossed 1D phase dislocations, for cw and fs laser beams.
Top, 17cm behind a single CGH; bottom, 35cm behind.

FIG. 5: Gray-scale images of OV beams 17cm (top) and 35cm
(bottom) behind a single CGH, for cw and fs laser beams.

IV. TWO-DIMENSIONAL DISLOCATION AND
ANALYSIS OF THE 4f-SYSTEM

The optical vortex (OV) is a formation localized in two
transverse dimensions. When it is generated by a single
CGH the spatial dispersion displaces the vortices in the
individual spectral components. This is clearly seen on
Fig. 5, in which we show gray-scale images of OV beams
recorded at two distances behind a CGH, in both cw
and fs regime. The contrast of the broadband formation
is gradually reduced as compared to the contrast of the
monochromatic OV beam under comparable conditions.

In the expansion of the grating transmission function
T (x0, y0) (Eq. 3) the multiplier accounting for the an-
gular dispersion exp(i2πnx0/d) does not depend on the
particular form of the encoded phase profile ϕ(x0, y0).
This allows to compensate for the dispersion introduced
by the CGH by using a suitable optical system involving
an additional grating with the same period d without any
influence on the phase distribution ϕ(x0, y0). This re-
quirement is satisfied by a dispersionless 4f -system [43–
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FIG. 6: Illustration of the 4f setup that is analyzed theo-
retically. G, diffraction grating; CGH, computer-generated
hologram with an encoded phase singularity; L1, L2, lenses
of equal focal length f ; D, iris diaphragm. The input, Fourier,
and output planes are denoted by indices 0, f , and 1, respec-
tively.

45] shown in Fig. 6.
In order to obtain the evolution of the electric field

inside the 4f-setup (Fig. 6) we use the integral relation
between the field distributions in the front and back focal
planes of a thin lens

E(xf , yf ) =
1

λf

∫ ∫
E0 exp[−i

k

f
(x0xf + y0yf )]dx0dy0,

(10)
which is obtained from the diffraction integral (Eq. 1)
accounting for the transmission

t(x, y) = exp(iknd0) exp[−i
k

2f
(x2 + y2)] (11)

of the thin lens of optical thickness nd0 and focal length
f . For simplicity, the constant phase multipliers and the
quadratic phase terms introduced by the lenses are omit-
ted. The lens apertures are considered to be much larger
as compared to the spatial extent of the beam at the re-
spective planes. In the particular case of an incoming
Gaussian background beam, in the notations of the pre-
vious section, the first-order diffracted wave just after the
first grating G (see Fig. 6) is given by

E′(x0, y0) = C1 exp(−x2
0 + y2

0

σ2
0

) exp(i
2π

d
x0) (12)

and its distribution E(xf , yf ) in the back focal plane of
the first lens is

E(xf , yf ) =
σ2

0

πλf
C1 exp[− (xf − λf

d )2 + y2
f

( λf
πσ0

)2
]. (13)

The analysis of 4f-type systems has been subject of ex-
tensive research in connection with their wide application
in pulse shaping experiments [43–45]. In contrary, in this
analysis the iris diaphragm does not affect the propaga-
tion of the first-order diffracted beam passing through the
4f -system and removes all other diffracted order beams
only. Applying again the transformation Eq.(10) one gets
the field distribution in front of the CGH

E(x, y) =
C1

λ2f2
exp[−x2 + y2

(βσ0)2
] exp(i

2π

βd
x), (14)

FIG. 7: Illustration of the folded 4f setup that is used in the
experiment. CGH, computer-generated hologram; L, quartz
lens; M , silver-coated mirror.

where β is the angular magnification of the opti-
cal system. The transmission function of the first-
order diffracted beam is given [47] by T (x, y) =
A1 exp(i2πx/d) exp[iϕ(x, y)]. In this way we derived
an analytical expression for the electric field amplitude
E′(x, y) at the exit of the 4f -system:

E′(x, y) =
C1A1

(πλf)2
exp[−x2 + y2

(βσ0)2
] exp[iϕ(x, y)] exp[i

2π

d
(1 +

1
β

)x].

(15)
The last multiplier in Eq. 15 accounts for the net spatial
dispersion at the exit. For a perfect alignment β = −1
and the 4f -system is dispersion-free. Therefore, arbi-
trary oriented dark beams with phase dislocations gener-
ated in each individual spectral component are recom-
bined spatially and temporally to overlap at the exit
without spatial chirp.

The 4f -setup used in our experiment (Fig. 7) is folded
in the Fourier plane by a silver-coated mirror. A large-
aperture (2.5cm) quartz lens with a focal length f =
20cm is aligned carefully to minimize aberrations. Binary
CGH of an optical vortex is positioned in a way to recon-
struct the encoded point phase dislocation in the center
of the background beam. In the peripheral part of this
grating the stripes are parallel. This region is used as an
effective second grating to recombine the spectral compo-
nents at the exit. In Fig. 8a gray-scale images of optical
vortices recorded 35cm after the exit of the 4f setup are
shown. The frames are taken in cw- and femtosecond
regime successively by turning the mode-locking on/off
and keeping the alignment unchanged. Interference lines
in the frame recorded in cw are clearly seen. They ap-
pear due to slight overlapping of the OV beam exiting
the 4f -system with a beam reflected directly from the
CHG substrate. Due to the lack of temporal overlapping
and the reduction of the coherence length, both inter-
ference and speckles disappear in the fs regime. Unlike
Fig. 5, the contrast of the femtosecond OV is gradually
improved and can be maximized by filtering out all par-
asitic reflections. An estimation based on the visibility
of the interference structure in cw regime (Fig. 8a, left
frame) shows (10±3)% contribution of such reflections to
the background signal in the vortex core. The influence
of these reflections in fs-regime is likely to be stronger
since the directly ”reflected” broadband signal is actu-
ally dispersed in space. In Fig. 8b we show vertical (top)
and horizontal (bottom) cross-section of the cw- and fem-
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FIG. 8: Upper frames: Optical vortices recorded 35cm after
the 4f setup in the cw and the femtosecond (fs) regimes.
Graph: Corresponding vertical cross-sections of OV beams
in cw and femtosecond regime (solid squares and open circles,
respectively).
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FIG. 9: Comparison between the OV cross sections taken
parallel to the stripes of the CGH in the femtosecond regime.
Open circles, single CGH; solid squares, folded 4f setup.

tosecond OV beams (solid squares and open circles, re-
spectively). The improvement of the contrast in the OV
beam core is ones again confirmed (see Fig. 9) after com-
paring the beam profiles when a single CGH and a CGH
in a 4f -system are used.

As far as no pulse shaping is performed in the Fourier
plane, the low resolution dλ/dxf = 150nm/mm related
to the 30µm grating period is acceptable. Temporal
pulse shaping in the same 4f -system would require much
denser gratings and lenses/focusing mirrors of shorter fo-
cal lengths.

FIG. 10: Illustration of the double-pass grating compressor
that is analyzed theoretically. G, diffraction gratings; CGH,
computer-generated hologram with an encoded phase singu-
larity; l, compressor length. The planes of the gratings are
indexed successively. The CGH is assumed to stand at the
exit of the compressor.

V. CREATION OF PHASE DISLOCATIONS
SIMULTANEOUSLY TO PULSE COMPRESSION

In the following we will demonstrate that dark beams
carrying phase dislocations can be generated in two-pass
grating compressors [46] without introducing additional
spatial dispersion. One of the gratings (in this theoretical
model - the last one) has to be replaced by a CGH of a
period d equal to that of the other grating(s). The optical
scheme analyzed is shown in Fig. 10.

Analytically, the procedure consists in evaluating the
diffraction integral between the planes in which the dif-
fraction gratings are located. In order to evaluate the
field distribution in the plane (x1, y1) of the first grating
the input plane (x0, y0) is shifted at a distance z = s0 in
front of it. (This shift is arbitrary and can be later set
equal to zero.) Omitting the constant phase multipliers,
the transmission functions of each grating and the CGH
are described as follows

T (x1, y1) = C1 exp[i(2π/d)x1]
T (xj , yj) = C1 exp[−i(2π/d)xj ], j = 2, 3
T (x, y) = C1 exp[i(2π/d)x] exp[ϕ(x, y)].

(16)

Plus or minus sign in the phase corresponds to beam
propagation in the first or in the minus first diffraction
order of the respective grating. The electrical field dis-
tribution E′(x2, y2) just after the second grating can be
obtained by multiplying the field diffracted between the
(x1, y1) and (x2, y2) planes with the transmission func-
tion T (x2, y2). The field distribution needed to evaluate
the diffraction integral is a product of the field diffracted
between the (x0, y0) and (x1, y1) planes and the transmis-
sion function T (x1, y1) of the first grating. Therefore,

E′(x2, y2) = −C1
λ2s0l exp(−i 2πx2

d ) exp[ik(s0 + l)]×

∫ ∫ [
C1 exp(i2πx1

d )
∫ ∫

E(x0, y0) exp(iπr2
10

λs0
)dx0dy0

]
exp(iπr2

21
λl )dx1dy1,

(17)
where r2

ij = (xi−xj)2+(yi−yj)2, i, j = 0, 1, 2. Changing
the order of integration and integrating over x1 and y1

the field after the first pass through the compressor (i.e.
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after the second grating; see Fig. 10) is

E′(x2, y2) = C2
1

iλ(s0+l) exp[ik(s0 + l)] exp[−i πs0lλ
(s0+l)d2 ]×

∫ ∫
E(x0, y0) exp[−i2πl(x2−x0)

(s0+l)d ] exp{i πr2
20

λ(s0+l)}dx0dy0.

(18)
The evolution of the optical field amplitude during the
second pass through the compressor [between the (x2, y2)
and the output (x, y) plane] is modelled in the same way.
Since the output grating of the compressor is chosen to
be the CGH, the output electric field amplitude E′(x, y)
contains the phase multiplier ϕ(x, y). After some algebra

E′(x, y) = C2
1

iλ(l1+l) exp[ik(l1 + l)] exp[ϕ(x, y)] exp[−i πl1lλ
(l1+l)d2 ]×

∫ ∫
E′(x2, y2) exp[−i2πl(x−x2)

d(l1+l) ] exp[i πr2

λ(l1+l) ]dx2dy2,

(19)
where r2 = (x − x2)2 + (y − y2)2. After substituting
Eq. 18 in Eq. 19 and integrating over x2 and y2 the output
electric field amplitude can be written in a compact form

E(x, y) = C4
1Ediff exp{ik[s− l(λ/d)2]} exp[ϕ(x, y)].

(20)
Here Ediff is the electric field amplitude diffracted in the
course of the optical beam propagation in the compres-
sor [accurate to accumulated linear phase exp(iks); see
Eq. 1]. The first phase term in Eq. 20 accounts for the
different propagation path lengths (and transit times) of
the different spectral components, i.e. for the negative
group-velocity dispersion of the grating compressor. The
last term contains the phase profile encoded in the CGH.
Because of symmetry reasons the same result holds when
the dislocation is generated by the first grating.

In the following, the behavior of the phase disloca-
tions carried by broad bandwidth of femtosecond laser
pulses is imitated by sets of measurements conducted
with a cw laser tuned at different wavelengths. In that
sense but without loss of generality, the following exper-
iment is done as proof-of-principle one. The setup of
the ”grating compressor” is shown in Fig. 11. It consists
of two identical phase masks (PM) of optical vortices.
The PMs are phase CGHs fabricated directly on pho-
toresist with stripe periods 80µm. Their higher (30%)
efficiencies in first diffraction order and larger apertures
(1.2cm) were important in this measurement. In order
to avoid dispersion in two spatial dimensions the grat-
ings are pre-aligned under microscope on their holders
to have parallel stripes. Then, the compressor scheme is
aligned with the 532nm output of a diode-pumped solid
state laser (DPSSL, Verdi V5). Removing two mirrors
(Fig. 11, dashed boxes) the same laser is used to pump
a cw tunable Ti:sapphire ring laser (Coherent 899-21).
The respective diffracted order beams after each PM are
transmitted by two slits during the first pass through
the ”compressor”. Plane silver-coated mirror is used to
reflect the infrared beam back for the second pass. It
intentionally introduces small vertical angular tilt (along
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FIG. 11: Setup ot the proof-of-principle experiment. PM ,
phase masks (phase CGHs); D, iris diaphragm; S, slit; M ,
removable mirrors (dashed box) and folding mirror ensuring
vertical offset in the reverse pass through the system; F , filter;
L, imaging lens (f = 20cm); DPSSL, diode-pumped solid
state laser (Verdi V5); Ti : Sa, cw tunable Ti:sapphire ring
laser; CCD, charge-coupled device camera.

the grating stripes) which allows to separate the output
beam from the input one and to encode a phase singular-
ity only ones - at the entrance or at the exit of the setup -
even using identical phase CGHs. The output is imaged
by a quartz lens (f = 20cm) directly on the array of a
CCD-camera of 8µm resolution. Polarizing filter is used
to avoid saturation of the recorded signal. The PM-to-
PM distances (25cm to 58cm) are chosen such that the
individual diffraction orders can be separated. The PM-
to-folding mirror distance (limited by the half-aperture
of the PMs (1.2cm)) was chosen in the same range.

The positions of the zero-th and ±1-st order beams
diffracted from the PM at the exit of the ”compres-
sor” are compared in Fig. 12 for different wavelengths.
The particular emission wavelengths are measured with
a wavemeter (Burleigh, WA-1100). Since in this mea-
surement an OV is encoded in the beam by the first PM,
it passes through the entire system and all three output
beams carry OVs. This was done in order to use the OVs
as spatial markers. Only one of the beams passes through
the setup as it would be required a real double-pass grat-
ing compressor [46]. It is clearly seen that the OV nested
on this beam preserves its position in space. The straight
line in Fig. 12 represents a wavelength-independent OV
position accurate within a standard deviation of 2 CCD-
camera pixels when the laser wavelength is tuned in a
80nm broad spectral interval. In contrast, the positions
of the zero-order and ”idler” first-order beams (middle
and upper curve, respectively) change monotonically.

Since each ultrashort pulse is emitted having a broad
spectrum and we measure the spatial positions of the vor-
tices at discrete wavelengths, the experiment is a proof-
of-principle one. Nevertheless, taking the real spectrum
of an amplified ultrashort pulse [48] and integrating a set
of laser beam power density distributions recorded ex-
perimentally at discrete wavelengths, one can simulate
the encoding of phase dislocations in a real double-pass
grating compressor. The pairs of grayscale images inset
in Fig. 13a,b are generated in this way. Fig. 13a refers
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FIG. 12: Position of the OV at the exit for different wave-
lengths (bottom) and spatial deviation of the zero-order (mid-
dle) and idler OV beams when the dislocation is reproduced
by the first phase mask.

to the 50cm long ”compressor”, in which OV is encoded
by the first PM. Because of the diffraction the spectrally-
integrated desired OV beam (right inset) is much broader
as compared to this exiting the longer (75cm) setup but
encoded by the last PM (Fig. 13b, right inset). The un-
compensated spatial dispersion of the different spectral
components in the modelled ”idler” beam (Fig. 13b, left
inset) closely resembles the intensity distribution of an
OV generated by a single CGH (Fig. 5, right column).
The solid and dotted curves in Fig. 13a,b are diame-
tral slices of the insets of the desired and ”idler” output
beams. The gradually higher contrast of the optical vor-
tex generated in the ”compressor” as compared to the
contrast of the ”idler” vortex in both cases strongly sup-
ports the general conclusion of this analysis: Dark beams
carrying phase dislocations can be generated in chirped
femtosecond laser beams at the stage of their pulse short-
ening in two-pass grating compressors.

VI. CONCLUSION

Our analytical and experimental results demonstrate
the possibility to create spatial phase dislocations in
broadband (eg. femtosecond) optical fields by using
CGHs. In order to cancel for the introduced spatial dis-
persion these suitably designed diffraction gratings have
to be build in in 4f -setups or in double-pass grating com-

pressors. The first approach does not affect the width of
the ultrashort pulses and can be used directly with fem-
tosecond oscillators. When (chirped pulse) amplifiers are
involved in the femtosecond laser systems the phase dis-
locations can be generated in each spectral component at
the later stage of the pulse shortening in a grating com-
pressor. Our results are directly applicable to tunable
laser beams when they have to preserve the positions of
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FIG. 13: Proof-of-principle simulations with OVs encoded in
the first (a) and in the last (b) diffraction from a PM. Graphs:
Transverse cross-sections of the idler (solid) and desired OV
(dotted curve). Insets: Spectrally integrated experimental
grayscale images (idler - left; desired OV - right).

the spatial phase dislocations, as well as to encode phase
dislocations in white-light-type beams.
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