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We investigate theoretically the Čerenkov-type second-harmonic generation in two-dimensional bulk nonlinear
photonic crystal with longitudinal modulation of the χ(2) nonlinearity. We show that in this scheme the
Čerenkov radiation can be achieved simultaneously at multiple directions with comparable intensities. The
angles of emission are controllable by the spatial modulation of the nonlinearity. We propose novel design of
the periodically poled domain pattern which maximizes the efficiency of the second harmonic emission. c©
2011 Optical Society of America
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The second harmonic generation (SHG), i.e., the conver-
sion of two photons of the fundamental wave into a single
photon at the doubled frequency, is widely used to create
coherent light sources at new wavelength regions. The
SHG occurs most efficiently when the phase matching
(PM) condition is fully satisfied. This can be achieved
in nonlinear photonic crystals (NPC) [1, 2] formed by
ferroelectric domain reversal and using the quasi-phase
matching (QPM) technique [3–5]. The resulting one- or
two-dimensional modulation to the sign of the second-
order nonlinearity χ(2) enables efficient SHG complying
with the vectorial quasi-phase matching 2k1 +G = k2,
whereG is the reciprocal lattice vector and k1,k2 are the
wave vectors of the fundamental and SH waves, respec-
tively [6, 7]. Moreover, efficient SHG can also occur via
Čerenkov-type interaction that involves only fulfilment
of the longitudinal PM condition, i.e. |k2| cos θ = 2|k1|
with θ being the Čerenkov angle [8,9]. The generation of
such Čerenkov SHG is accessible in waveguide schemes
utilizing the automatically achieved PM between the
guided fundamental and radiated SH waves [10, 11]. It
is also possible to produce Čerenkov SHG in bulk NPC
[12,13], for which the presence of χ(2) modulation plays
a key role as it enhances the intensity of the emission
greatly [8, 14,15].
So far the Čerenkov-type interaction in bulk NPC

has led to the SHG only at fixed directions. With the
propagation direction of the fundamental wave coincid-
ing with ferroelectric domain walls (the boundaries be-
tween the χ(2) and −χ(2)) [see Figs. 1 (a) and 1 (b)], the
Čerenkov angle is determined by the scalar condition
cos θ = 2k1/k2 = n1/n2, with n1, n2 being the refrac-
tive indices of the fundamental and SH waves. This is
a consequence of the fact that χ(2) is only modulated
in the direction perpendicular to the beam propagation.

Therefore, in order to be able to vary Čerenkov emission
angle one has to modify the longitudinal PM condition
by introducing the χ(2) modulation along the propaga-
tion direction of the fundamental beam. In principle, this
could be realized by employing a three-dimensional (3D)
NPC [16], but the practical significance of this system
is limited due to the technical difficulties in fabricating
such 3D domain-inverted structures.
In this letter, we propose an alternative way to em-

ploy a two-dimensional (2D) NPC with the fundamental
beam propagating in the plane of χ(2) modulation [see
Fig. 1 (c)]. We show that in this geometry of interaction,
the emission angles of the Čerenkov SH are associated
with the period of χ(2) modulation. We also consider the
effect of different shapes of reversed domains on the con-
version efficiency of the Čerenkov SHG. We show in this
regard the performance of a chessboard-like structure is
superior to that of the traditional 2D structures consist-
ing of reversed domains of circular or square shapes.
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Fig. 1. (color online) (a) Čerenkov SHG with fundamen-
tal beam propagating along domain walls. (b) Definition
of domain walls. (c) Čerenkov SHG with fundamental
beam propagating in the plane of χ(2) modulation.

We analyze the spatial evolution of the amplitude
of the SH field, A2(x, y), considering the fundamen-
tal Gaussian beam propagating along the x-axis, as
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schematically shown in Fig. 1 (c). With assumptions of
non-depletion of the fundamental wave (weak conversion
efficiency) and slowly varying envelope of the SH wave,
the A2(x, y) is governed by the equation:(

∂

∂x
+

i

2k2
∇2

⊥

)
A2(x, y) = −ig(x, y)β2A

2
1(y)e

iΔkx, (1)

where Δk = k2− 2k1; A1(y) is the amplitude of the fun-
damental field and for Gaussian beam it reads A1(y) =

A0e
−y2/w2

with A0 being the maximum pump amplitude
at the center of the beam and w being the beam width;
β2 = k2χ

(2)/(2n2
2) is the nonlinear coupling coefficient;

and g(x, y) is the function characterizing the distribution
of χ(2).
To solve Eq. (1) we represent the amplitude A2(x, y)

through its Fourier spectrum and express the function of
g(x, y) as a Fourier series. Then for the spectral density
S2(x, κy) = |A2 (x, κy) |2 of the SH field, we have the
following expression:

S2(x, κy) = πw2x2Γ2/2

×(
∑

m,n=±1,±2,...
gmnsinc

[
x
(
Δk +mGx − κ2

y/2k2
)
/2
]

×e−w2(nGy+κy)
2/8)2, (2)

where Γ = −iβ2A
2
0, sinc(y) = sin(y)/y, Gx, Gy are

the primary reciprocal lattice vectors of the 2D periodic
structure, and gmn is the Fourier coefficient. From Eq.
(2) one finds that when

Δk +mGx − κ2
y/2k2 = 0, (3)

the intensity of the SH grows quadratically with the
propagation distance (x). For κ2

y/2k2 << 1 we obtain
k2 cos θ = 2k1 + mGx. This relation represent the PM
condition for Čerenkov SHG. We recover the standard
case when either m = 0 or there is no longitudinal mod-
ulation of χ(2) (Gx = 0). In Fig. 2 (a) we plot the corre-
sponding PM diagrams when m = 0,±1. It is seen that
for a given wavelength, the emission of the Čerenkov SH
can be observed at multiple directions which can be con-
trolled by varying the period of χ(2) modulation.
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Fig. 2. (color online) (a) Čerenkov SHG with m = 0,±1.
(b) Different shapes of the reversed domains: circular,
square and chessboard-like structures.

According to Eq. (2) the intensity of the Čerenkov SH
is proportional to the strength of the relevant Fourier

coefficient of the χ(2) modulation. For 2D periodic NPC,
this Fourier coefficient can be expressed as gmn =
1
CF(mGx/2π, nGy/π), where C is the area of the unit
cell and F denotes the Fourier transform of the motif
function which defines the shape of the individual re-
versed domains [5]. Thus, to obtain the highest possi-
ble conversion efficiency for a given Čerenkov SHG, one
should design the reversed domain shape such that it
maximizes the relevant Fourier coefficients gmn.

To illustrate this idea we concentrate below on three
types NPCs. The first two are the widely used struc-
tures consisting of a set of reversed domains in circular
and rectangular shapes, as schematically shown in Fig.
2 (b). The radius and the side length of the reversed do-
mains are denoted as r and l, respectively. In addition,
we also consider, a chessboard-like structure [see the bot-
tom of Fig. 2 (b)]. The fundamental difference between
the chessboard and other two patterns is that the do-
main walls, whose presence enhances the Čerenkov SH
emission, are densely distributed in the former case and
only sparsely in the latter.

                                             

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.2

0.4

0.6

0.8

1.0

g2 m
n

r/Λ

(b)

-8 -6 -4 -2 0 2 4 6 8
0.000

0.002

0.004

0.006

0.008

S 2 (
a.

u.
)

κy (μm-1)

(a)

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.2

0.4

0.6

0.8

1.0

g2 m
n

l/Λ

(c)

-8 -6 -4 -2 0 2 4 6 8
0.000

0.002

0.004

0.006

0.008

0.010

S 2 (
a.

u.
)

κy (μm-1)

(d)

(f)

-8 -6 -4 -2 0 2 4 6 8
0.00

0.01

0.02

0.03

0.04

0.05

0.06

S 2 (
a.

u.
)

κy (μm-1)

(e)

Fig. 3. (color online) Left column: Čerenkov SHG in 2D
NPC formed by circular, square and chessboard-like re-
versed domains. Right column: The effect of duty cycle.

In the left column of Fig. 3 we show the far-field SH
angular distribution calculated for the NPC with differ-
ent shapes of the reversed domains, i.e. the circular, the
square and the chessboard-like structures. In the calcu-
lations we assume the reversed domains are formed in
stoichiometric lithium tantalate (SLT) crystals and ar-
ranged into a square lattice of period Λ = 7.5 μm. We
use a fundamental beam of wavelength λ1 = 1.48 μm
and beam width w = 15 μm. In order to fairly com-
pare the performances of these three structures, we chose
for each of them the duty cycle such that it maximizes
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the Čerenkov SHG for the zero order (m = 0) emission.
Hence, r/Λ = 0.469 for the circular, l/Λ = 0.391 for the
square, and a/Λ = 0.05, b/Λ = 0.125 for the chessboard
patterns [see the right column of Fig. 3(b)]. Actually the
condition a/Λ = 0.05 is not optimal for the chessboard
structure as it allows around 82% of the maximum ef-
ficiency. The optimum occurs when a/Λ = 0.0 (or 1.0),
as shown in Fig. 3 (f), which means the rectangles along
the x direction merge into a continuous line, i.e. the 2D
structure becomes, in fact, 1D structure. Here we sac-
rifice some efficiency for the sake of additional degree
of freedom to produce multiple Cerenkov SH due to the
longitudinal modulation of χ(2). It is seen from the left
column of Fig. 3 the SH is emitted symmetrically with
respect to the direction of the fundamental beam. Its
maximum at κy = ±3.48 μm−1, corresponds to the an-
gles of ±10.96o. These values are in excellent agreement
with the Čerenkov angles (10.92o) predicted by Eq. (3)
when m = 0 and using the refractive indices reported
in [17]. These results also indicate that the Čerenkov SH
generated in the chessboard-like structure is the most
efficient, while that produced by the circular reversed
domains is the weakest. Our calculation shows that for a
10 mm-long chessboard sample a 2.8% efficiency of the
Čerenkov SHG could be achieved with pump intensity of
500 MW/cm2.
The physical origin of such different responses to the

Čerenkov SHG can be attributed to the different dis-
tributions of domain walls in these three structures. We
have previously verified that the Čerenkov SHG occurs
efficiently only on the domain wall regions [14]. More-
over, only the domain walls that are parallel to the prop-
agation direction of the fundamental wave contribute
to the Čerenkov SHG. Therefore, for the circular shape
of reversed domains, only a very small part of domain
walls participates in the the Čerenkov emission. On the
other hand, in the chessboard structure the domain walls
are continuously redistributed across the whole sample
and along the fundamental wave and hence they all con-
tribute to the Čerenkov SHG.

Finally we design the chessboard-like structure which
leads to simultaneous generation of Čerenkov SHG at
multiple directions with comparable intensities, as de-
termined by the PM relation Eq.(3). The period of the
chessboard structure is Λ =29 μm and the duty cycle is
a/Λ = b/Λ = 0.666. The SHG output calculated using
Eq. (2) after a 500 μm propagation distance is shown in
Fig. 4. (a), with fundamental wavelength λ1 = 1.2 μm.
The emission angles of these SH waves agree with those
defined by Eq. (3), with m = 0,±1,±2, respectively. In
Fig. 4 (b) we show the dependence of the output of two
Čerenkov SH (m = 0, and m = 2) on the length of the
NPC. It is clear that the Cerenkov SH radiation, which
is defined by the longitudinal PM condition only, is co-
herently growing through the sample like a fully phase
matched process.
In conclusion, we have studied the Čerenkov SHG in

2D NPC with fundamental beam propagating in the

Fig. 4. (color online) (a) Čerenkov SHG at multiple di-
rections; (b) The generated SH signal as a function of
propagation distance.

plane of χ(2) modulation. We show that in this case the
emission angles of the Čerenkov SH is controllable by the
period of the nonlinearity modulation. We also proposed
a chessboard structure which leads to much higher ef-
ficiency of the Čerenkov SHG than the commonly used
2D structures with circular or square shapes of reversed
domains.
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