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Abstract: B cell neoplasms co-opt the molecular machinery of normal B cells for their survival. 

Technological advances in cancer genomics has significantly contributed to uncovering the root 

cause of aggressive lymphomas, revealing a previously unknown link between TLR signaling 

and B cell neoplasm. Recurrent oncogenic mutations in MYD88 have been found in 39% of the 

activated B cell-like subtype of diffuse large B cell lymphoma (ABC DLBCL). Interestingly, 

29% of ABC DLBCL have a single amino acid substitution of proline for the leucine at posi-

tion 265 (L265P), and the exact same variant has also been identified in a number of lymphoid 

malignancies. The MYD88  L265P variant was recently identified in 90% of Wadenstrom’s 

macroglobulinemia patients. These recent developments warrant the need for novel diagnostic 

tools as well as targeted therapeutics. In this review, we discuss the physiological functions 

of MYD88 and focus on its role in B cell lymphomas, evaluating the potential for targeting 

oncogenic MYD88 in lymphoma.
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Introduction
From one of the earliest detailed descriptions of lymphoma cases by Hodgkin in 1832, it 

was already evident that this group of cancer is very diverse.1 Such heterogeneity poses 

significant challenges to the effective diagnosis, management and study of lymphomas. 

Following decades of progress in the understanding of the biology of white blood 

cells and ‘the hallmarks of cancers’, we now know lymphomas are characterized by 

neoplastic transformation of lymphocytes at various differentiation stages.2,3 Given 

the diversity in the subsets of lymphocytes and the numerous differentiation stages, 

from the common hematopoietic stem cell precursor to distinct differentiated states, 

the diagnosis, treatment and study of lymphoid neoplasms remain central clinical 

challenges.

The current classification of lymphomas resulted from a major collaborative effort 

by the World Health Organization (WHO) synthesizing information about the immu-

nophenotype, genetic features, and clinical characteristics, along with the traditionally 

used cell/tissue morphology to define specific clinically relevant diseases.4 The WHO 

classification broadly segregates neoplasms based on myeloid and lymphoid lineages, 

followed by sub-categorization into functional or cell differentiation stages of the 

normal counterpart of each neoplasm. The 2008 WHO classification lists more than 

one hundred tumors of the hematopoietic and lymphoid tissues, for most of which the 

underlying causes are still unknown.
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Lymphoid neoplasms are the sixth most common cancer 

worldwide, with close to one million new cases expected to 

be diagnosed each year.5 The most common hematopoietic 

tumors diagnosed are non-Hodgkin lymphoma, leukemia, 

multiple myeloma and Hodgkin’s lymphoma. B lymphocyte 

neoplasms account for about 90% of all newly diagnosed 

cases, among which diffuse large B cell lymphoma (DLBCL) 

and follicular lymphoma are the most prevalent.6

B cell lymphomas are thought to co-opt the molecular 

features of normal B cells for their survival, such that the phe-

notype of malignant B cells mirror the state of differentiation 

from which they originate. During B cell development, 

B cells express a number of DNA-modifying enzymes 

such as recombinase-activating gene (RAG1 and RAG2), 

which primarily serves to increase diversity of antibodies 

in the repertoire.7 A side consequence of such enzymes is 

the generation of chromosomal translocations, which may 

contribute to malignancy.7 Another stage of differentiation 

at which B cells are very susceptible to genomic alterations 

is the transient germinal centre (GC) stage.8 During the GC 

stage, B cells express activation-induced cytidine deaminase 

(AID), a DNA-modifying enzyme that is required for somatic 

hypermutation and class switching of antibodies.9 The off-

target effect of AID may also contribute to the oncogenic load 

in B cells.10–12 Thus, GC B cells may give rise to several types 

of lymphoma, including the diffuse-large B cell lymphoma, 

follicular lymphoma and Burkitt’s lymphoma.13

Diffuse large B cell lymphoma (DLBCL) is one of the 

most common forms of lymphoma, accounting for 30%–40% 

of all newly diagnosed cases.6 DLBCL is also currently one 

of the least curable lymphoma, with about 50% success 

using a combination of chemotherapy and rituximab.14 

With the advent of genome-wide gene expression profiling, 

DLBCL has been subdivided into three molecular subtypes.15 

The activated B cell (ABC), germinal-center B cell (GCB) 

and the primary mediastinal B cell lymphoma (PMBL) 

subtypes are histologically indistinguishable, but differ in the 

expression of hundreds of signature genes.15 The subdivision 

of DLBCL holds promise for better diagnosis and improved 

treatment regimes, even though the use of gene expression 

profiling is yet to be translated into clinical practice.

Among the three subtypes of DLBCL, the ABC subtype 

has been associated with the lowest success rates following 

standard treatment regimes.14 Interestingly, gene expression 

profiling and drug inhibition studies revealed that the ABC 

subtype has a striking dependence on signaling pathways 

activating the transcription factor NFκB.15,16 The constitu-

tive NFκB activation in ABC DLBCL could contribute to 

the poor response following chemotherapy as the targets 

of this family of transcription factors prevent apoptosis.17 

These findings emphasized the need for the development of 

therapeutics targeting NFκB signaling for the treatment of 

aggressive lymphomas.

A recent wave of progress in cancer genomics triggered 

by next-generation sequencing technologies have signifi-

cantly contributed to uncovering the root cause of the high 

NFκB activity in ABC DLBCL (Figure  1). The survival 

of this aggressive lymphoma subtype relies on signaling 

from the antigen receptor to the NFκB transcription fac-

tors, with CARD11, BCL10 and MALT1 being essential 

components of the signaling apparatus.16 In approximately 

10% of patients, gain-of-function mutations in the CARD11 

oncogene have been found to activate NFκB and prolong cell 

survival.18 In addition, about 20% of ABC lymphomas have 

mutations in CD79A or CD79B, which are rare or absent in 

GCB and other lymphoma subtypes.19 Loss of function muta-

tions resulting in the inactivation of A20, a negative regulator 

of NFκB signaling, has been found to occur in 25% of ABC 

lymphomas.20–22 Crippling the activity of A20 increases the 

activity of NFκB signaling in malignant B cells.23

More recently, high-throughput RNA resequencing 

of DLBCL has identified recurrent oncogenic mutations 

in MYD88 in 39% of ABC DLBCL tumors.24,25 These 

findings established a previously unknown link between 

TLR signaling and B cell lymphoma. Interestingly, 29% 

of ABC DLBCL have a single amino acid substitution of 

proline for the leucine at position 265 (L265P) in the TIR 

domain.24,25 The MYD88 L265P variant has also been identi-

fied in a number of lymphoid malignancies (Table 1). The 

MYD88 L265P variant was recently identified in about 90% 

of Wadenstrom’s macroglobulinemia patients, revealing 

a central pathogenic feature of this tumor.26 These recent 

developments warrant the need for novel diagnostic tools 

as well as targeted therapeutics. In this review, we discuss 

the physiological functions of MYD88 and focus on its role 

in B cell lymphomas, evaluating the potential for targeting 

oncogenic MYD88 in lymphoma.

Physiological function of MYD88
MYD88 was originally identified as a myeloid differentiation 

primary response gene in hematopoiesis.27 Following treat-

ment of myeloid cell precursors with interleukin 6 (IL6), 

the levels of MYD88 transcript was found to increase as 

cells terminally differentiated.27 MYD88 is essential for 

the mammalian innate immune response. Individuals with 

MYD88 deficiency suffer life threatening recurrent pyogenic 
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bacterial infection by Streptococcus pneumonia, Staphylococ-

cus aureus and Pseudomonas aeruginosa, suggesting that 

MYD88 plays a crucial role in the innate immune response 

in the Toll/IL1 receptor pathways.28,29 Furthermore, mice lack-

ing MYD88 also show impaired Toll receptor and IL1/IL18 

responses in addition to defects in T cell proliferation and Th1 

response.30 These defects result from the inability of signals 

to be transmitted from ligand activated receptors to the NFκB 

and JNK pathways.30 Thus, MYD88 plays a central role as an 

adaptor molecule to transducing signals from receptors such 

as Toll-like receptor/IL-1 receptor to transcription factors.

A homolog of MYD88 in Drosophila, known as Tube, 

was initially described as an adaptor protein for Toll-Dorsal 

signaling and is essential for establishing dorsal-ventral 

polarity during embryogenesis.31 Moreover, MYD88 deficient 

drosophila flies have crippled defense against fungal and 

microbial infections, and mammalian models of MYD88 

deficiency have drastically poor defense against a plethora 

of pathogens.32,33 Given the crucial role of MYD88 in the 

immune system of a wide range of organisms, it is not sur-

prising that this adaptor molecule has been evolutionarily 

conserved.

Toll like receptors (TLR) play essential roles as the danger 

sensing molecular detector in an innate immune response.34 

TLRs are type I transmembrane protein that share homology 

with the interleukin-1 receptor. In total, ten different members 

of TLRs are differentially expressed amongst different immune 

cell subtypes, each responding to a different type of stimulus.35 

Figure 1 Oncogenic mutations targeting the NFκB pathway. Oncogenic mutations frequently target the MYD88, CD79, and CARD11 (part of the CMB complex) in 
aggressive lymphomas. Consequences of these mutations include disruption to normal cellular signal transduction events such as protein phosphorylation, ubiquitylation or 
deubiquitylation, which converge onto aberrant NFκB activity, a hallmark of lymphomas with L265P MYD88. Specific inhibitors targeting (1) MYD88, (2) IRAK4, (3) Toll-like 
receptor (TLR), (4) NFkB, and BTK are currently in clinical trials. 
Note: Targeting these molecular pathways may provide effective treatment to patients.
Abbreviations: AP-1, activator protein 1; BCR, B cell receptor; BTK, Bruton tyrosine kinase; CBM, CARD11-BCL10-MALT1 complex; CD79, cluster of differentiation 79; 
Fyn, Src family protein tyrosine kinase Fyn; Lyn, Src family protein tyrosine kinase Lyn; IkBα, inhibitor of NFkB alpha; IKK, inhibitor of kB alpha kinase; IRAK1, interleukin 1 
receptor associated kinase 1; IRAK4, interleukin 1 receptor associated kinase 4; MAPK, mitogen activated protein kinase; MYD88, myeloid differentiation factor 88; NFkB, 
nuclear factor kappa-light-chain-enhancer of activated B cells; Syk, spleen tyrosine kinase; TAB1, TGF beta activated kinase 1 binding protein 1; TAB2, TGF beta activated 
kinase 1 binding protein 2; TAK1, TGF beta activated kinase 1; TGF, transforming growth factor; TLR, Toll like receptor; TNF, tumor necrosis factor; TRAF6, TNF receptor 
associated factor 6.
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Different combinations of adaptor molecules create distinct 

signaling platforms, which recruit additional signal transduction 

molecules giving rise to a range of responses governed by differ-

ential gene expression.34 Signaling by all TLRs, with the excep-

tion of TLR3, requires MYD88 as an adaptor molecule.34

During bacterial infections, macrophages form an 

important first line of defense as part of the innate immune 

response. Macrophages can be potently activated by lipopoly-

saccharide (LPS), a major component of the Gram-negative 

bacteria outer membrane, through the stimulation of Toll-

like receptor 4.34 Stimulated macrophages produce various 

cytokines such as tumor necrosis factor alpha (TNFα), IL1, 

IL6/10 and inflammatory effector chemokines.36 By using 

MYD88 deficient mice, Akira and colleagues elucidated 

the role of MYD88 in macrophage activation in response to 

endotoxin.37 MYD88 deficient mice fail to produce proin-

flammatory cytokines such as TNFα, IL1 and IL6 after LPS 

challenge.37 Cultured macrophages from MYD88 deficient 

mice show no increase in mRNA level in proinflammatory 

cytokines upon LPS treatment, highlighting the importance 

of MYD88 in response to bacterial infection.37

MYD88 signaling in B lymphocytes
B lymphocytes have also been shown to respond to LPS 

through their Toll-like receptors, resulting in proliferation 

and production of cytokines such as IL1, IL6, IL8 and 

TNFα.38 LPS activated B cells also enhance their antigen 

presentation capacity through increased MHC II expression 

as well as secretion of large amounts of LPS-neutralizing 

antibodies, such that in response to LPS MYD88 deficient 

B cells have impaired MHC II upregulation as well as poor 

proliferation and antibody secretion.37,38 The response fol-

lowing recognition of bacterial DNA by TLR9 through a 

specific CpG motif,39,40 requires MYD88 as B cells without 

the adaptor molecule fail to proliferate in response to CpG 

DNA.41 MYD88 plays central role in the response of B cells 

following various stimuli through the Toll-like receptors.

MYD88 acts as a key adaptor protein linking danger 

signals from Toll-like receptors to transcription factors, 

which regulate cellular gene expression. Molecular studies 

revealed that MYD88 forms a protein complex with interleu-

kin 1 receptor (IL1R) and interleukin 1 receptor-associated 

kinase (IRAK), a serine threonine protein kinase, in the 

presence of IL1.42,43 MYD88 is first recruited to the cyto-

plasmic tail of IL1R or TLRs following their engagement 

via homophilic TIR interactions and the formation of a 

homodimer.44 IRAK4 is then recruited to the site of activa-

tion through the interactions between the death domains, 

resulting in the activation of IRAK4 and the phosphorylation 

of the downstream protein kinase IRAK1.42 Subsequently, 

phosphorylated IRAK1 associates with TRAF6  in the 

cytoplasm and leads to the activation of the NFκB and 

MAPK pathways (Figure  1).34 Through a poorly defined 

mechanism, following IRAK1 mediated phosphorylation, 

TRAF6 disassociates from the receptor complex and forms a 

cytoplasmic complex that consists of TRAF6/TAB2/TAK1.34 

Activated TAK1 phosphorylates both the β subunit of IKK 

and MAPK kinase 6.34 Activated IKKβ in turn phosphorylate 

IκBα, leading to its ubiquitylation and proteasomal degrada-

tion, allowing the NFκB dimer to translocate to the nucleus 

and activate gene transcription that regulates cell activation, 

proliferation and immune responses.34

Oncogenic MYD88 in lymphoma
MYD88 forms an important link in the activation and 

proliferation of B cells under a number of different extra-

Table 1 Frequency of somatic MYD88 mutations in B cell 
neoplasm

Disease MYD88  
mutation

Frequency  
(case/sample)

Reference

ABC DLBCL L265P 29%# 24
ABC DLBCL Others 10%# 24
BL Other 5%# 24
CBCL L265P 69% (11/16) 70
CLL L265P 2.9% (9/310) 71
CLL M232T 2.2% (2/91) 72
CLL P258L 1.1% (1/91) 72
CLL L265P 6.6% (6/91) 72
GCB DLBCL Other 6%# 24
IgM MGUS L265P 10% (2/21) 73
LPL L265P 91% (49/54) 73
MALT L265P 9%# 24
MALT L265P 3.8% (2/53) 74
MALT 27 bp  

deletion*
1.9% (1/53) 74

MZL L265P 6.5% (3/46) 75
PCNSL L265P 36% (5/14) 76
PCNSL L103L 7% (1/14) 76
PCNSL Q143E 7% (1/14) 76
PCNSL L265P 38% (11/29) 77
SMZL L265P 13% (6/46) 78
SMZL L265P 5.1% (6/117) 79

Notes: #Percentage in published text inconsistent with calculated percentage from 
biopsy number; *deletion occurred between gene sequence 1039–1065, resulting in 
amino acid deletion between V286-T294.
Abbreviations: ABC-DLBCL, activated B-cell like diffuse large B-cell lymphoma; 
BL, Burkitt’s lymphoma; CBCL, cutaneous diffuse large B-cell lymphoma (leg type); 
CLL, chronic lymphocytic leukemia; GCB-DLBCL, germinal center B-cell like diffuse 
large B cell lymphoma; IgM MGUS, IgM monoclonal gammopathy of undetermined 
significance; LPL, lymphoplasmacytic lymphoma (Waldenström’s Macroglobulinemia 
or non-IgM LPL); MALT, gastric mucosa-associated lymphoid tissue lymphoma; 
MZL, marginal zone lymphoma; PCNSL, primary central nervous system lymphoma; 
SMZL, splenic marginal zone lymphoma.
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cellular stimuli. It is thus not surprising that defects in 

this critical signal relay molecule may result in pathol-

ogy in B cell activation and proliferation that result 

from aberrant NFκB and MAPK activity.34 ABC DLBCL 

has characteristically constitutive NFκB activity that 

enhances the proliferation and survival of the affected B 

cell populations. Sequencing studies of DLBCL samples 

and RNA interference screens using human lymphoma 

cell lines revealed MYD88 mutations are present in 39% 

of samples.24 MYD88 was found to be required for the 

survival of the cell lines through constitutive activation 

of NFκB signaling.24

The MYD88 L265P variant was recently identified in 

about 90% of Wadenstrom’s macroglobulinemia patients, 

constituting a significant clinical feature for this disease.26 

Albeit at lower frequencies, L265P MYD88 was also found 

in cases of chronic lymphocytic leukemia, splenic marginal 

zone lymphoma, primary central nervous system lymphoma 

and gastric mucosa-associated lymphoid tissue lymphoma 

(Table  1). The L265P mutation affects the MYD88 TIR 

domain, which is responsible for recruiting the protein to 

the cytoplasmic tail of TLRs to form an active complex, 

which subsequently activates the kinases IRAK1 and 

IRAK4 to signal downstream.45 A hyperphosphorylated 

slow migrating isoform of IRAK1 associates strongly with 

the L265P mutant MYD88 but not wild type MYD88 sug-

gesting a gain-of-function activity in the L265P mutant.24 

The MYD88 L265P mutation was also found to be a potent 

driver of high NFκB activity, which is characteristic of 

ABC DLBCL.24

Interestingly, in addition to enhancing NFκB signaling, 

MYD88 L265P seems to increase JAK-STAT signaling and 

interferon production, indicating the potential involvement 

of a niche microenvironment important for tumor survival.24 

STAT3 signaling induced by cytokines such as IL6 could 

provide additional survival signals sustaining lymphoma 

survival, given that transgenic mice expressing supra-

physiological amounts of IL6 develop a range of lymphoid 

malignancies, including DLBCL.46 Thus, IL6 and IL10 

production potentially form an important autocrine feed-

back loop that activates JAK-STAT signaling to enhance the 

survival of ABC DLBCL.24,47 Interestingly, overexpression 

of the L265P MYD88 variant has recently been associated 

with reduced disease free survival and increased disease 

recurrence in DLBCL patients.48 These recent developments 

highlight MYD88 as a specific target for therapeutic interven-

tion, and warrants the development of inhibitors targeting the 

MYD88-NFκB signaling axis.

Targeting oncogenic MYD88
Aberrant NFκB activation has been associated with poor 

clinical outcomes in many lymphomas and leukemia. Thus, 

effective therapeutic agents targeting the NFκB pathway may 

allow the achievement of desirable outcome for a subset of 

patients. Given the large proportion of lymphoid neoplasms 

with aberrant TLR signaling, targeting the MYD88 pathway is 

becoming an attractive option for clinicians and researchers.

Direct inhibition of MYD88
A critical event in MYD88 mediated signaling is the homodi-

merization of MYD88 through its TIR and DD domains.49 

The dimerization of MYD88 promotes its recruitment to the 

plasma membrane and docking with the TIR domain of the 

cytoplasmic tails of TLRs or IL1R, as well as the recruitment 

of IRAK4 and IRAK1 through the interaction between their 

DD domains.43,50 Given signal transduction through MYD88 

requires its homodimerization and lymphoma associated 

MYD88 mutations occur exclusively in the TIR domain, one 

appealing option would be to ‘switch off’ this signaling relay 

event so that MYD88 homodimerization and downstream 

signaling is inhibited.

TIR-TIR interaction in MYD88 is achieved by distinct 

conserved residues in a structure known as the BB-loop that 

lies between the second β-strand and the second α-helix.51 

The interference of this interaction was successfully achieved 

by the use of heptapeptides mimicking BB-loop by Sette and 

colleagues.51 When this dimerization is inhibited, significant 

reduction in NFκB activity is achieved in cells stimulated 

with IL1 or TLR agonists but not poly(I:C), a TLR3 ago-

nist, suggesting this component selectively inhibits MYD88 

dependent signaling.51 The same group also identified a novel 

synthetic compound, ST2825, which mimics the heptapeptide 

in the BB-loop of MYD88 and this compound is currently 

undergoing preclinical evaluations.52

Alternative options to specifically target MYD88-

MYD88 and MYD88-receptor interactions through the 

TIR domain would be to use small molecule inhibitors such 

as Hydrocinnamoyl-L-valyl pyrrolidine (compound 4a).53 

This particular low molecular weight compound is cell 

membrane permeable and specifically disrupts MYD88-

receptor interactions by inhibiting TIR domain interactions. 

Another peptide Pepinh-MYD developed by InvivoGen, 

which carries a 26 amino acid MYD88 homodimerization 

motif, could also potentially be used to treat lymphoma 

patients with L265P MYD88. However, these potential 

MDY88-specific therapeutic options are yet to be trialed 

in large clinical cohorts.
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Targeting IRAK4, downstream  
of receptor-MYD88 signaling
Interleukin receptor-associated kinases (IRAKs) are a key 

component of the signal transduction pathways downstream 

of IL1 receptor or TLRs, and are required for the activation 

of NFκB and MAPKs in response to the activation of these 

receptors.34 In particular, IRAK4  serves as the “master 

IRAK” by having the ability to phosphorylate and activate 

other IRAKs. The MYD88  L265P mutation result in a 

constitutively activated signaling complex, which includes 

IRAK4 and phosphorylated IRAK1.24 Since ABC DLBCL 

lines depend on kinase activity of IRAK4, but not IRAK1, 

inhibiting IRAK4 kinase activity could be a potent way of 

‘tuning down’ aberrant NFκB and MAPK pathways activated 

by MYD88 mutations.

The activation of IRAK4 is regulated by the autophos-

phorylation of three serine and threonine sites in its activa-

tion loop.54 The autophosphorylation of these key activating 

residues confer a conformation change to allow the ATP-

binding site to become activated.54 The kinase activity of 

IRAK4 is thus often targeted by small molecular inhibitors 

that bind to the ATP-binding site. In ABC DLBCL cell lines 

carrying the MYD88 L265P mutation, disrupting IRAK4 sig-

naling by a small molecule inhibitor led to the decreased 

phosphorylation of IRAK1, IκBα, NFκB p65 and STAT3 

(unpublished data). Two small molecule IRAK4 inhibitors 

(ND-2110 and ND-2158) developed by Nimbus Discovery 

are highly selective against more than 300 kinases and seem 

promising, although these drugs are still in the preclinical 

stage.

Targeting the two ends-inhibiting TLRs 
and the NFκB signaling
It has long been speculated that cognate antigen stimula-

tion might contribute to lymphomagenesis.55 Since MYD88 

physiologically serves as an adaptor molecule for TLR 

sensing pathogens, it is an attractive idea that lymphomas 

with MYD88  mutations need external or internal signals 

from TLRs for their survival. However, it remains unclear 

whether oncogenic mutant MYD88 proteins require upstream 

signaling from ligand-activated receptors for enhancing its 

activity. But, in the potential scenario where ligand-TLR 

engagement would be required for oncogenic MYD88 activa-

tion, inhibiting TLR signaling upstream of MYD88 can be a 

potential therapeutic target for treating B cell malignancies 

carrying MYD88  mutations. TLR antagonists which are 

currently under preclinical and clinical evaluation could be 

potentially used to inhibit receptor signaling.56

An alternative point at which signaling from oncogenic 

MYD88 could be interrupted would be through direct inhibi-

tion of NFκB activity. In recent years, more than 800 drugs 

that inhibit NFκB signaling have been developed, and their 

mechanisms of action have been characterized.57,58 For instance 

drugs such as emetine, bithionol, narasin and lestaurtinib 

inhibit NFκB signaling via inhibition of IkBα phosphoryla-

tion, a critical step required for activation of NFκB, while 

drugs such as bortezomib and Carfilzomib inhibit NFκB 

activity by dampening proteosomal degradation of IkBα.59 

Even though a number of NFκB inhibitors are FDA-approved 

for use in particular cancer types, inhibition of this particular 

family of transcription factors would be accompanied by a 

number of undesired side-effects. NFκB is known to have 

a critical role across many cellular processes including cell 

proliferation, apoptosis, immune responses to infection, and 

inflammation, such that the beneficial effects and potential 

collateral damage must be carefully examined.60

Combination therapy
Lenalidomide (Revlimid®, Celgene Corporation, Summit, NJ, 

USA), a derivative of thalidomide, is an immunomodulatory 

drug and currently used as a treatment of multiple myeloma 

and myelodysplastic syndromes.61,62 Although the mechanism 

of action still remains unclear, clinical trials showed lenali-

domide is effective against most lymphomas. ABC DLBCL 

had a significantly higher response rate to the thalidomide 

analog compared to GC DLBCL, indicating that one of its 

actions is a suppressive effect on the NFκB pathway.63

A recent study from Staudt et al found synergistic effects 

between lenalidomide and a BTK inhibitor, ibrutinib.64 They 

found that lenalidomide was partially toxic to ABC DLBCL 

lines by inhibiting NFκB, JAK and MYD88 signaling as well 

as augmenting IFN beta signature.64 IFN beta production and 

upregulation of IFN beta-responsive genes is characteristic 

of ABC DLBCL harboring MY88 mutations, although its 

pathological roles are still unclear since IFN beta is known 

to induce cell cycle arrest and apoptosis paradoxically.65 IFN 

beta production is induced by IRF7 in a positive-feedback 

manner and IRF4/SPIB transcription factor network represses 

IFN beta production by downregulating IRF7.66 Ibrutinib 

cooperates with lenalidomide to kill ABC DLBCL lines, 

presumably due to inducing IFN beta pathway by changing 

the balance between IRF7 and IRF4/SPIB.64

Another potential strategy of combination therapy would 

be to block IRAK4 signaling and BTK signaling in synergy. 

This strategy is consistent with the observation that survival 

of ABC DLBCL cell lines require a signal through both the 

submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

58

Wang et al

www.dovepress.com
www.dovepress.com
www.dovepress.com


Blood and Lymphatic Cancer: Targets and Therapy 2013:3

TLR and the BCR as knocking down CD79  molecule of 

the BCR signaling compartment synergistically kills ABL-

DLBCL cell lines with MYD88 knockdown.24 Therefore syn-

ergistic killing of lymphoid neoplasms with L265P MYD88 

using a combination of IRAK inhibitor and BTK inhibitor 

strongly indicate that most potent therapy should target both 

the TLR and BCR pathways simultaneously.

Concluding remarks
Recent discoveries have uncovered the involvement of 

L265P MYD88  in a number of diseases, but the effects 

of this oncogenic variant remain unclear. Future research 

would help elucidate the effects of deregulated MYD88 

on cellular signaling pathways, the activity of transcription 

factors, and gene expression changes. However, from the 

initial biochemical characterization of oncogenic MYD88, it 

is apparent that several key signaling pathways are disrupted 

such that effective therapeutic strategies would involve multi-

pronged approaches with combination of specific agents 

targeting biochemically distinct pathways simultaneously. Such 

therapeutic regimes remain to be evaluated in large cohorts of 

patients, and a factor central to evaluation of the effectiveness 

of such treatment regimes would be the appropriate selection 

of patients. Recently, a number of diagnostic tools have been 

developed to specifically detect the presence of the L265P 

MYD88 variant in clinical samples.67–69 With the refinement 

of these diagnostic methods and the development of targeted 

therapeutics, clinicians would, in the near future, be in a better 

position to provide treatment options to previously incurable 

diseases.
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