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A systematic method for approximating the ab initio electronic energy of crystal lattices has been im-
proved by the incorporation of long range electrostatic and dispersion interactions. The effect of these
long range interactions on the optimization of the crystal structure is reported. The harmonic lattice
dynamics have been evaluated to give phonon frequencies and neutron scattering intensities. Ex-
emplary results are reported for diamond, silicon, and α-quartz using Hartree–Fock, Möller–Plesset
perturbation, and coupled-cluster levels of ab initio theory. © 2011 American Institute of Physics.
[doi:10.1063/1.3581845]

I. INTRODUCTION

A number of groups1–18 have reported successful meth-
ods for estimating the ab initio electronic energy (and other
properties) of large molecules by breaking the molecule into
fragments. In the simplest approaches, the energy of the
whole molecule can be estimated from sums and differences
of the energies of the fragments. The number of atoms in the
fragments is unrelated to the size of the original molecule,
but the number of fragments is proportional to the num-
ber of atoms in the whole molecule. Hence, the ab initio
computation time is only linearly proportional to the num-
ber of atoms in the molecule. A systematic method12, 13 of
this type has been presented which provides a hierarchy of
fragmentations: producing fragments of larger size at higher
“levels of fragmentation,” which provide increasingly reli-
able estimates of the molecular energy (albeit at increasing
cost).

This systematic fragmentation approach has been applied
to the crystal structures of nonconducting materials,19 as well
as to molecules. The infinite crystal structure is represented by
a sum (and difference) of a relatively small number of molec-
ular structures, which are infinitely periodically reproduced
to give the whole crystal. The energy (and other properties)
of the crystal (per unit cell) can be estimated from ab initio
calculations on a few relatively small molecules. Hence, the
computational cost of estimating the energy of a crystal is in-
dependent of the number of atoms in the crystal. The relative
energies of different crystal phases of the same compound can
be estimated using this method. Moreover, this fragmentation
method can be applied to cleaved crystal surfaces and chemi-
cal reactions on such surfaces.20 A major advantage of this ap-
proach over other electronic methods for crystals21–27 is that
any of the ab initio methods established for molecules can
be easily applied to crystals. The major limitation of this ap-
proach is that it cannot be usefully applied to metals or other
conducting materials, where the electronic wavefunctions are
intrinsically delocalized.

a)Author to whom correspondence should be addressed. Electronic mail:
michael.collins@anu.edu.au.

This paper improves the accuracy of the previously pub-
lished fragmentation method in two ways: employing a more
accurate distributed multipole description of the local electron
density which improves the description of long range elec-
trostatic interactions, and by including van der Waals or dis-
persion interactions at long range. Examples of the effect of
these long range interactions on the crystal structure are pre-
sented. The paper also presents, for the first time, calculations
of the harmonic lattice dynamics of crystals via systematic
fragmentation. Comparison of results for phonon frequencies
with neutron scattering experiments demonstrates the utility
of the approach.

The paper is set out as follows. Section II presents a
brief summary of the published method for systematic frag-
mentation of crystals and of how energies and other prop-
erties are calculated. Methods for accurately estimating long
range electrostatic and dispersion interactions are also pre-
sented. Section III contains some details of the calculation of
phonon frequencies and scattering intensities. Applications of
the method to diamond, silicon, and α-quartz are presented
in Sec. IV to demonstrate the accuracy and utility of the ap-
proach. Some concluding remarks are contained in the final
section.

II. METHODS

A. Systematic fragmentation

The fragmentation of molecules, crystals, and crystal sur-
faces has been described in detail previously, so only an ab-
breviated summary is included herein. Molecules and crystals
are viewed as collections of functional groups connected by
single bonds, where functional groups have the usual chem-
ical meaning. In crystals, a functional group might often be
an atom. Atoms which are formally connected by multiple
bonds are contained in the same functional group. The funda-
mental step in fragmenting a structure is as follows: (i) break
one bond to give a new structure (1); (ii) do not break this
bond, but break another bond which is separated from the first
by NLevel functional groups to give a new structure (2); break
both bonds in the original structure to give structure (3); add
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structures (1) and (2) and subtract structure (3) to give a com-
posite structure. Repeat this process on all parts of the com-
posite structure until there are no bonds separated by NLevel

functional groups. This approach is made systematic simply
by carrying it out with NLevel = 1 (called Level 1 fragmenta-
tion), then with NLevel = 2, NLevel = 3, and so on. A simple
example is illustrative. A simple one-dimensional “crystal,”
based on a unit cell containing three functional groups, ABC,
is represented by

C (1D) ≡ ....An−1Bn−1Cn−1AnBnCnAn+1Bn+1Cn+1.... (2.1)

At Level 1, the crystal is fragmented into an infinite se-
quence of one and two functional groups:

C (1D)
Level1 →

∞∑
n=−∞

[
Bn−1Cn−1+Cn−1An+AnBn

−Cn−1 − An − Bn

]
. (2.2)

At Level 2:

C (1D)
Level2 →

∞∑
n=−∞

[
Bn−1Cn−1An+Cn−1AnBn+AnBnCn

−Bn−1Cn−1 − Cn−1An − AnBn

]
.

(2.3)

The fragments, e.g., Cn-1An, are “capped” with hydrogen
atoms, as previously described.12, 13 The total electronic en-
ergy of the one-dimensional array is approximated at Level 2
by

E (Level2)
1D

=
∞∑

n=−∞

[
E (Bn−1Cn−1An) +E (Cn−1AnBn) +E (AnBnCn)
−E (Bn−1Cn−1) − E (Cn−1An) − E (AnBn)

]
,

(2.4)

where, for example, E (Bn−1Cn−1An) denotes the electronic
energy of the molecule HBCAH. The geometry of the BCA
fragment is the same as that in the crystal, and the H atom
caps are positioned along the corresponding bonds in the crys-
tal. Inspection of the terms inside the square brackets in Eqs.
(2.3) and (2.4) shows that there is a net residual (after addi-
tion and subtraction) of one of each of the groups A, B, and
C. The net energy in the square brackets in Eq. (2.4) is an esti-
mate of the energy per unit cell. As the Level of fragmentation
increases, this energy is evaluated with increasing account of
the bonding environment of each group.

A computer algorithm can apply the Level K fragmenta-
tion procedures to any crystal structure in three dimensions,
as previously reported.19 The position of any atom in a crystal
is given by

x(i, l1, l2, l3) = x(i, 0, 0, 0) + l1a(1) + l2a(2) + l3a(3), (2.5)

where i numbers the atoms in a unit cell, up to N, the {a(j)}
represent the lattice vectors, and (l1, l2, l3) are integers that
enumerate the unit cells in the crystal. When the crystal is
fragmented, some fragments can be associated with the “cen-
tral unit cell,” for example, the terms in the square brackets
of Eq. (2.3) with n = 0. A fragment that is associated with
the central unit cell is denoted by Fn(0, 0, 0). A fragment that
is related to this by a simple lattice translation is denoted by
Fn(k1, k2, k3), and by definition if x(i, l1, l2, l3) is contained

in Fn(0, 0, 0), then x(i, k1 + l1, k2 + l2, k3 + l3) is contained
in Fn(k1, k2, k3). Corresponding to Eq. (2.3), the fragmenta-
tion of a crystal lattice can be denoted by

C →
∞∑

k1=−∞

∞∑
k2=−∞

∞∑
k3=−∞

Nfrag∑
n=1

cn Fn(k1, k2, k3), (2.6)

where the {cn} are simple integers. As examples, the supple-
mentary material28 presents such fragmentations of α-quartz
at Levels 1 to 4. The corresponding energy of the entire crystal
lattice is then given by

Ecrys
b =

∞∑
k1=−∞

∞∑
k2=−∞

∞∑
k3=−∞

Nfrag∑
n=1

cn En[{x[m(i), l(i) + k],

i = 1, . . . , Na(n)}], (2.7)

where En is the electronic energy of the fragment Fn, Na(n)
is the number of groups in the nth fragment, and x is the
Cartesian vector defined in Eq. (2.5). We have denoted this
energy with a subscript b, to indicate that this energy is asso-
ciated with the bonded interactions between functional groups
in the crystal. At Level 1, fragments only contain at most
two bonded groups, and only the energy due to bonding be-
tween nearest neighbor groups is accounted for in Eq. (2.7).
At Level 2, second nearest neighbor effects are accounted for,
and so on.

Since, every unit cell in a crystal has the same composi-
tion and structure, the energy of the crystal per unit cell, due
to bonded interactions, can be estimated as

EUC
b =

Nfrag∑
n=1

cn En [{x[m(i), l(i)], i = 1, . . . , Na(n)}].

(2.8)

The energy of a crystal fragment is a function of the posi-
tions of all the atoms in that fragment. Of course, the energy is
independent of the six Cartesian coordinates that specify the
position and orientation of the fragment.

1. Additional symmetry

The number of fragments, Nfrag, depends on the number
of groups in the unit cell and on their bonded connectivity. For
example, silicon has eight atoms (groups) in the conventional
unit cell, all connected to four other atoms. At Level 2, Nfrag

= 24, consisting of eight Si(SiH3)4 and 16 Si2H6 fragments.
Because silicon has such high symmetry (all Si atoms lie at
the center of equivalent tetrahedra), all eight Si(SiH3)4 have
the same structure (and energy), and all 16 Si2H6 fragments
have the same structure (and energy). Hence, it is only neces-
sary to evaluate the energies of one Si(SiH3)4 and one Si2H6

fragment in order to evaluate EUC
b in Eq. (2.8). In practice,

no two fragments have exactly the same structure, since the
position of the atoms is not known to infinite precision. For
example, the Cartesian positions may be obtained from ex-
perimental data only to five or six significant figures. If two
fragments are sufficiently close in structure, their energies are
equal to many significant figures, and only one energy cal-
culation is required. However, if the difference between the
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two structures exceeds some tolerance, then separate energy
and gradient evaluations are necessary. For example, in opti-
mizing the geometry of a crystal, the symmetry of the initial
crystal structure may be broken, and optimization should pro-
ceed without enforcing a false symmetry. The algorithm for
matching structures and subsequent manipulation of their en-
ergies and energy derivatives is described in Appendix A.

B. Nonbonded effects

Equation (2.8) only accounts for the electronic energy
associated with functional groups and the bonding between
those groups. However, functional groups may be well sepa-
rated in a crystal in terms of bonding, but be close enough in
space that there is a non-negligible energy of interaction be-
tween them. These relatively long range interactions are eval-
uated using perturbation theory.

In a previous paper,19 these long range interactions were
enumerated in terms of a many-body expansion. More recent
work14 on fragmented molecules has shown that a more effi-
cient approach is provided by a so-called “Level 1 ↔ Level 1”
description. The case of crystals differs somewhat from that
of molecules, so some details are presented herein. As an aid
to understanding, we begin with a treatment of nonbonded in-
teractions that is simpler than the one we actually employ. We
could approximate a crystal as a sum of individual groups:

C →
∞∑

k1=−∞

∞∑
k2=−∞

∞∑
k3=−∞

N∑
n=1

Gn(k1, k2, k3). (2.9)

The energy due to the pairwise interaction of these groups
with one another would be denoted by

Epairs = 1

2

∞∑
k1=−∞

∞∑
k2=−∞

∞∑
k3=−∞

N∑
n=1

∞∑
j1=−∞

∞∑
j2=−∞

×
∞∑

j3=−∞

N∑
m=1

E[Gn(k1, k2, k3) ↔ Gm( j1, j2, j3)],

(2.10)

where E[Gn(k1, k2, k3) ↔ Gm( j1, j2, j3)] is the interaction
energy between two groups:

E[Gn(k1, k2, k3) ↔ Gm( j1, j2, j3)] = E[Gn(k1, k2, k3),

Gm( j1, j2, j3)] − E [Gn(k1, k2, k3)] − E
[
Gm( j1, j2, j3)

]
.

(2.11)

In Eq. (2.10), self-interactions, Gn(k1, k2, k3)
↔ Gn(k1, k2, k3), are excluded from the sum. Rather
than amend this “two-body” expression to account for
many-body effects, we note that the crystal can be expressed
as a Level 1 fragmentation:

C →
∞∑

k1=−∞

∞∑
k2=−∞

∞∑
k3=−∞

Nfrag∑
n=1

cn F (Level1)
n (k1, k2, k3).

(2.12)

The interaction energy can then be expressed as

ELevel1↔Level1

= 1

2

∞∑
k1=−∞

∞∑
k2=−∞

∞∑
k3=−∞

Nfrag∑
n=1

∞∑
j1=−∞

∞∑
j2=−∞

∞∑
j3=−∞

Nfrag∑
m=1

×cncm E
[
F (Level1)

n (k1, k2, k3) ↔ F (Level1)
m ( j1, j2, j3)

]
,

(2.13)

where self-interactions of groups are also excluded. The Level
1 fragments contain one or two functional groups, so the in-
teraction energy

E
[
F (Level1)

n (k1, k2, k3) ↔ F (Level1)
m ( j1, j2, j3)

]
= E

[
F (Level1)

n (k1, k2, k3), F (Level1)
m ( j1, j2, j3)

]
−E

[
F (Level1)

n (k1, k2, k3)
] − E

[
F (Level1)

m ( j1, j2, j3)
]

(2.14)

contains up to four-group interactions (thinking in terms of a
many-body expansion). In principle, the nonbonded energy of
Eq. (2.13) could be systematically improved by using higher
Level fragmentations. However, calculations on molecules
have shown that Eq. (2.13) is sufficiently accurate.14 Now, we
are only concerned with evaluating the energy of a crystal per
unit cell. Hence, we will evaluate

EUC
Level1↔Level1 = 1

2

∞∑
k1=−∞

∞∑
k2=−∞

∞∑
k3=−∞

Nfrag∑
n=1

Nfrag∑
m=1

cncm E

× [
F (Level1)

n (k1, k2, k3) ↔ F (Level1)
m (0, 0, 0)

]
.

(2.15)

That is, we evaluate the interaction energy of all Level 1
fragments in the “central unit cell” with all other fragments in
the crystal. In practice, when the distance between fragments
is sufficiently large, this interaction energy is negligibly small.
Hence, the infinite sums in Eq. (2.15) in practice reduces to a
sum over fragments within some moderately large distance
from fragments in the central unit cell (20–50 ao in our calcu-
lations). This truncation of the sums is justified for nonferro-
electric materials, where every unit cell has a net zero dipole
moment as well as zero net charge. We restrict our attention
herein to such nonferroelectric materials.

Now we have indicated that self-interactions are excluded
in Eq. (2.15). In addition, the interaction energy of groups
which occupy common fragments has already been accounted
for in the bonded energy of Eq. (2.8). For example, if the
bonded energy of Eq. (2.8) was evaluated for a Level 2
fragmentation, all interactions between nearest neighbor and
second nearest neighbor groups has been evaluated. Hence,
such interactions are excluded in Eq. (2.15). Details of how
such interactions are excluded are given in Ref. 14 for the
corresponding nonbonded interactions in molecules. There-
fore, Eq. (2.15) describes the interaction of groups which are
at least third nearest neighbors (γ substituents) in terms of
bonding. Such groups are normally separated by more than
a few angstrom. Hence, we can evaluate all the interaction
energies in Eq. (2.15) using perturbation theory.29 The long
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range interaction energy between molecules can be decom-
posed into contributions from electrostatic, dispersion (Van
der Waals), and induction effects. We have found, from stud-
ies on molecules and clusters, that induction effects due only
to long range electrostatic interactions are very small and are
neglected herein. However, long range induction effects might
be more significant in ionic crystals, and might need to be in-
corporated in such cases. We evaluate the long range electro-
static interactions using ab initio calculations of the charge
distributions of the Level 1 fragments in Eq. (2.15). These
charge distributions are represented by multipole moments
distributed on all the atoms in the fragments, calculated using
Stone’s GDMA program30 and the ab initio electron density
at the level of ab initio theory employed for the calculation
of the crystal energy. Ab initio calculations of the static polar-
izability and imaginary frequency dependent polarizability of
the functional groups are carried out to determine the disper-
sion interactions between groups at long range. The details
of these calculations have been presented previously in the
context of molecular energies.14 It is important to note that all
these long range interaction calculations are based on ab initio
calculations of molecular properties and contain no adjustable
or empirical parameters.

Explicitly, the nonbonded energy per unit cell is given by

EUC
nb = EUC

Level1↔Level1(electrostatic) + EUC
dispersion. (2.16)

Here the electrostatic energy is the sum of interactions
between fragments:

EUC
Level1↔Level1(electrostatic)

= 1

2

∞∑
k1=−∞

∞∑
k2=−∞

∞∑
k3=−∞

Nfrag∑
n=1

Nfrag∑
m=1

cncm Eelect

× [
F (Level1)

n (k1, k2, k3) ↔ F (Level1)
m (0, 0, 0)

]
. (2.17)

The fragment interactions are sums of atomic interac-
tions:

Eelect
[
F (Level1)

n (k1, k2, k3) ↔ F (Level1)
m (0, 0, 0)

]
=

∑
i∈F (Level1)

n

∑
j∈F (Level1)

m

Eelect (i, j) . (2.18)

Each atom in each fragment has a charge, q, dipole
moment, μ, and quadrupole moment, �, as evaluated by
the GDMA program. Eelect(i, j) is given by the electrostatic
interactions of these moments [see Eq. (3.2.1) in Ref. 29]. For
convenience, we have used Cartesian multipole moments. The
electrostatic interactions depend on powers of the inverse dis-
tance between the atoms, T = ‖x( j) − x(i)‖−1, and deriva-
tives of this distance with respect to the interatomic position
vector. From earlier studies of electrostatic interactions in
molecules, it was determined that distributed moments higher
than the quadrupole make a negligible contribution to the
electrostatic interaction at the distances relevant to Eq. (2.17).

The dispersion interaction is calculated as a pairwise in-
teraction between groups in the central unit cell with all other

groups

EUC
dispersion = 1

2

∞∑
k1=−∞

∞∑
k2=−∞

∞∑
k3=−∞

N∑
n=1

N∑
m=1

×Edisp [Gn(k1, k2, k3), Gm(0, 0, 0)] . (2.19)

Again, in Eq. (2.19), self-interactions and interactions
between groups that occupy common fragments in the bonded
energy evaluation are excluded. Letting α(n, k1, k2, k3) rep-
resent the Cartesian static polarizability tensor of group
Gn(k1, k2, k3), X(n, k1, k2, k3) represent the average
Cartesian position of all atoms in Gn(k1, k2, k3), and T
= ‖X(n, k1, k2, k3) − X(m, 0, 0, 0)‖−1, then (in atomic
units):

Edisp [Gn(k1, k2, k3), Gm(0, 0, 0)]

= −Tαβ Tγ δααγ (n, k1, k2, k3)αβδ(m, 0, 0, 0)

[
2

Pn Pm

Pn + Pm

]
,

(2.20)

where repeated indices are summed. The Pn factors are eval-
uated from the imaginary frequency polarizability for group
Gn , as previously described.14 This factor is a scalar, and is
almost independent of small changes in the structure of the
group. The infinite sums in Eq. (2.19) are truncated by ex-
cluding interactions where the groups are separated by more
than 20–50 ao. Equation (2.20) retains the full anisotropy of
the dispersion interaction. For isotropic polarizabilities, Eq.
(2.20) reduces to the familiar “R−6” Van der Waals interac-
tion. At higher levels of fragmentation, these nonbonded in-
teractions only occur between groups that are separated by
large distances. A perturbation expansion for the interaction
would not be valid at shorter distances where the electron
densities of the groups might significantly overlap. Hence,
nonbonded interactions are also excluded if the distance be-
tween atoms in Level 1 fragments or groups is too small; here
taken to be 1.5 times the sum of the Van der Waals radii of the
atoms.

The total crystal energy per unit cell is given by

EUC = EUC
b + EUC

Level1↔Level1(electrostatic) + EUC
dispersion.

(2.21)

1. Additional symmetry

Because the groups within one unit cell may be nearly
structurally equivalent, the set of Level 1 fragments may con-
tain only a very few structurally distinct molecules. Continu-
ing the silicon example above, there is only one unique Si2H6

and one SiH4 structure in the set of Level 1 fragments. Hence,
the distributed multipole electrostatic moments, the static po-
larizability tensor, and the P factor need only be evaluated for
one or two distinct structures. The tensor quantities are then
rotated to the orientation required for each individual frag-
ment in the Level 1 set or the set of groups, as described in
Appendix A. Thus, the evaluation of the nonbonded energies
only requires ab initio calculations on a very few molecular
structures.
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C. Geometry optimization

In order to determine the minimum energy structure for
a crystal, we must evaluate the gradient of the crystal energy.
It is also convenient to evaluate the second derivatives of the
energy for geometry optimization, as these second derivatives
will also be employed in the lattice dynamics calculations.
Those details of these calculations which have been presented
previously13, 19 will be omitted here.

1. The bonding energy

Under periodic conditions, the gradient of the total en-
ergy with respect to the position of atom j in unit cell k is
independent of k. Thus, it is sufficient to evaluate the gradient
of the potential energy surface (PES) with respect to atoms in
the unit cell denoted by k = (0,0,0).

∂ Ecrys
b

∂xα( j, 0)
=

∞∑
k=−∞

Nfrag∑
n=1

Na (n)∑
i=1

×cn
∂ En [{x[m(i), l(i) + k], i = 1, . . . , Na(n)}]

∂xα[m(i), l(i) + k]

×δ j,m(i)δl(i)+k,0, (2.22)

where δ denotes the Kronecker delta, and δl(i)+k,0 should be
understood as a product of three Kronecker delta functions,
one for each vector component. Since all k values are in-
cluded in the sum in Eq. (2.17), the value k = −l(i) is present
in the sum, so that δl(i) + k, 0 = 1 for some value of k.
This means that there are contributions to the energy gradi-
ent ∂ Ecrys

b /∂xα( j, 0) from every fragment in Eq. (2.8) which
contains the jth atom in some unit cell. Effectively, the energy
gradients which are assigned to atoms in the central unit cell
are gradients of the bonding energy per unit cell, EUC

b .
The capping hydrogen atoms, contained in each frag-

ment, contribute to the energy gradient for the atoms in the
bond which has been broken, since the position of the H
atom is determined completely by the positions of the bonded
atoms. The position of each H atom is taken to lie along the
“missing” bond vector at a distance that is proportional to the
expected ratio of bond lengths. That is

x(H) = x(i) + rad(i) + rad(H)

rad(i) + rad( j)

[
x( j) − x(i)

]
, (2.23)

where x(i) denotes the Cartesian position of the atom in the
fragment, x( j) denotes the Cartesian position of the bonded
atom not in the fragment, and rad(i) denotes the covalent ra-
dius of atom i. Thus, for each capping H atom contained in
a fragment, the gradient of the fragment energy with respect
to that cap is in fact a gradient of the lattice energy with re-
spect to the two lattice atoms that define the position of the
cap. However, each capping H atom appears in Eqs. (2.6) and
(2.7) in fragments with coefficients, cn, which sum to zero.
Hence, the net contribution of the H atom caps to the total en-
ergy gradient is small. The near cancellation of the effects of
the H atom caps on the energy is discussed in more detail in
Ref. 12.

The energy of the crystal depends on the unit cell pa-
rameters (the lattice vectors) because the relative positions
of the atoms outside the central unit cell depend on the lat-
tice vectors, as shown in Eq. (2.5). The gradient of the crys-
tal bonding energy per unit cell can be found from Eq. (2.8)
from

∂ EUC
b

∂aα(υ)
=

natom∑
i=1

∂ EUC
b

∂xα(i)

∂xα(i)

∂aα(υ)

=
natom∑
i=1

∂ EUC
b

∂xα(i)
lυ(i), α = 1, 2, 3; υ = 1, 2, 3,

(2.24)

where natom is the number of atoms which occur in at least
one fragment in Eq. (2.8). Again, the H atom caps con-
tribute to the gradients with respect to the lattice parame-
ters, since the H atom cap position depends on the positions
of the originally bonded atoms, which depend on the lattice
parameters.

2. The nonbonded energy

The gradient of the long range electrostatic energy with
respect to atomic positions in the unit cell and with respect to
the lattice parameters is determined, by the chain rule, by the
gradients of the pairwise atom–atom interaction, Eelect (i, j).
An example of a multipole–multipole interaction contribution
to Eelect (i, j) would be μα(i)Tαβγ �βγ ( j) where repeated in-
dices are summed. There are three distinct contributions to the
derivatives of such terms. First, the T tensors depend simply
on the relative distance between the atoms, and the derivatives
of these tensors with respect to x(i) and x(j) are easily eval-
uated. Second, if an atom in one fragment is infinitesimally
displaced, the orientation of that fragment is infinitesimally
rotated. The dipole and quadrupole moments of all atoms
in that fragment are correspondingly rotated. This infinites-
imally changes the interaction energy. This type of contribu-
tion to the electrostatic energy has been calculated for a num-
ber of test cases. It has been found that this contribution to
the energy gradient is 2 orders of magnitude smaller than that
arising from the T tensors. The computation time for this very
small contribution is high, so all such effects have been ne-
glected. The third contribution to the derivatives of Eq. (2.18)
arises from the fact that if an atom in one fragment is infinites-
imally displaced, the shape of the fragment is changed, and
the distributed charges, dipoles, and quadrupole moments of
all the atoms are infinitesimally changed. Evaluation of this
contribution to the energy gradient would require evaluation
of the derivatives of the charge distribution of a fragment with
respect to its structure. This requires a very substantial com-
putational effort for what might be expected to be an effect
as small as that due to the infinitesimal rotations above. This
third contribution is also neglected herein. As the examples
below demonstrate, neglect of these very small contributions
to the energy gradient do not cause noticeable problems in the
geometry optimization, at least in these cases.

Downloaded 03 Jun 2011 to 150.203.34.18. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



164110-6 Michael A. Collins J. Chem. Phys. 134, 164110 (2011)

The pairwise dispersion energy derivatives are given by
(repeated indices are summed):

∂ Edisp [Gn(k1, k2, k3), Gm(0, 0, 0)]

∂ Xε(n, k1, k2, k3)

= − [
Tεαβ Tγ δ + Tαβ Tεγ δ

]
ααγ (n, k1, k2, k3)αβδ

×(m, 0, 0, 0)

[
2

Pn Pm

Pn + Pm

]
. (2.25)

3. Hessians

The second derivatives of the bonded energy with respect
to the positions of the atoms and the lattice parameters are
evaluated by chain rule in a similar manner to Eqs. (2.22) and
(2.24). This approach also provides the mixed derivatives

∂2 EUC
b

∂xβ( j, 0)∂aα(υ)
=

∑
k

natom∑
i=1

∂2 EUC
b

∂xβ( j, k)∂xα(i)
lυ(i),

α = 1, 2, 3; β = 1, 2, 3; υ = 1, 2, 3, (2.26)

where x( j, k) is the position of any j atom in the fragments of
Eq. (2.24).

4. Additional symmetry

As noted above, many fragments that are required to eval-
uate the bonding energy are equivalent in structure for some
crystals. In such cases only one instance of the equivalent
structures need have the energy evaluated ab initio. Similarly,
the energy gradients in Eq. (2.22) need only be evaluated for
one instance of equivalent structures. The gradients for an-
other equivalent structure are obtained by rotation of the ab
initio calculated gradient, with reassignment of the atomic
gradients to the appropriate atom in the other structure. A
computer algorithm, described in Appendix A, is used to ex-
amine all fragments to determine which structures are unique
and which are relabeled, rotated copies. After ab initio eval-
uation of the gradients (and second derivatives) of the unique
structures, another algorithm permutes and rotates the gradi-
ents (and hessians) to match the relabeled, rotated copies.

5. Fractional coordinates

The first and second derivatives of the energy with
respect to all xβ( j, 0) and aα(υ) are evaluated as above.
In many crystal structures, the relative positions of atoms
within the unit cell may be approximately constant during
a geometry optimization, in the sense that their fractional
coordinates are nearly constant. The fractional coordinates
{z( j, l), j = 1, . . . , N ; l = 1, . . , 3} are related to the Carte-
sian positions of the atoms in the unit cell by

x(i, l1, l2, l3) = z(i, 1)a(1) + z(i, 2)a(2) + z(i, 3)a(3)

+l1a(1) + l2a(2) + l3a(3). (2.27)

The derivatives of the energy with respect to the 3N
Cartesian coordinates are therefore transformed into deriva-
tives with respect to the 3N fractional coordinates. The opti-
mization of the crystal geometry with respect to the 3N frac-

tional coordinates and the nine lattice parameters is carried
out as described in Appendix B.

D. Phonon modes

1. Frequencies

The formalism for the evaluation of the lattice vibrations
is standard, with the relevant force constants obtained within
the fragmentation approximation. In the limit of low ampli-
tude motion of the atoms, we write the instantaneous position
of each atom as

x(i, l1, l2, l3, t) = x(i, l1, l2, l3) + δx(i, l1, l2, l3, t), (2.28)

where x(i, l1, l2, l3) is given by Eq. (2.5). We define mass-
weighted coordinates:

yα(n, l1, l2, l3, t) = √
mnδxα(n, l1, l2, l3, t). (2.29)

We define

Fαβ(n, l1, l2, l3; m, j1, j2, j3)

= ∂2 Ecrys

∂yα(n, l1, l2, l3)∂yβ(m, j1, j2, j3)

∣∣∣∣
y=0

(2.30)

and note that

Fαβ(n, l1, l2, l3; m, j1, j2, j3)

= Fαβ(n, 0, 0, 0; m, j1 − l1, j2 − l2, j3 − l3), (2.31a)

= Fβα(m, 0, 0, 0; n, l1 − j1, l2 − j2, l3 − j3). (2.31b)

That is, because of the translational symmetry of the
equilibrium lattice structure, the force constants only depend
on the relative locations of the atoms. So, the equations of
motion are

d2 yα(n, l1, l2, l3, t)

dt2
= −

∑
m, j1, j2, j3,β

Fαβ(n, l1, l2, l3; m, j1, j2, j3)

×yβ(m, j1, j2, j3, t). (2.32)

We set

yα(n, l1, l2, l3, t) = uα(n; q, ω) exp
[
i(q·x(n, l1, l2, l3) − ωt)

]
,

(2.33)

where q is the phonon wavevector. Then a little standard al-
gebra gives

ω2uα(n; q, ω) =
∑

m, j1, j2, j3,β

Fαβ(n, l1, l2, l3; m, j1, j2, j3)

×uβ(m; q, ω) exp{iq·[x(m, j1, j2, j3)

−x(n, l1, l2, l3)]}. (2.34)

This is a standard matrix eigenvalue problem for the
phonon frequencies ω(q) and eigenvectors u(n; q, ω). These
eigenvectors are clearly complex, and in practice we solve
the 6N coupled equations for the real and imaginary parts of
u(n; q, ω). The harmonic force constants of Eq. (2.30) are cal-
culated from the second derivatives of each term on the rhs
of Eq. (2.21). The energy derivatives of the bonding energy
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arise from the energy derivatives of each fragment: each such
derivative can be assigned to the complete Hessian via Eqs.
(2.31a) and (2.31b), since we know which crystal atoms are
contained in each fragment, or which crystal atoms defined
each H atom cap in each fragment. For the long range electro-
static and dispersion energies, we can evaluate all the energy
derivatives of Eqs. (2.17) and (2.19) which involve the central
unit cell atoms, and assign these to the complete Hessian via
Eqs. (2.31a) and (2.31b).

2. Neutron scattering intensities

The 6N × 6N real symmetric matrix derived from Eq.
(2.34) has 6N real eigenvalues, but these are pairs of 3N
distinct values of ω2(q). At a stable equilibrium all 3N
vibrational frequencies, ω(q), are real. These phonon mode
frequencies can be measured in inelastic optical, x-ray, or
neutron scattering. However, not all 3N phonon modes have
significant intensity in a particular scattering experiment.
To assign observed peaks in a neutron scattering experiment
(for example) to calculated phonon frequencies, it is useful
to calculate the expected intensity of each peak. Here, the
neutron scattering intensity for one phonon, Ineut[ jq], is
evaluated from the standard formula31:

Ineut[ jq] ∝ 1

ω j (q)

∣∣∣∣
N∑

κ=1

(mκ )−1/2bκ exp [−Wκ (Q)] Q·e(κ| jq)

× exp[i (Q − q) x(κ, 0, 0, 0)]

∣∣∣∣
2

×δ (Q − q − 2πH) , (2.35)

where the sum is over all the atoms in the central unit cell,
mκ is the atomic mass, bκ is the coherent neutron scattering
amplitude for each atom,32, 33 Q is the neutron scattering
vector, Wκ (Q) is the Debye–Waller factor,31 H is a Bragg
vector in the lattice reciprocal space, and e(κ| jq) is the
(complex) eigenvector for the jth eigenvalue from Eq. (2.34).
Q, H, and q are related by

Q = 2πH + q. (2.36)

In order to evaluate the rhs of Eq. (2.35) for a particular
phonon mode, the experimental value of Q (or equivalently
the Bragg vector H) must be known. For each value of the
phonon wavevector q, there are 3N phonons, j = 1, . . ,
3N, but often only a subset of these phonons has significant
intensity, due largely to the Q·e(κ| jq) factor in Eq. (2.35).
The Debye–Waller factor for each atom31 is evaluated by a
Monte Carlo summation over the allowed q vectors in the
Brillouin zone.

III. RESULTS

A. Structure and energy

The geometries of α-quartz, silicon and diamond have
been optimized using selected levels of fragmentation, with
Hartree–Fock and Möller–Plesset perturbation (MP2) meth-
ods with various Dunning correlation-consistent basis sets.

Tables of results are included in the supplementary material.28

Note that the nine lattice parameters (the Cartesian compo-
nents of the three lattice vectors) and the fractional coordi-
nates of all atoms in the conventional unit cell are free param-
eters in the geometry optimization. However, the number of
each type of element in the unit cell is fixed. Hence, the op-
timization does not explore alternative minima which might
be found for unit cells containing more (or less) atoms. More-
over, the optimization was initiated at the experimental geom-
etry in each case. The supplementary material28 also presents
tables of the energies of the optimized lattices, relative to the
corresponding gas phase atoms.

It is important to note that it is only possible to make
a qualitative comparison between these theoretical and ex-
perimental structures since (i) the theoretical structures are
minimum energy geometries and contain no account of ther-
mal (or even zero-point) averaging; and (ii) the experimental
structures represent thermal averages (including net thermal
expansion).

1. α-quartz

The geometry of α-quartz was optimized at Levels 2 and
3 at the MP2 level of ab initio theory with the cc-pVDZ
and aug-cc-pVDZ basis sets . There are no large qualitative
changes in the bond lengths, bond angles, or dihedral an-
gles in the structure, compared to the experimental values.
However, there are many small quantitative differences be-
tween, for example, the MP2/aug-cc-pVDZ and experimental
geometries: on average, Si..O bond lengths differ by 0.0046
Å, bond angles differ by 1.7◦, and dihedral angles differ by
1.1◦. The matrix of second derivatives of the crystal energy
with respect to the fractional coordinates and the lattice pa-
rameters (hessian) is positive semidefinite (six eigenvalues
are near zero, the rest are positive) at the optimized geom-
etry. However, the initial (experimental) geometry has some
negative eigenvalues for the hessian at this level of theory.
This implies that the experimental geometry is near to a local
maximum energy configuration, albeit also very close to an
energy minimum. Taking the long range interactions into ac-
count leads to a minimum that is further distorted from the ex-
perimental structure: The Si..O bondlengths differ by 0.007 Å,
bond angles differ by 2.0o, and dihedral angles differ by 3.5o,
on average.

Figure 1 presents the energy of the Level 3/MP2/aug-cc-
pVDZ optimized geometry, evaluated using the MP2, CCSD,
and CCSD(T) methods at different Levels of fragmentation,
including the long range electrostatic and dispersion energies.
Note that the lattice energy appears to converge with respect
to the Level of fragmentation. The energy difference between
Levels 3 and 4, for all three ab initio methods, is only about
5 kJ mol−1, and about 23 kJ mol−1 between Levels 2 and 3.
It is also important to note that the CCSD and CCSD(T) en-
ergies only differ by about 7 kJ mol−1 at the higher levels of
theory, while the MP2 method gives lattice energies which are
about 100 kJ mol−1 below the CCSD(T) values. The supple-
mentary material28 shows that dispersion is more important
than the electrostatic interaction at long range; at the optimum
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FIG. 1. The energy (in kJ per mole of SiO2) of the optimized α-quartz lattice
(not including the zero point energy) is shown as a function of the Level
of fragmentation: (•) CCSD(T), (o) CCSD, (�) MP2. The energy is given
relative to that of Si + O + O in the gas phase.

geometry, the electrostatic interaction is about 1 – 2 kJ per
mole of SiO2, while the dispersion energy is about –15 to –16
kJ mol−1.

2. Silicon

For silicon, the supplementary material28 shows that the
optimum Si..Si bond length varies slightly with level of ab
initio theory and level of fragmentation. It is not possible to
fragment the lattice above Level 3 in this case. For Level 4,
capping H atoms on different “ends” of a fragment would
be very close. The “ring-repair rule,” employed in molecu-
lar fragmentation to overcome this problem,13 would result
in complete reconstitution of the whole lattice. The Si..Si
bondlengths at Levels 2 and 3 are very similar. The long
range forces associated with Enb are dominated by dispersion
in this case (the electrostatic interaction is about 0 to –1 kJ
per mole of Si, while the dispersion energy is about –5 to
–8 kJ mol−1). Not surprisingly then, incorporation of these
attractive long range forces leads to a slight contraction of
the Si..Si bondlength. For example, the Level 3/MP2/aug-cc-
pVDZ Si..Si bondlength of 2.3636 Å contracts to 2.3543 Å
with account of the long range forces. The long range disper-
sion interactions lower the lattice energy by about 8 kJ per
mole of silicon atoms.

The lattice energy of silicon (see supplementary
material28) also varies substantially with the level of ab ini-
tio theory. At Level 3, the CCSD(T) lattice energy is about 26
kJ mol−1 above the corresponding MP2 value. The CCSD(T)
energy falls by about 34 kJ mol−1 from Level 2 to Level 3;
larger than the corresponding value of 23 kJ mol−1 for α-
quartz. Hence, although the lattice energy of α-quartz ap-
pears to be reasonably converged by Level 3 fragmentation,
the same may not be true for silicon.

3. Diamond

For diamond, it is not possible to fragment the lattice
above Level 2. Here, capping H atoms on different “ends”

of a fragment would be very close for both Levels 3 and 4,
and the ring-repair rule reconstitutes the whole lattice. The
supplementary material28 shows that the optimum C..C bond
length varies slightly with the level of ab initio theory. The
long range forces associated with Enb are again dominated by
dispersion. Thus, incorporation of these attractive long range
forces leads to a contraction of the C..C bondlength. For ex-
ample, the Level 2 MP2/aug-cc-pVDZ C..C bondlength of
1.5447 Å contracts to 1.5339 Å with account of the long range
forces. The long range dispersion energy is large, about –17
kJ mol−1 , compared to –8 kJ mol−1 for silicon. Although
the static polarizability of a silicon atom is about three times
larger than that of a carbon atom, the imaginary frequency po-
larizability for carbon is larger than the corresponding silicon
response, and most importantly, the shorter C..C bondlength
ensures that nonbonded C. . . .C interactions occur at shorter
distances than for the corresponding Si. . . .Si interactions. The
total lattice energy of diamond (see supplementary material28)
also varies substantially with the level of ab initio theory. At
Level 2, the CCSD(T) lattice energy is about 43 kJ mol−1

above the corresponding MP2 value.

B. Phonon frequencies

Phonon frequencies were evaluated for a range of phonon
wavevectors, using the positions of all atoms in the conven-
tional unit cell in Eq. (2.34). The intensity associated with
each frequency was evaluated using Eq. (2.35). The figures
below present only those phonon frequencies with associ-
ated intensity above a given minimum [intensities were eval-
uated using the reciprocal lattice point H = (101̄) or (100) in
Eq. (2.36)].

1. Silicon

Phonon frequencies were evaluated for silicon at the opti-
mized geometries for each level of ab initio theory employed.
Figure 2 presents a comparison of frequencies determined
by inelastic neutron scattering34, 35 with those calculated at
Level 3 fragmentation, using the MP2/aug-cc-pVDZ method
with account of long range electrostatics and dispersion. The
calculated frequencies in Fig. 2 are characteristic of the val-
ues obtained at fragmentation Levels 2 and 3 with all basis
sets, with or without long range interactions. The supplemen-
tary information28 shows tables of the average variation of all
phonon frequencies with variation of the ab initio and frag-
mentation methods. These data show that the most significant
variation of the frequencies is produced by changing the level
of fragmentation; the frequencies at Level 3 differ from those
at Level 2 on average by about 0.4 THz (13 cm−1). Figure 3
illustrates the improved agreement between calculation and
experiment that is obtained by increasing the fragmentation
Level from 2 to 3. The long range interactions also change
the frequencies; on average by 0.18 THz (6 cm−1) for Level
2, and by 0.15 (5 cm−1) for Level 3. The data suggest that a
major part of the frequency shift due to long range interactions
is due to the associated change in optimized geometry. We re-
call that the attractive long range dispersion interaction leads
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FIG. 2. Frequencies for silicon are shown for phonon wavevectors, q, along
the [100], [110], and [111] directions with respect to the axes of the con-
ventional unit cell. The reduced wavenumber is defined as |q| divided by a
maximum value: For [100] and [111] this maximum is the value of |q| at the
Brillouin zone edge, while for [110], it is 4/3 of the value of |q| at the Brillouin
zone edge. The dotted lines are the calculated values (Level 3/MP2/aug-cc-
pVDZ + Enb) and the symbols with error bars denote the experimental values
from Refs. 34 and 35.

to a contraction of the equilibrium bond lengths. The sec-
ond derivatives of the bonding energy, Eb, are different at this
contracted geometry. Using a Lennard-Jones (12,6) potential
as a simple model, a little algebra shows that an addition to
the long range attractive component contracts the equilibrium
bond length, and produces an increase in the equilibrium sec-
ond derivative due to the repulsive part of the potential.
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FIG. 3. Frequencies for silicon are shown along [110] (see Fig. 2), calculated
at Levels 2 and 3 at MP2/aug-cc-pVDZ using Eb + Enb.

Figure 2 clearly indicates that ab initio evaluation of the
lattice vibrational frequencies can produce quantitative agree-
ment with experimental data. It is important to note that these
are the results of a “first-principles” calculation with no ad-
justable parameters.

2. Diamond

Figure 4 presents a comparison of frequencies deter-
mined by inelastic neutron scattering36, 37 with those cal-
culated at Level 2 fragmentation, using the MP2/cc-pVTZ
method.

Again, these results are qualitatively characteristic of the
values obtained using the MP2 method with all basis sets,
with or without long range interactions (see the supplemen-
tary material28). An example of the effect of the long range in-
teractions is presented in Fig. 5. The variation of the frequen-
cies due to long range interactions is larger in magnitude than
in silicon, albeit that the frequencies are larger in diamond by
a factor of about 2–3 on average. Across all basis sets and
phonon wavevectors, the mean variation in the phonon fre-
quencies caused by long range interactions is about 0.53 THz
(18 cm−1), compared to 0.13 THz at Level 2 for silicon. The
principal cause of these changes in the phonon frequencies is
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FIG. 4. Frequencies for diamond are shown for phonon wavevectors, q,
along the [100], [110], and [111] directions with respect to the axes of the
conventional unit cell. The reduced wavenumber is defined as |q| divided by
a maximum value: For [100] and [111] this maximum is the value of |q| at the
Brillouin zone edge, while for [110], it is 4/3 of the value of |q| at the Brillouin
zone edge. The dotted lines are the calculated values (Level 2/MP2/cc-pVTZ)
and the symbols with error bars denote the experimental values from Refs. 36
and 37.

due to the change in the lattice constant caused by the rel-
atively large long range dispersion interactions (see above).
The agreement between calculation and experiment evident
in Fig. 4 has been achieved using only Level 2 fragmentation.
This accounts for an ab initio estimate of the first and second
nearest neighbor interactions.
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FIG. 5. Frequencies for diamond are shown for phonon wavevectors, q,
along the [100] direction as in Fig. 4. The frequencies have been evaluated
with Level 2 fragmentation at the MP2/aug-cc-pVDZ level of theory with (•)
and without (◦) the long range nonbonded interactions.

3. α-quartz

Phonon frequencies were evaluated for α-quartz at the
optimized geometries for fragmentation Levels 2 and 3, us-
ing the MP2 method with the cc-pVDZ and aug-cc-pVDZ
basis sets. Figure 6 presents a comparison of the experi-
mental data38 (for phonons along the [001] direction in the
conventional unit cell) with the calculated values for Level
3/MP2/aug-cc-pVDZ. All calculated phonon frequencies are
shown. Figure 7 presents the corresponding data where the
nonbonded interactions have been taken into account.

Although there is substantial qualitative and quantitative
agreement between the experimental and calculated values,
there are also significant differences. In the low frequency
region, there is generally good agreement between theory
and experiment. Note that the inclusion of the long range in-
teractions improves the agreement between calculation and
experiment for the lowest frequency acoustic mode. The sup-
plementary material28 tabulates the variation of the phonon
frequencies with basis set, level of fragmentation, and account
of long range forces. The most notable difference between
theory and experiment in Figs. 6 and 7 is seen for the high-
est energy optical modes, where theory consistently underes-
timates the frequencies.

There are a number of possible causes of this disagree-
ment for the high frequency modes, including: a larger basis
set and/or a higher level of ab initio theory are necessary, and
that the harmonic approximation for the frequencies is inad-
equate. To explore the effect of much larger basis sets and
alternative levels of ab intio theory on these frequencies, we
have considered a model compound, (SiH3)O(SiH3). It was
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FIG. 6. Frequencies for α-quartz are shown for phonon wavevectors, q,
along the [001] direction with respect to the axes of the conventional unit
cell. The reduced wavenumber is |q| divided by the value of |q| at the Bril-
louin zone edge. The dotted lines are the calculated values (using Eb only), for
Level 3/MP2/aug-cc-pVDZ, and the symbols denote the experimental values
from Ref. 38.

found that other ab initio methods, using basis sets up to aug-
cc-pVTZ, do not give SiOSi stretching frequencies higher in
value than MP2/aug-cc-pVDZ, which suggests that more reli-
able ab initio methods would not raise the calculated phonon
frequencies. Although the masses for oxygen and silicon are
relatively large, anharmonic effects on the phonon frequencies
may be significant. As noted above, the experimental crys-
tal structure appears to be near a local energy maximum at
MP2/aug-cc-pVDZ, although also very close to the minimum
energy structure. The supplementary material28 also shows
that the inclusion of long range forces further distorts the bond
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FIG. 7. The corresponding data to Fig. 6, except that the calculated values
are obtained using Eb + Enb at Level 3/MP2/aug-cc-pVDZ.

lengths, angles, and dihedrals from the experimental values.
Hence, it would appear that the energy surface for this crystal
features low energy maxima near energy minima, and that the
minimum energy structure is easily distorted by the addition
of small forces. Hence, a simple harmonic model of the PES,
near the minimum, may not be very accurate. A complete an-
harmonic description of the PES is beyond the scope of this
paper.

IV. DISCUSSION

The method of systematic fragmentation for the calcu-
lation of phonon frequencies has been presented and applied
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to three quite different cases. Although silicon and diamond
have the same structure, they have very different electronic
structures (one is an insulator, the other a semiconductor)
and different lattice dynamics. α-quartz has a much more
open crystal structure, lower symmetry, and more compli-
cated phonon spectrum. The quality of all the results indicates
the promise of this approach generally.

There are limitations on the application of this approach.
When the electronic structure is “delocalized,” as in a metal,
systematic fragmentation is unlikely to be accurate. From
our studies of molecular energies, Level 1 fragmentation is
not normally or reliably accurate enough to answer chemical
questions. Figure 1 implies that Level 1 fragmentation is also
not likely to be an accurate description for crystal energetics.
For molecules, Level 2 fragmentation can often be accurate
enough to provide useful estimates of chemical properties,
and Fig. 4 indicates that Level 2 can be useful for estimat-
ing phonon frequencies. Systematic fragmentation is likely to
be most useful for those crystal structures which are “open”
in character, that is, not dominated by small rings. In such
cases, the H atom caps do not spuriously interact with one an-
other, and a sufficiently long sequence of Levels of fragmenta-
tion can be employed to verify convergence and accuracy (as
exemplified by the case of α-quartz). Molecular crystals are
likely to be amenable to systematic fragmentation since no
H atom caps are required to restore the valency when weak
intermolecular “bonds” are broken.

A major advantage of applying systematic fragmentation
to crystals is that reliable, high levels, of ab initio theory can
be employed. This means that a hierarchy of methods and
basis sets can be used to determine convergence of energies
and properties. For example, the supplementary material28 in-
dicates that diffuse basis functions have a significant impact
on estimates of the total lattice energy in the cases studied
herein. The treatment of long range effects has been improved
here, relative to earlier work,19 by the incorporation of disper-
sion and distributed-multipole electrostatics, evaluated within
a Level 1 – Level 1 description of nonbonded interactions.
This treatment has been shown to improve the accuracy of
estimation of molecular energies for a substantial number of
molecules.14 Hence, one can use high levels of ab initio the-
ory combined with better estimates of long range interactions
to evaluate lattice energies more accurately. We have demon-
strated that this approach gives an apparently convergent esti-
mate of the lattice energy for α-quartz. The approach can be
just as easily applied to many different crystals and to poly-
morphs of the same material, as in an earlier study of several
polymorphs of silica.19 The method is not limited by the sym-
metry, composition, or size of the crystal unit cell. Hence, the
relative lattice energies of different crystal phases can be es-
timated. The evaluation of phonon frequencies allows at least
an estimate of relative free energies of different crystal phases.

The application of accurate molecular quantum chem-
istry methods to crystals has also recently been pursued by
different methods, which are related to the systematic frag-
mentation presented herein. Sode et al.39 have applied a pair-
wise interaction approach to a chain model of crystalline hy-
drogen fluoride, taking account of the charge distribution of
the crystal environment. They also included anharmonic ef-

fects in their calculation of phonon frequencies. As noted
above, the expansion of a lattice energy in terms of separate
localized interactions is particularly appropriate for molecu-
lar crystals. Beran and Nanda40 have recently shown that the
lattice energies of some molecular crystals could be obtained
accurately using MP2 calculations of pairwise interactions at
short range with long range interactions treated with polar-
izable molecular mechanics force fields. The recent method,
which is closest in spirit to systematic fragmentation, is the
use of a hierarchy of fragments or clusters. Nolan et al.41

have developed this approach with application to LiH, which
has the rock salt structure. All the above methods only re-
quire calculation and combination of energies, rather than
wavefunctions. The “method of increments”42–44 is similar in
spirit to fragment molecular orbital theory4, 5 in using a lo-
calized representation of orbitals to construct the correlation
energy of crystals. All these methods stand in contrast to den-
sity functional theory (DFT), which is the dominant paradigm
for the electronic structure of crystals and lattice dynamics.27

The usual argument against the use of DFT is that it is not
amenable to systematic improvement, and so it’s accuracy
cannot be independently estimated. Moreover, the results of a
DFT calculation depend critically on the functional and any
pseudopotential employed. This type of method cannot be
truly a “first principles” approach. However, it remains to be
seen if alternative methods, such as systematic fragmentation
combined with high level ab initio methods, can surpass DFT
in terms of accuracy and utility.

The estimation of long range interactions may require
further improvement. For silicon and diamond it is not sur-
prising that dispersion is the dominant long range interaction,
since the Si and C atoms have no charge or dipole moment.
For α-quartz, the Si and O atoms are charged, but the unit
cell as a whole has no net charge or net dipole moment (only
ferroelectric materials have a net dipole moment for the unit
cell). Here the long range electrostatic interaction is not neg-
ligible, though still much smaller than the dispersion interac-
tion. Of course, it may be that the long range electrostatic in-
teraction dominates long range dispersion for other crystals.
If the unit cell has a net quadrupole moment, then the long
range quadrupole–quadrupole interaction decays more slowly
(R−5) with distance than the dispersion interaction. If the long
range electrostatic interaction is significant, it is then likely
that induction due to the associated electric field should also
be taken into account. We have routinely included this long
range induction in calculations of molecular energies,14 but
have neglected it herein as it has appeared to be very small.
For ferro-electric materials, the dominant long range electro-
static interaction would be due to dipole–dipole interactions,
with vary with distance as R−3. The sum of these interactions
between one unit cell and all other cells does not converge,
and one has to take the boundary conditions into account. It
is likely then that the effect of long range induction would
also have to be evaluated for such materials. Hence, if long
range electrostatic interactions are large, the treatment of long
range induction (already used for molecules) would need to
be implemented for crystals. The previous investigation of in-
duction effects and the treatment of dispersion herein have
used polarizabilities for whole groups. In the event that such
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groups are large, a more accurate description might be ob-
tained by distributing the polarizability to each atom in the
group, in similar fashion to the way that electrostatic mo-
ments are distributed. Further investigations of a wide range
of crystal structures, with a range of electronic structures, are
required to determine the extent to which our treatment of
long range interactions requires further improvement.
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APPENDIX A: COMPARISON OF MOLECULAR
SHAPES

The task is to determine whether or not a molecular con-
figuration, C1, has essentially the same shape as another con-
figuration, C2, albeit that the order of the atoms and the ori-
entation of the two configurations may be different. If the
two configurations are essentially equivalent, then the data re-
quired to transform one configuration into the other must be
evaluated. The algorithm to achieve this is as follows:

(1) Evaluate the centroid position of the atoms in C1, and
subtract this from the coordinates of each atom to give
coordinates {x1(n,i), n = 1, . . ,N, i = 1, . ,3} with com-
mon center at the origin.

(2) Form a second rank tensor (3 × 3 matrix) M:

Mi j =
∑
n∈C1

m(n)x1(n, i)x1(n, j), (A1)

where m(n) denotes a “mass” for atom n, set to 1 for all
but two atoms, for which m takes an arbitrary value. We
allocate these arbitrary masses to each possible pair of
atoms, in turn, until M has three nondegenerate eigenval-
ues, {E1}. The corresponding eigenvectors, {V1}, then
determine the orientation of C1.

(3) Repeat steps (1) and (2) for configuration C2, with coor-
dinates {x2}.

(4) Compare the eigenvalues {E1} and {E2}. If {E1}
�= {E2}, return to step (3) to obtain a new set of non-
degenerate eigenvalues for a different allocation of the
arbitrary masses. If {E1} �= {E2}, for all possible allo-
cation of the arbitrary masses, then C1 cannot be equiv-
alent to C2 and we are finished. If {E1} = {E2} then

(5) The origin and {V1} define four points that define an
irregular shape. The origin and {V2} define also four
points that define an irregular shape. The unitary matrix,
A, which rotates the latter four points to be as close as
possible to the first four points is evaluated (see for ex-
ample, the Appendix in Ref. 45). The signs of the eigen-
vectors {V2} are arbitrary, so that there are eight possi-
ble shapes defined by the origin and {V2}. Each of these
eight possibilities are rotated to be as close as possible to
the origin and {V1}. The choice of signs which results
in the minimum distance is taken to correspond to the
optimal matrix A.

(6) Perform the unitary transformation (a proper or an im-
proper rotation) on the coordinates of C2 to give new
coordinates x(2)′ = Ax(2).

(7) Find the atom number m which makes x(2)′(m) as close
as possible to x(1)(n) for all atoms (n) in C1. This pro-
vides a table {Tbl(n,m)} of the permutations of the num-
bering in C1 and C2. If the closest atom–atom distances
exceed some tolerance, then C2 �= C1, and we are fin-
ished. If all atom–atom distances are sufficiently small
then C2 = C1, and {Tbl(n,m)} and the matrix A provide
all the necessary information to transform any tensorial
properties of C1 to the corresponding properties of C2
(e.g., the energy gradient, dipole moment, or polarizabil-
ity tensor).

APPENDIX B: ENERGY MINIMISATION

The method adopted to minimize the total lattice energy
per unit cell, Eq. (2.21), is simple and robust, but computa-
tionally profligate. The first and second derivatives of the en-
ergy with respect to the 3N atomic coordinates of the central
unit cell and the nine lattice parameters are transformed, us-
ing Eq. (2.27) into the first, g, and second derivatives, F, of the
energy with respect to the 3N fractional coordinates and the
nine lattice parameters. We denote the (3N+9) × 1 column
vector of these variables as z. Then, if g and F are evaluated
at z = z0, we can write the gradient near z0 as:

∂ EUC

∂z
= g(z0) + F(z0)(z − z0). (B1)

Setting ∂ EUC

∂z = 0, we solve

g(z0) + F(z0)(z − z0) = 0 (B2)

for z. Since F is real and symmetric, it has only real eigenval-
ues, defined by

Fv(n) = λ(n)v(n), n = 1, . . . , 3N + 9.

Then, the solution of (B2) is given by

z − z0 = −
3N+9∑
n=1

g(z0)T v(n)

λ(n)
v(n). (B3)

Particularly if some of the eigenvalues are small, the co-
efficient [g(z0)T v(n)]/λ(n) may be large, and the resultant
change in the variables, z − z0, will be large. Large displace-
ments are inconsistent with the validity of Eq. (B1) only for
small displacements. In this case the magnitude, ‖z − z0‖
from Eq. (B3) is scaled to some given maximum. The frac-
tional coordinates and lattice parameters are displaced ac-
cordingly to give a new configuration z′

0. Equation (B3) is
then re-evaluated for the new reference configuration z′

0, and
a new displacement is obtained. This iterative process is re-
peated until ‖g‖ falls below a given tolerance, or ‖z − z0‖
falls below a given tolerance or the predicted energy change,∣∣EUC (z) − EUC (z0)

∣∣, falls below a given tolerance. The ge-
ometry is then taken to be optimized.

Note that all fractional coordinates and all lattice pa-
rameters are free variables in this optimization, so that the
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symmetry of the lattice is free to change during the optimiza-
tion. However, the number of atoms in the unit cell is fixed.
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